Academic literature on the topic 'Méthode XFEM'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Méthode XFEM.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Méthode XFEM"

1

Barrau, Nelly. "Généralisation de la méthode Nitsche XFEM pour la discrétisation de problèmes d'interface elliptiques." Phd thesis, Université de Pau et des Pays de l'Adour, 2013. http://tel.archives-ouvertes.fr/tel-00913387.

Full text
Abstract:
Cette thèse porte sur la généralisation de la méthode NXFEM proposée par A. et P. Hansbo pour le problème d'interface elliptique. La modélisation et simulation numérique d'écoulements dans des domaines fracturés sont au coeur de nombreuses applications, telles que le milieu pétrolier (modélisation de réservoirs, présence de failles, propagation d'un signal, repérage de couches), l'aérospatiale (problème de chocs, de rupture), en génie civil (fissuration du béton), mais également dans la biologie cellulaire (déformation des globules rouges). En outre, de nombreux projets de recherche nécessitent le développement des méthodes robustes pour la prise en compte de singularités, ce qui fait partie des motivations et des objectifs de l'équipe Concha, ainsi que de cette thèse. Une modification de cette méthode a tout d'abord été proposée afin d'obtenir la robustesse à la fois par rapport à la géométrie du maillage coupé par l'interface et par rapport aux paramètres de diffusion. Nous nous sommes ensuite intéressés à sa généralisation à tout type de maillages 2D-3D (triangles, quadrilatères, tétraèdres, hexaèdres), et pour tout type d'éléments finis (conformes, non conformes, Galerkin discontinus) pour des interfaces planes et courbes. Les applications ont été orientées vers des problèmes d'écoulements en milieux poreux fracturés : adaptation de la méthode NXFEM à la résolution d'un modèle asymptotique de failles, à des problèmes instationnaires, de transports, ou encore à des domaines multi-fracturés.
APA, Harvard, Vancouver, ISO, and other styles
2

Barrau, Nelly. "Généralisation de la méthode Nitsche XFEM pour la discrétisation de problèmess d'interface elliptiques." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3025/document.

Full text
Abstract:
Cette thèse porte sur la généralisation de la méthode NXFEM proposée par A. et P. Hansbo pour le problème d’interface elliptique. La modélisation et simulation numérique d’écoulements dans des domaines fracturés sont au coeur de nombreuses applications, telles que le milieu pétrolier (modélisation de réservoirs, présence de failles, propagation d’un signal, repérage de couches), l’aérospatiale (problème de chocs, de rupture), en génie civil (fissuration du béton), mais également dans la biologie cellulaire (déformation des globules rouges). En outre, de nombreux projets de recherche nécessitent le développement des méthodes robustes pour la prise en compte de singularités, ce qui fait partie des motivations et des objectifs de l'équipe Concha, ainsi que de cette thèse. Une modification de cette méthode a tout d’abord été proposée afin d’obtenir la robustesse à la fois par rapport à la géométrie du maillage coupé par l’interface et par rapport aux paramètres de diffusion. Nous nous sommes ensuite intéressés à sa généralisation à tout type de maillages 2D-3D (triangles, quadrilatères, tétraèdres, hexaèdres), et pour tout type d’éléments finis (conformes, non conformes, Galerkin discontinus) pour des interfaces planes et courbes. Les applications ont été orientées vers des problèmes d’écoulements en milieux poreux fracturés : adaptation de la méthode NXFEM à la résolution d’un modèle asymptotique de failles, à des problèmes instationnaires, de transports, ou encore à des domaines multi-fracturés<br>This thesis focuses on the generalization of the NXFEM method proposed by A. and P. Hansbo for elliptic interface problem. Numerical modeling and simulation of flow in fractured media are at the heart of many applications, such as petroleum and porous media (reservoir modeling, presence of faults, signal propagation, identification of layers ...), aerospace (problems of shock, rupture), civil engineering (concrete cracking), but also in cell biology (deformation of red blood cells). In addition, many research projects require the development of robust methods for the consideration of singularities, which is one of the motivations and objectives of the Concha team and of this thesis. First a modification of this method was proposed to obtain a robust method not only with respect to the mesh-interface geometry, but also with respect to the diffusion parameters. We then looked to its generalization to any type of 2D-3D meshes (triangles, quadrilaterals, tetrahedra, hexahedra), and for any type of finites elements (conforming, nonconforming, Galerkin discontinuous) for plane and curved interfaces. The applications have been referred to the flow problems in fractured porous media : adaptation of NXFEM method to solve an asymptotic model of faults, to unsteady problems, transport problems, or to multi-fractured domains
APA, Harvard, Vancouver, ISO, and other styles
3

Lasry, Jérémie. "Calculs de plaques fissurées en flexion avec la méthode des éléments finis étendue (XFEM)." Phd thesis, INSA de Toulouse, 2009. http://tel.archives-ouvertes.fr/tel-00465635.

Full text
Abstract:
Cette thèse est consacrée au développement de méthodes numériques pour la simulation de plaques et coques fissurées. Pour ce problème, les méthodes classiques sont basées sur la Méthode des Elements Finis (MEF). En raison de la présence d'une singularité en fond de fissure, la MEF souffre de plusieurs défauts. Son taux de convergence n'est pas optimal. De plus, en cas de propagation de la fissure, le domaine doit être remaillé. Une nouvelle méthode d'éléments finis, introduite en 1999 et baptisée XFEM, permet de s'affranchir de ces inconvénients. Dans cette méthode, la base éléments finis est enrichie par des fonctions de forme spécifiques qui représentent la séparation du matériau et la singularité de fond de fissure. Ainsi, domaine et fissure sont indépendants et le taux de convergence est optimal. Dans cette thèse, on développe deux formulations XFEM adaptées à un modèle de plaques minces. Ces méthodes ont pu être implémentées dans la bibliothèque d'éléments finis Getfem++, et testées sur des exemples où la solution exacte est connue. L'étude d'erreur montre que la méthode XFEM possède un taux de convergence optimal, alors que la MEF montre une convergence plus lente. L'autre contribution de cette thèse concerne le calcul de Facteurs d'Intensité de Contraintes (FIC) : ces grandeurs indiquent le risque de propagation de la fissure. Nous proposons deux méthodes de calcul originales, basées sur nos formulations XFEM. La première méthode utilise l'intégrale-J, et la deuxième fournit une estimation directe, sans post-traitement.
APA, Harvard, Vancouver, ISO, and other styles
4

Laouati, Atmane. "Modélisation de problèmes thermoélectriques non linéaires dans un milieu fissuré par la méthode XFEM." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/30001/30001.pdf.

Full text
Abstract:
L’objectif principal de cette thèse est le développement d’un outil numérique, en utilisant l’approche XFEM, permettant la simulation des problèmes transitoires non linéaires thermoélectriques dans un milieu fissuré en deux dimensions, avec prise en compte des échanges thermiques et électriques entre les lèvres de la fissure. La simulation numérique de la propagation de fissures présente un grand intérêt pour de nombreux secteurs industriels (production d’aluminium, aéronautique, nucléaire, etc.). De plus, c’est un problème complexe sur le plan numérique. La méthode d’éléments finis classiques présentent des contraintes importantes de raffinement de maillage en fond de fissure, de remaillage pendant la propagation de la fissure avec la projection des champs, ce qui a pour effet d’augmenter le temps de calcul et de dégrader la précision des résultats. D’autre part, la méthode des éléments finis étendue XFEM, a reçu un succès grandissant pour le traitement de problèmes avec fissures durant la dernière quinzaine d’années. Elle permet d’utiliser un maillage qui ne se conforme pas à la géométrie des fissures, ceci grâce à un enrichissement de l’approximation éléments finis. Dans cette thèse, on s’intéresse à étendre le champ d’application de la méthode XFEM pour les problèmes non linéaires thermoélectriques avec fissures. En effet, le problème thermique transitoire est couplé avec le problème électrique par la génération de la chaleur dans le solide, et la génération de chaleur à la fissure à cause de la résistance de l’interface. Les échanges thermiques et électriques entre les lèvres de la fissure sont aussi considérés, et dépendent, respectivement, du saut de la température et du potentiel électrique à la fissure. En raison de la génération de la chaleur dans le solide et aux lèvres L’objectif principal de cette thèse est le développement d’un outil numérique, en utilisant l’approche XFEM, permettant la simulation des problèmes transitoires non linéaires thermoélectriques dans un milieu fissuré en deux dimensions, avec prise en compte des échanges thermiques et électriques entre les lèvres de la fissure. La simulation numérique de la propagation de fissures présente un grand intérêt pour de nombreux secteurs industriels (production d’aluminium, aéronautique, nucléaire, etc.). De plus, c’est un problème complexe sur le plan numérique. La méthode d’éléments finis classiques présentent des contraintes importantes de raffinement de maillage en fond de fissure, de remaillage pendant la propagation de la fissure avec la projection des champs, ce qui a pour effet d’augmenter le temps de calcul et de dégrader la précision des résultats. D’autre part, la méthode des éléments finis étendue XFEM, a reçu un succès grandissant pour le traitement de problèmes avec fissures durant la dernière quinzaine d’années. Elle permet d’utiliser un maillage qui ne se conforme pas à la géométrie des fissures, ceci grâce à un enrichissement de l’approximation éléments finis. Dans cette thèse, on s’intéresse à étendre le champ d’application de la méthode XFEM pour les problèmes non linéaires thermoélectriques avec fissures. En effet, le problème thermique transitoire est couplé avec le problème électrique par la génération de la chaleur dans le solide, et la génération de chaleur à la fissure à cause de la résistance de l’interface. Les échanges thermiques et électriques entre les lèvres de la fissure sont aussi considérés, et dépendent, respectivement, du saut de la température et du potentiel électrique à la fissure. En raison de la génération de la chaleur dans le solide et aux lèvres<br>The main objective of this thesis is the development of a numerical tool, using the XFEM approach, for the simulation of transient nonlinear thermoelectrical problems in fractured media in two dimensions, taking into account thermal and electrical exchanges between the crack’s lips. Numerical simulations of crack propagation are of great interest for many industrial sectors (aluminum production, aerospace, nuclear, etc.). In addition, this is a numerically complex problem. The classical finite element method has important constraints of mesh refinement at the crack tip, remeshing during crack propagation and field projections, which has the effect of increasing the computation time and degrading the accuracy. On the other hand, the eXtended Finite Element Method (XFEM), has received a growing success for the treatment of the problems containing cracks in the last fifteen years. It allows using a mesh that does not conform to the geometry of the crack; this is possible by the enrichment of the finite element approximation. In this thesis, we are interested in extending application field of the XFEM method to the nonlinear thermoelectrical problems with cracks. Indeed, the transient thermal problem is coupled to the electrical problem by the heat generation in the solid, and the heat generation at the crack’s lips due to the interface resistance. The heat and electrical exchanges between the crack’s lips are also considered, and depend, respectively, on the temperature and the voltage jump at the crack. Due to the heat generation in the solid and in crack’s lips (Joule effect), and the temperature dependence of the physical parameters of the material, the problem is nonlinear and fully coupled. The discretized nonlinear system by the XFEM method is solved using the Newton-Raphson algorithm. The robustness of the proposed technique is demonstrated through the simulation of different examples, and the results shows an excellent agreement with the analytical solution, or with the finite element solution using a refined mesh.
APA, Harvard, Vancouver, ISO, and other styles
5

Panetier, Julien. "Vérification des facteurs d'intensité de contrainte calculés par XFEM." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2009. http://tel.archives-ouvertes.fr/tel-00505777.

Full text
Abstract:
La prévision de la tenue des structures fissurées nécessite le calcul du taux de restitution d'énergie ou des facteurs d'intensité de contrainte (FIC) en pointe de fissure. Ces quantités sont généralement évaluées après une analyse éléments finis. Plus récemment l'apparition de la XFEM a permis d'améliorer la description des champs en pointe fissure et de s'affranchir des remaillages successifs après chaque pas de propagation. Néanmoins, la solution ainsi calculée demeure une solution approchée de la solution du problème de référence. Il est donc important de pouvoir évaluer la pertinence de ces calculs. Ces travaux de thèse proposent une technique à même de fournir un encadrement conservatif des FIC évalués par une méthode éléments finis classique et par la XFEM. L'utilisation des techniques d'évaluation d'erreur sur les quantités d'intérêt et de l'erreur en relation de comportement permet dans un premier temps de fournir des bornes de bonne qualité pour les FIC. On propose ensuite une méthode permettant d'évaluer l'erreur globale commise lors d'une analyse XFEM. Elle fait intervenir l'erreur en relation de comportement et des techniques de construction de champs de contrainte adéquates. On est alors en mesure de proposer un encadrement assez fin des FIC pour un coût numérique très raisonnable. L'estimation d'erreur peut finalement être envisagée comme un moyen de déterminer les quantités d'intérêt avec précision.
APA, Harvard, Vancouver, ISO, and other styles
6

Martin, Dave. "Multiphase modeling of melting : solidification with high density variations using XFEM." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27140.

Full text
Abstract:
La modélisation de la cryolite, utilisée dans la fabrication de l’aluminium, implique plusieurs défis, notament la présence de discontinuités dans la solution et l’inclusion de la difference de densité entre les phases solide et liquide. Pour surmonter ces défis, plusieurs éléments novateurs ont été développés dans cette thèse. En premier lieu, le problème du changement de phase, communément appelé problème de Stefan, a été résolu en deux dimensions en utilisant la méthode des éléments finis étendue. Une formulation utilisant un multiplicateur de Lagrange stable spécialement développée et une interpolation enrichie a été utilisée pour imposer la température de fusion à l’interface. La vitesse de l’interface est déterminée par le saut dans le flux de chaleur à travers l’interface et a été calculée en utilisant la solution du multiplicateur de Lagrange. En second lieu, les effets convectifs ont été inclus par la résolution des équations de Stokes dans la phase liquide en utilisant la méthode des éléments finis étendue aussi. Troisièmement, le changement de densité entre les phases solide et liquide, généralement négligé dans la littérature, a été pris en compte par l’ajout d’une condition aux limites de vitesse non nulle à l’interface solide-liquide pour respecter la conservation de la masse dans le système. Des problèmes analytiques et numériques ont été résolus pour valider les divers composants du modèle et le système d’équations couplés. Les solutions aux problèmes numériques ont été comparées aux solutions obtenues avec l’algorithme de déplacement de maillage de Comsol. Ces comparaisons démontrent que le modèle par éléments finis étendue reproduit correctement le problème de changement phase avec densités variables.<br>The modelling of the cryolite bath, used in the smelting of aluminum, offers multiple challenges, particularly the presence of discontinuities in the solution and a difference in density between the solid and liquid phases. To over come these challenges, several novel elements were developed in this thesis. First of all, the phase change problem, commonly named the Stefan problem, was solved in two dimensions using the extended finite element method. A specially designed Lagrange multiplier formulation, using an enriched Lagrange multiplier solution, was implemented to impose the melting temperature on the interface. The interface velocity is determined by the jump in the heat flux across the interface and was calculated using the Lagrange multiplier values. Secondly, convection was included by solving the Stokes equations in the liquid phase using the extended finite element method as well. Thirdly, the density change between solid and liquid phases, usually neglected in the literature, was taken into account by the addition of a non-zero velocity boundary condition at the solid-liquid interface to maintain mass conservation in the system. Benchmark analytical and numerical problems were solved to validated the various components of the model and the coupled system of equations. The solutions to the numerical problems were compared to the solutions obtained using Comsol’s moving mesh algorithm. Theses comparisons show that the extended finite element method correctly solves the phase change problem with non-constant densities.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Min, and Min Li. "Numerical model building based on XFEM/level set method to simulate ledge freezing/melting in Hall-Héroult cell." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27919.

Full text
Abstract:
Au cours de la production de l'aluminium via le procédé de Hall-Héroult, le bain gelé, obtenu par solidification du bain électrolytique, joue un rôle significatif dans le maintien de la stabilité de la cellule d'électrolyse. L'objectif de ce travail est le développement d'un modèle numérique bidimensionnel afin de prédire le profil du bain gelé dans le système biphasé bain liquide/bain gelé, et ce, en résolvant trois problèmes physiques couplés incluant le problème de changement de phase (problème de Stefan), la variation de la composition chimique du bain et le mouvement de ce dernier. Par souci de simplification, la composition chimique du bain est supposée comme étant un système binaire. La résolution de ces trois problèmes, caractérisés par le mouvement de l'interface entre les deux phases et les discontinuités qui ont lieu à l'interface, constitue un grand défi pour les méthodes de résolution conventionnelles, basées sur le principe de la continuité des variables. En conséquence, la méthode des éléments finis étendus (XFEM) est utilisée comme alternative afin de traiter les discontinuités locales inhérentes à chaque solution tandis que la méthode de la fonction de niveaux (level-set) est exploitée pour capturer, implicitement, l'évolution de l'interface entre les deux phases. Au cours du développement de ce modèle, les problématiques suivantes : 1) l'écoulement monophasique à densité variable 2) le problème de Stefan couplé au transport d'espèces chimiques dans un système binaire sans considération du phénomène de la convection et 3) le problème de Stefan et le mouvement du fluide qui en résulte sont investigués par le biais du couplage entre deux problèmes parmi les problèmes mentionnées ci-dessus. La pertinence et la précision de ces sous-modèles sont testées à travers des comparaisons avec des solutions analytiques ou des résultats obtenus via des méthodes numériques conventionnelles. Finalement, le modèle tenant en compte les trois physiques est appliqué à la simulation de certains scénarios de solidification/fusion du système bain liquide-bain gelé. Dans cette dernière application, le mouvement du bain, induit par la différence de densité entre les deux phases ou par la force de flottabilité due aux gradients de température et/ou de concentration, est décrit par le problème de Stokes. Ce modèle se caractérise par le couplage entre différentes physiques, notamment la variation de la densité du fluide et de la température de fusion en fonction de la concentration des espèces chimiques. En outre, la méthode XFEM démontre sa précision et sa flexibilité pour traiter différents types de discontinuité tout en considérant un maillage fixe.<br>Au cours de la production de l'aluminium via le procédé de Hall-Héroult, le bain gelé, obtenu par solidification du bain électrolytique, joue un rôle significatif dans le maintien de la stabilité de la cellule d'électrolyse. L'objectif de ce travail est le développement d'un modèle numérique bidimensionnel afin de prédire le profil du bain gelé dans le système biphasé bain liquide/bain gelé, et ce, en résolvant trois problèmes physiques couplés incluant le problème de changement de phase (problème de Stefan), la variation de la composition chimique du bain et le mouvement de ce dernier. Par souci de simplification, la composition chimique du bain est supposée comme étant un système binaire. La résolution de ces trois problèmes, caractérisés par le mouvement de l'interface entre les deux phases et les discontinuités qui ont lieu à l'interface, constitue un grand défi pour les méthodes de résolution conventionnelles, basées sur le principe de la continuité des variables. En conséquence, la méthode des éléments finis étendus (XFEM) est utilisée comme alternative afin de traiter les discontinuités locales inhérentes à chaque solution tandis que la méthode de la fonction de niveaux (level-set) est exploitée pour capturer, implicitement, l'évolution de l'interface entre les deux phases. Au cours du développement de ce modèle, les problématiques suivantes : 1) l'écoulement monophasique à densité variable 2) le problème de Stefan couplé au transport d'espèces chimiques dans un système binaire sans considération du phénomène de la convection et 3) le problème de Stefan et le mouvement du fluide qui en résulte sont investigués par le biais du couplage entre deux problèmes parmi les problèmes mentionnées ci-dessus. La pertinence et la précision de ces sous-modèles sont testées à travers des comparaisons avec des solutions analytiques ou des résultats obtenus via des méthodes numériques conventionnelles. Finalement, le modèle tenant en compte les trois physiques est appliqué à la simulation de certains scénarios de solidification/fusion du système bain liquide-bain gelé. Dans cette dernière application, le mouvement du bain, induit par la différence de densité entre les deux phases ou par la force de flottabilité due aux gradients de température et/ou de concentration, est décrit par le problème de Stokes. Ce modèle se caractérise par le couplage entre différentes physiques, notamment la variation de la densité du fluide et de la température de fusion en fonction de la concentration des espèces chimiques. En outre, la méthode XFEM démontre sa précision et sa flexibilité pour traiter différents types de discontinuité tout en considérant un maillage fixe.<br>During the Hall-Héroult process for smelting aluminium, the ledge formed by freezing the molten bath plays a significant role in maintaining the internal working condition of the cell at stable state. The present work aims at building a vertically two-dimensional numerical model to predict the ledge profile in the bath-ledge two-phase system through solving three interactive physical problems including the phase change problem (Stefan problem), the variation of bath composition and the bath motion. For the sake of simplicity, the molten bath is regarded as a binary system in chemical composition. Solving the three involved problems characterized by the free moving internal boundary and the presence of discontinuities at the free boundary is always a challenge to the conventional continuum-based methods. Therefore, as an alternative method, the extended finite element method (XFEM) is used to handle the local discontinuities in each solution space while the interface between phases is captured implicitly by the level set method. In the course of model building, the following subjects: 1) one-phase density driven flow 2) Stefan problem without convection mechanism in the binary system 3) Stefan problem with ensuing melt flow in pure material, are investigated by coupling each two of the problems mentioned above. The accuracy of the corresponding sub-models is verified by the analytical solutions or those obtained by the conventional methods. Finally, the model by coupling three physics is applied to simulate the freezing/melting of the bath-ledge system under certain scenarios. In the final application, the bath flow is described by Stokes equations and induced either by the density jump between different phases or by the buoyancy forces produced by the temperature or/and compositional gradients. The present model is characterized by the coupling of multiple physics, especially the liquid density and the melting point are dependent on the species concentration. XFEM also exhibits its accuracy and flexibility in dealing with different types of discontinuity based on a fixed mesh.<br>During the Hall-Héroult process for smelting aluminium, the ledge formed by freezing the molten bath plays a significant role in maintaining the internal working condition of the cell at stable state. The present work aims at building a vertically two-dimensional numerical model to predict the ledge profile in the bath-ledge two-phase system through solving three interactive physical problems including the phase change problem (Stefan problem), the variation of bath composition and the bath motion. For the sake of simplicity, the molten bath is regarded as a binary system in chemical composition. Solving the three involved problems characterized by the free moving internal boundary and the presence of discontinuities at the free boundary is always a challenge to the conventional continuum-based methods. Therefore, as an alternative method, the extended finite element method (XFEM) is used to handle the local discontinuities in each solution space while the interface between phases is captured implicitly by the level set method. In the course of model building, the following subjects: 1) one-phase density driven flow 2) Stefan problem without convection mechanism in the binary system 3) Stefan problem with ensuing melt flow in pure material, are investigated by coupling each two of the problems mentioned above. The accuracy of the corresponding sub-models is verified by the analytical solutions or those obtained by the conventional methods. Finally, the model by coupling three physics is applied to simulate the freezing/melting of the bath-ledge system under certain scenarios. In the final application, the bath flow is described by Stokes equations and induced either by the density jump between different phases or by the buoyancy forces produced by the temperature or/and compositional gradients. The present model is characterized by the coupling of multiple physics, especially the liquid density and the melting point are dependent on the species concentration. XFEM also exhibits its accuracy and flexibility in dealing with different types of discontinuity based on a fixed mesh.
APA, Harvard, Vancouver, ISO, and other styles
8

Paul, Bertrand. "Modélisation de la propagation de fractures hydrauliques par la méthode des éléments finis étendue." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0182/document.

Full text
Abstract:
La perméabilité des roches est fortement influencée par la présence de fractures car ces dernières constituent un chemin préférentiel pour l’écoulement des fluides. Ainsi la présence de fractures naturelles est un facteur déterminant pour la productivité d’un réservoir. Dans le cas de roches à faible conductivité, des techniques de stimulation telle que la fracturation hydraulique sont utilisées pour en augmenter la perméabilité et rendre le réservoir exploitable d’un point de vue économique. A l’inverse, dans le cas du stockage géologique, la présence de fractures dans la roche représente un danger dans la mesure où elle facilite le transport et la migration des espèces disséminées dans la roche. Pour le stockage de CO2, les fuites par les fractures présentes dans les couvertures du réservoir et la réactivation des failles constituent un risque majeur. Et en ce qui concerne le stockage géologique de déchets radioactifs, la circulation de fluide dans des réseaux de fractures nouvelles ou réactivées au voisinage de la zone de stockage peut aboutir à la migration de matériaux nocifs. Il est donc important de prévoir les effets de la présence de fractures dans un réservoir. Le but de cette thèse est le développement d’un outil numérique pour la simulation d’un réseau de fractures et de son évolution sous sollicitation hydro-mécanique. Grâce à sa commodité, la méthode des éléments finis étendue (XFEM) sera retenue et associée à un modèle de zone cohésive. La méthode XFEM permet en effet l’introduction de fissures dans le modèle sans nécessairement remailler en cas de propagation des fissures. L’écoulement du fluide dans la fissure et les échanges de fluide entre la fissure et le milieu poreux seront pris en compte via un couplage hydro-mécanique. Le modèle est validé avec une solution analytique asymptotique pour la propagation d’une fracture hydraulique plane dans un milieu poroélastique en 2D comme en 3D. Puis, nous étudions la propagation de fractures hydrauliques sur trajets inconnus. Les fissures sont initialement introduites comme des surfaces de fissuration potentielles étendues. Le modèle de zone cohésive sépare naturellement les domaines adhérents et ouverts. Les surfaces potentielles de fissuration sont alors actualisées de manière implicite par un post-traitement de l’état cohésif. Divers exemples de réorientation de fissures hydrauliques et de compétition entre fissures voisines sont analysés. Enfin, nous présentons l’extension du modèle aux jonctions de fractures hydrauliques<br>The permeability of rocks is widely affected by the presence of fractures as it establishes prevailing paths for the fluid flow. Natural cracks are then a critical factor for a reservoir productiveness. For low permeability rocks, stimulation techniques such as hydrofracturing have been experienced to enhance the permeability, so that the reservoir becomes profitable. In the opposite, when it comes to geological storage, the presence of cracks constitutes a major issue since it encourages the leak and migration of the material spread in the rock. In the case of CO2 storage, the scenario of leakage across the reservoir seal through cracks or revived faults is a matter of great concern. And as for nuclear waste storage, the fluid circulation in a fracture network around the storage cavity can obviously lead to the migration of toxic materials. It is then crucial to predict the effects of the presence of cracks in a reservoir. The main purpose of this work is the design of a numerical tool to simulate a crack network and its evolution under hydromechanical loading. To achieve this goal we chose the eXtended Finite Element Method (XFEM) for its convenience, and a cohesive zone model to handle the crack tip area. The XFEM is a meshfree method that allows us to introduce cracks in the model without necessarily remeshing in case of crack propagation. The fluid flow in the crack as well as the exchanges between the porous rock and the crack are accounted for through an hydro-mechanical coupling. The model is validated with an analytical asymptotic solution for the propagation of a plane hydraulic fracture in a poroelastic media, in 2D as well as in 3D. Then we study the propagation of hydraulic fractures on non predefined paths. The cracks are initially introduced as large potential crack surfaces so that the cohesive law will naturally separate adherent and debonding zones. The potential crack surfaces are then updated based on a directional criterion appealing to cohesive integrals only. Several examples of crack reorientation and competition between nearby cracks are presented. Finally, we extend our model to account for the presence of fracture junctions
APA, Harvard, Vancouver, ISO, and other styles
9

Moumnassi, Mohammed. "La représentation implicite des volumes pour l'analyse par éléments finis avec XFEM et Level-sets." Thesis, Metz, 2011. http://www.theses.fr/2011METZ033S/document.

Full text
Abstract:
La méthode des éléments finis (ÉF) est largement utilisée pour la simulation numérique de problèmes physiques formulés en terme d’équations aux dérivées partielles (EDP). Une étape cruciale du processus d’analyse par cette méthode est la discrétisation de la géométrie du domaine afin de construire le maillage sur lequel est formulé l’espace d’approximation du problème. Cependant, la création d’un maillage de qualité conforme aux frontières courbes et aux arêtes vives, dont dépend les résultats numériques, nécessite encore un apport significatif de temps humain lors du processus globale d’analyse. L’objet de ce travail est la mise en œuvre d’une nouvelle approche qui permet de réaliser des simulations sur un objet dont la frontière est non-conforme au maillage, tout en conservant les avantages des ÉF. Pour cela, on utilise une représentation implicite du domaine (Level set) et la méthode des éléments finis étendus (XFEM). Dans un premier temps, on s’intéresse à construire des objets par Level sets indépendamment de la discrétisation spatiale (i.e. un maillage simple). Des stratégies ont été développées afin de construire des objets implicites à partir de la représentation paramétrique la plus populaire en conception CAO, de préserver les arêtes vives et pour pouvoir représenter correctement les frontières courbes. Dans un deuxième temps, on s’intéresse à l’adaptation de la méthode XFEM afin de réaliser une intégration numérique correcte et de préserver la stabilité des formulations mixtes pour la gestion de la contrainte de Dirichlet. La dernière partie consiste à vérifier la précision et les taux de convergence dans le cas des frontières courbes et pour des objets entièrement non-conformes au maillage<br>The Finite Element Method (FEM) is widely used for numerical simulations of physical problems formulated in terms of partial differential equations (PDE). A crucial step in the process of analysis by this method is the discretization of the geometry to construct a mesh representing the approximation space of the problem. However, high quality mesh that conforms to the curved boundaries and sharp features, whose depends on the numerical results, still requires a significant amount of human time in the global process of analysis. The aim of this work is to implement a new approach that allows performing simulations on an object whose boundaries do not conform to the mesh, while retaining the benefits of FEM. For this purpose, the implicit representation of the domain (Level set) and the eXtended Finite Element Method (XFEM) are used. In the first step, the focus is to build objects by using Level sets independently of the spatial discretization (i.e. a simple mesh). Strategies have been developed to build implicit objects from the parametric representation (the most common in Computer Aided Design CAD), to preserve sharp features and correctly represent curved boundaries. In a second step, the focus lies on adapting XFEM to achieve a proper numerical integration and to preserve the stability of mixed formulations for managing Dirichlet constraints. The last part consists in verifying the accuracy and rate convergence in the case of implicit curved boundaries and of non-conforming objects to the mesh
APA, Harvard, Vancouver, ISO, and other styles
10

Mekhlouf, Réda. "Modélisation XFEM, Nitsche, Level-set et simulation sous FEniCS de la dynamique de deux fluides non miscibles." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/30205.

Full text
Abstract:
À l’heure actuelle, les écoulements à deux fluides non miscibles jouent un rôle très important dans plusieurs domaines, que ça soit en science ou en ingénierie. Leur complexité est tellement élevée que les modèles actuels ne permettent de résoudre que des cas particuliers ou simplifiés avec un degré de précision qui demeurent souvent plutôt modeste. Une nouvelle approche numérique parait être une nécessité pour capturer la complexité physique du phénomène. Pour ce faire nous avons besoin d’outils robustes. Au niveau de l’interface de séparation entre les deux fluides non miscibles, les variables physiques sont discontinues, ce qui pose un défi majeur dans la description des variables et des conditions aux limites à l’interface. Le fait que les densités et les viscosités de chaque fluide soient différentes de part et d’autre de l’interface donne naissance à des défauts et des impuretés dans le champ des vitesses, ce qu’on appelle une discontinuité faible. Pour sa part, l’existence de la force de tension superficielle au niveau de l’interface crée une discontinuité sur le champ de pression, ce qu’on appelle une discontinuité forte. Un autre grand problème se pose au niveau de l’étude numérique du problème, où les méthodes numériques classiques ont une précision assez limitée dans ce genre de situation. L’objectif de ce travail est de fournir une étude complète de la dynamique de l’interface entre deux fluides non miscibles à l’aide d’outils mathématiques, physiques et numériques robustes. D’abord, une étude analytique du problème a été faite où l’équation de Navier-Stokes et les conditions de saut sur les variables physiques au niveau de l’interface de séparation entre les fluides ont été prouvées en détail. Pour traiter les discontinuités, nous avons discrétisé nos variables à l’aide de la méthode XFEM. Dû aux larges distorsions rencontrées dans ce genre d’écoulement, nous avons utilisé l’approche Eulérienne, pour corriger les oscillations des solutions dues aux choix du système de coordonnées nous avons utilisé les techniques de stabilisation SUPG/PSPG. Le traitement de la courbure des interfaces K été fait à l’aide de l’opérateur Laplace Beltrami et le suivi d’interface à l’aide de la méthode ¨Level-set¨. Pour le traitement des conditions de saut au niveau de l’interface la méthode Nitsche est développée dans différents contextes. Après avoir développé un modèle physique et mathématique dans les premières parties de notre travail, nous avons fait une étude numérique à l’aide de la plateforme de calcul FEniCS, qui est une plateforme de développement en langage C++ avec une interface Python. Un code de calcul a été développé dans le cas des écoulements de deux fluides non miscibles avec les modèles physiques et les outils mathématiques développés dans les sections précédentes.<br>The two-phase flow problems have an important role in the multitude of domains in science and engineering. Their complexity is so high that the actual models can solve only particular or simplified cases with a certain degree of precision. A new approach is a necessity to understand the evolution of new ideas and the physical complexity in this kind of flow, to contribute to the study of this field. A good study requires solid and robust tools to have performing results and a maximum of efficacy. At the interface of separation between the two immiscible fluids, the physical parameters are discontinuous, which gives us difficulties for the description of the physical variables at the interface and boundary conditions. The fact that the density and the viscosity are discontinuous at the interface creates kinks in the velocity, which represent a weak discontinuity. The existence of the surface tension at the interface create a discontinuity for the pressure field, it represents a strong discontinuity. The main objective of this work is to make a complete study based on strong and robust physical, mathematical and numerical tools. A strong combination, capable of capturing the physical aspect of the interface between the two fluids with a very good precision. Building such a robust, cost effective and accurate numerical model is challenging and requires lots of efforts and a multidisciplinary knowledge in mathematics, physics and computer science. First, an analytical study was made where the one fluid model of the Navier-Stokes equation was proved from Newton’s laws and jump conditions at the interface was proved and detailed analytically. To treat the problem of discontinuity, we used the XFEM method to discretize our discontinuous variables. Due to the large distortion encountered in this kind of fluid mechanic problems, we are going to use the Eulerian approach, and to correct the oscillation of solutions we will use the SUPG/PSPG stabilization technic. The treatment of the interface curvature k was done with the Laplace Beltrami operator and the interface tracking with the Level-set method. To treat the jump conditions with a very sharp precision we used the Nitsche’s method, developed in different cases. After building a strong mathematical and physical model in the first parts of our work, we did a numerical study using the FEniCS computational platform, which is a platform of computational development based on C++ with a Python interface. A numerical code was developed in this study, in the case of two-phase flow problem, based on the previous mathematical and physical models detailed in previous sections.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!