Academic literature on the topic 'Méthodes Bayésiennes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Méthodes Bayésiennes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Méthodes Bayésiennes"
Lubrano, Michel. "Modélisation bayésienne non linéaire du taux d’intérêt de court terme américain : l’aide des outils non paramétriques." Articles 80, no. 2-3 (October 24, 2005): 465–99. http://dx.doi.org/10.7202/011396ar.
Full textCostemalle, Vianney. "Projections de populations : l’ONU adopte une méthode bayésienne." Statistique et société 3, no. 3 (2015): 9–14. https://doi.org/10.3406/staso.2015.971.
Full textDesdevises, Yves. "Introduction générale aux méthodes comparatives phylogénétiques." Biosystema N° 31, no. 1 (July 3, 2018): 23–42. https://doi.org/10.3917/biosy.031.0023.
Full textROBERT-GRANIÉ, C., A. LEGARRA, and V. DUCROCQ. "Principes de base de la sélection génomique." INRAE Productions Animales 24, no. 4 (September 8, 2011): 331–40. http://dx.doi.org/10.20870/productions-animales.2011.24.4.3265.
Full textFerreira, D., A. Vivot, and N. Meyer. "Méthodes bayésiennes dans les essais contrôlés randomisés de phase III : une revue systématique." Revue d'Épidémiologie et de Santé Publique 67 (May 2019): S145. http://dx.doi.org/10.1016/j.respe.2019.03.011.
Full textChevret, S. "Méthodes bayésiennes dans les essais cliniques en cancérologie – une aide à la sélection de nouvelles molécules ?" Revue d'Épidémiologie et de Santé Publique 63 (May 2015): S37. http://dx.doi.org/10.1016/j.respe.2015.03.003.
Full textRobert, Christian P., and Gilles Celeux. "Entretien avec Christian Robert." Statistique et société 8, no. 1 (2020): 11–13. https://doi.org/10.3406/staso.2020.1110.
Full textBaghfalaki, T., P. Sugier, T. Truong, A. Pettitt, K. Mengersen, and B. Liquet. "Analyse de la pléiotropie dans les GWAS à l’aide de méthodes bayésiennes prenant en compte la structure de groupe de variables." Revue d'Épidémiologie et de Santé Publique 69 (June 2021): S24—S25. http://dx.doi.org/10.1016/j.respe.2021.04.040.
Full textCARILLIER-JACQUIN, Céline, Hélène LARROQUE, and Christèle ROBERT-GRANIÉ. "Vers une sélection génomique chez les caprins laitiers." INRA Productions Animales 30, no. 1 (June 18, 2018): 19–30. http://dx.doi.org/10.20870/productions-animales.2017.30.1.2228.
Full textAdamou Karimou, Ibrahim. "Relations phénotypiques et génétiques entre les caractères de production laitière et le poids du veau à la naissance chez la vache Azawak du Niger." Revue d’élevage et de médecine vétérinaire des pays tropicaux 77 (December 31, 2024): 1–7. https://doi.org/10.19182/remvt.37555.
Full textDissertations / Theses on the topic "Méthodes Bayésiennes"
Bazot, Cécile. "Méthodes bayésiennes pour l'analyse génétique." Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/10573/1/bazot.pdf.
Full textEches, Olivier. "Méthodes Bayésiennes pour le démélange d'images hyperspectrales." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0067/document.
Full textHyperspectral imagery has been widely used in remote sensing for various civilian and military applications. A hyperspectral image is acquired when a same scene is observed at different wavelengths. Consequently, each pixel of such image is represented as a vector of measurements (reflectances) called spectrum. One major step in the analysis of hyperspectral data consists of identifying the macroscopic components (signatures) that are present in the sensored scene and the corresponding proportions (concentrations). The latest techniques developed for this analysis do not properly model these images. Indeed, these techniques usually assume the existence of pure pixels in the image, i.e. pixels containing a single pure material. However, a pixel is rarely composed of pure spectrally elements, distinct from each other. Thus, such models could lead to weak estimation performance. The aim of this thesis is to propose new estimation algorithms with the help of a model that is better suited to the intrinsic properties of hyperspectral images. The unknown model parameters are then infered within a Bayesian framework. The use of Markov Chain Monte Carlo (MCMC) methods allows one to overcome the difficulties related to the computational complexity of these inference methods
Launay, Tristan. "Méthodes bayésiennes pour la prévision de consommation l'électricité." Phd thesis, Université de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00766237.
Full textGrazian, Clara. "Contributions aux méthodes bayésiennes approchées pour modèles complexes." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED001.
Full textRecently, the great complexity of modern applications, for instance in genetics,computer science, finance, climatic science etc., has led to the proposal of newmodels which may realistically describe the reality. In these cases, classical MCMCmethods fail to approximate the posterior distribution, because they are too slow toinvestigate the full parameter space. New algorithms have been proposed to handlethese situations, where the likelihood function is unavailable. We will investigatemany features of complex models: how to eliminate the nuisance parameters fromthe analysis and make inference on key quantities of interest, both in a Bayesianand not Bayesian setting, and how to build a reference prior
Launay, Tristan. "Méthodes Bayésiennes pour la prévision de consommation d’électricité." Nantes, 2012. http://www.theses.fr/2012NANT2074.
Full textIn this manuscript, we develop Bayesian statistics tools to forecast the French electricity load. We first prove the asymptotic normality of the posterior distribution (Bernstein-von Mises theorem) for the piecewise linear regression model used to describe the heating effect and the consistency of the Bayes estimator. We then build a a hierarchical informative prior to help improve the quality of the predictions for a high dimension model with a short dataset. We typically show, with two examples involving the non metered EDF customers, that the method we propose allows a more robust estimation of the model with regard to the lack of data. Finally, we study a new nonlinear dynamic model to predict the electricity load online. We develop a particle filter algorithm to estimate the model et compare the predictions obtained with operationnal predictions from EDF
Usureau, Emmanuel. "Application des méthodes bayésiennes pour l'optimisation des coûts de développement des produits nouveaux." Angers, 2001. http://www.theses.fr/2001ANGE0017.
Full textSalomond, Jean-Bernard. "Propriétés fréquentistes des méthodes Bayésiennes semi-paramétriques et non paramétriques." Thesis, Paris 9, 2014. http://www.theses.fr/2014PA090034/document.
Full textResearch on Bayesian nonparametric methods has received a growing interest for the past twenty years, especially since the development of powerful simulation algorithms which makes the implementation of complex Bayesian methods possible. From that point it is necessary to understand from a theoretical point of view the behaviour of Bayesian nonparametric methods. This thesis presents various contributions to the study of frequentist properties of Bayesian nonparametric procedures. Although studying these methods from an asymptotic angle may seems restrictive, it allows to grasp the operation of the Bayesian machinery in extremely complex models. Furthermore, this approach is particularly useful to detect the characteristics of the prior that are strongly influential in the inference. Many general results have been proposed in the literature in this setting, however the more complex and realistic the models the further they get from the usual assumptions. Thus many models that are of great interest in practice are not covered by the general theory. If the study of a model that does not fall under the general theory has an interest on its owns, it also allows for a better understanding of the behaviour of Bayesian nonparametric methods in a general setting
Mariani, Vincenzo. "Méthodes bayésiennes et d'apprentissage supervisé pour la construction d'orbites planétaires." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5059.
Full textIn this thesis we explored Bayesian and supervised learning methods applied to planetary orbitography. Firstly, we introduce the general problem of planetary orbit construction and the mathematical toolkit used. We describe the Metropolis-Hastings (MH) algorithm and Gaussian process regression (GPR) in order to obtain the posterior distribution of a parameter involved in planetary dynamics, producing a Markov chain Monte Carlo (MCMC). Additionally, the boosting decision trees (BDT) technique has been explained, and it is used to obtain a ranking of a given set of parameters involved in the planetary orbitography fit. We present the results on the use of MCMC and GPR combined. We used the GPR to obtain an approximation of the chi^2 to be used in the MH algorithm. We show an improvement for the detection limit of the mass of the graviton m_g using solar system dynamics, starting from a posterior probability distribution for m_g. From the posterior obtained, we can provide an upper bound of m_g < 1.01 × 10^{-24} eVc^{-2} at 99.7% C.L., improving of one order of magnitude such a limit. Additionally, we have shown, with a change of prior (from uniform to half-Laplace), that no significant information can be detected for masses smaller than this limit, by using the current observational datasets. These results have been published in Mariani et al. (2023). In using the same methodology, we also provide the latest constraint from planetary orbitography on the Brans-Dicke theory of gravity. In this context, we find that |1 - gamma| < 1.92 × 10^{-5} at the 66.7% C.L., while the previous best constraints from ranging data of the Cassini spacecraft on gamma led to |1-gamma| < 4.4 × 10^{-5} at 66.7% C.L. Moreover, we report marginal evidence suggesting that the effect of the violation on the strong equivalence principle might be detected, if any, with the current accuracy of planetary orbitography. These results have been published in Mariani et al. (2024). We also used the BDT to provide a ranking by relative importance of the 343 MBA masses currently used in the planetary ephemerides fit. We showed how to use a decision tree and investigated one possibility of construction of a training set. These preliminary results are promising since they show consistency among them as well as with previous works. The validity of the ranking has been confirmed by checking its impact on planetary orbit construction using the full set of observations available, in removing the least important asteroids from the MAB modeling cumulatively, and fitting the remaining parameters. The results presented validate the approach used. Finally, we propose new approaches to continue the investigations started within the current work, generalising and extending the techniques already presented
Ruggiero, Michèle. "Analyse semi-paramétrique des modèles de durées : l'apport des méthodes bayésiennes." Aix-Marseille 2, 1989. http://www.theses.fr/1989AIX24008.
Full textWe propose a semiparametric analysis of duration models. In this special class of regression models, the dependant variable is the time spent by a person in a particular state - the duration of an unemployment spell for instance - and the explanatory variables are the personal characteristics of this person. The semiparametric analysis of these models consists in specifying the relation between the duration and the explanatory variables (duration is supposed to be a specified function of the explanatory variables, depending on a finite number of unknown parameters) without specifying the data distribution. The parameters involved in this relation are then considered as parameters of interest, and the data distribution is a nuisance parameter. The thesis begins with a survey of nonbayesian semiparametric methods of estimation; it seems that these methods fail in discarding the nuisance data distribution. We then suggest a bayesian method, the principle of which is to give a prior distribution on the nuisance parameter - the data distribution. We then get semiparametric estimators for the parameters of interest, by computing their posterior distribution, conditional on the data and integrated with respect to the nuisance parameter. The thesis ends with a simulation, to check the robustness of the estimators we propose
Puengnim, Anchalee. "Classification de modulations linéaires et non-linéaires à l'aide de méthodes bayésiennes." Toulouse, INPT, 2008. http://ethesis.inp-toulouse.fr/archive/00000676/.
Full textThis thesis studies classification of digital linear and nonlinear modulations using Bayesian methods. Modulation recognition consists of identifying, at the receiver, the type of modulation signals used by the transmitter. It is important in many communication scenarios, for example, to secure transmissions by detecting unauthorized users, or to determine which transmitter interferes the others. The received signal is generally affected by a number of impairments. We propose several classification methods that can mitigate the effects related to imperfections in transmission channels. More specifically, we study three techniques to estimate the posterior probabilities of the received signals conditionally to each modulation
Books on the topic "Méthodes Bayésiennes"
International Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis (11th 1991 Seattle, Wash.). Maximum entropy and Bayesian methods: Proceedings of the Eleventh International Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis, Seattle, 1991. Dordrecht: Kluwer Academic, 1992.
Find full textInternational Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (23rd 2003 Jackson Hole, Wyo.). Bayesian inference and maximum entropy methods in science and engineering: 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Jackson Hole, Wyoming, 3-8 August 2003. Edited by Erickson Gary J and Zhai Yuxiang. Melville, N.Y: American Institute of Physics, 2004.
Find full text1959-, West Mike, and Harrison Jeff, eds. Applied Bayesian forecasting and time series analysis. New York: Chapman and Hall, 1994.
Find full textInternational Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (24th 2004 Garching, Germany). Bayesian inference and maximum entropy methods in science and engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Garching, Germany 25-30 July 2004. Edited by Fischer Rainer, Preuss Roland, Toussaint Udo von, and Jaynes' Foundation. Melville, N.Y: American Institute of Physics, 2004.
Find full textA, Berry Donald, and Stangl Dalene K. 1956-, eds. Bayesian biostatistics. New York: M. Dekker, 1996.
Find full textSilver, Nate. The Signal and the Noise: Why So Many Predictions Fail--but Some Don't. New York: Penguin Press, 2012.
Find full text(Editor), C. R. Smith, G. Erickson (Editor), and Paul O. Neudorfer (Editor), eds. Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, 1992.
Find full textChristakos, George. Modern Spatiotemporal Geostatistics. Dover Publications, Incorporated, 2013.
Find full textBook chapters on the topic "Méthodes Bayésiennes"
Lanos, Philippe, Jérémy Maestracci, and Luc Sanson. "La gestion des différentes méthodes de datation dans le cas des inhumations de Villenauxe-la-Grande (Aube, 10). L’apport des statistiques bayésiennes et du logiciel ChronoModel." In Rencontre autour des typo-chronologies des tombes à inhumation, 97–104. Tours: Fédération pour l’édition de la Revue archéologique du Centre de la France, 2022. http://dx.doi.org/10.4000/12pha.
Full textWetta, Claude, and Antoine Yerbanga. "La convergence réelle dans l’espace UEMOA : une analyse par la méthode bayésienne." In S’intégrer pour s’enrichir, 117–36. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1234-2_6.
Full text"11 Méthodes bayésiennes." In Mathématiques pour l’imagerie médicale, 167–80. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2496-0.c012.
Full textVOET, Inessa, and Violaine NICOLAS. "Phylogéographie." In La biogéographie, 71–93. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9060.ch3.
Full textRODRIGUE, Nicolas. "Le paradigme bayésien en phylogénie moléculaire." In Modèles et méthodes pour l’évolution biologique, 203–21. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9069.ch8.
Full text