Contents
Academic literature on the topic 'Méthodes Hamiltoniennes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Méthodes Hamiltoniennes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Méthodes Hamiltoniennes"
Weyssow, Boris. "Méthodes hamiltoniennes en coordonnées non-canoniques. Applications à la théorie cinétique des plasmas." Doctoral thesis, Universite Libre de Bruxelles, 1990. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213190.
Full textTaki, Abdelmajid. "Ordre et désordre dans un milieu non linéaire perturbé : le cas de "Sine-Gordon"." Nice, 1987. http://www.theses.fr/1987NICE4139.
Full textKoseleff, Pierre-Vincent. "Calcul formel pour les méthodes de lie en mécanique hamiltonienne." Palaiseau, École polytechnique, 1993. https://hal.science/tel-01435140.
Full textThomann, Laurent. "Dynamiques hamiltoniennes et aléa." Habilitation à diriger des recherches, Université de Nantes, 2013. http://tel.archives-ouvertes.fr/tel-00906186.
Full textMikram, Jilali. "Une méthode numérique pour la recherche de solutions périodiques des systèmes hamiltoniens." Pau, 1985. http://www.theses.fr/1985PAUU1024.
Full textNOBLE, Pascal. "Méthodes de variétés invariantes pour les équations de Saint Venant et les systèmes hamiltoniens discrets." Phd thesis, Université Paul Sabatier - Toulouse III, 2003. http://tel.archives-ouvertes.fr/tel-00004405.
Full textNoble, Pascal. "Méthodes de variétés invariantes pour les équations de Saint Venant et les systèmes hamiltoniens discrets." Toulouse 3, 2003. http://www.theses.fr/2003TOU30181.
Full textWe analyze in this thesis two different problems with invariant manifold methods: the roll-waves phenomenon in hydraulic and the existence of discrete breathers in nonlinear discrete lattices. Roll-waves are periodic and discontinuous travelling waves, entropic solutions of the Saint Venant equations. With the help of Fenichel theorems, we prove the existence of continuous "viscous" roll-waves close to the discontinuous roll-waves when we add a small viscous term in the equations. Then, we study the linear stability of these discontinuous roll-waves. Finally, we prove the existence of small amplitude roll-waves in a channel with a periodic bottom. Discrete breathers are periodic and spatially localized excitations in nonlinear discrete lattices. We first analyze the diatomic Fermi-Pasta-Ulam (FPU) chain. The problem is formulated as a mapping in a loop space. Using a centre manifold reduction, we prove the existence of small amplitude breathers in a diatomic chain with an arbitrary mass ratio. We also use this technique to prove the existence of discrete breathers in ferromagnetic spin chains
Hamroun, Boussad. "Approche hamiltonienne à ports pour la modélisation, la réduction et la commande des systèmes non linéaires à paramètres distribués : application aux écoulements à surface libre." Grenoble INPG, 2009. http://www.theses.fr/2009INPG0119.
Full textA port hamiltonian formulation for shallow water equations is given. It exhibits trivially some interesting properties like passivity and energy conservation. Using a geometric reduction scheme based on mixed finite elements methods, a reduced port hamiltonian model was derived. This reduction preserves the dynamical qualitative properties of the original model. We show that the reduced port Hamiltonian model exhibits interesting spectral and input-output properties which converge two those of infinite dimensional model. A control algorithm which allows regulating the flow and water level are designed using the IDA-PBC and energy shaping method. The energy shaping method was generalized to the infinite dimensional model. Simulation results and an experimental validation of the control algorithm on a micro-canal platform are presented showing the effectiveness of the control law
Ricateau, Hugo. "Dynamique hors équilibre des théories classiques des champs et des modèles de spin d’Ising." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066189/document.
Full textThis thesis is made up of two independent parts. In the first chapter, we introduce a novel numerical method to integrate partial differential equations representing the Hamiltonian dynamics of field theories. It is a multi-symplectic integrator that locally conserves the stress-energy tensor with an excellent precision over very long periods. Its major advantage is that it is extremely simple (it is basically a centered box scheme) while remaining locally well defined. We put it to the test in the case of the non-linear wave equation (with quartic potential) in one spatial dimension, and we explain how to implement it in higher dimensions. A formal geometric presentation of the multi-symplectic structure is also given as well as a technical trick allowing to solve the degeneracy problem that potentially accompanies the multi-symplectic structure. In the second chapter, we address the issue of the influence of a finite cooling rate while performing a quench across a second order phase transition. We extend the Kibble-Zurek mechanism to describe in a more faithfully way the out-of-equilibrium regime of the dynamics before crossing the transition. We describe the time and cooling rate dependence of the typical growing size of the geometric objects, before and when reaching the critical point. These theoretical predictions are demonstrated through a numerical study of the emblematic kinetic ferromagnetic Ising model on the square lattice. A description of the geometric properties of the domains present in the system in the course of the annealing and when reaching the transition is also given
Benbachir, Saâd. "Contribution à l'étude des solutions périodiques de systèmes hamiltoniens par un algorithme de calcul basé sur la méthode de Lindsted-Poincare." Pau, 1987. http://www.theses.fr/1987PAUU3027.
Full text