Dissertations / Theses on the topic 'Méthodes : simulations numériques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Méthodes : simulations numériques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Thai, Quynh Phong. "Analyse numérique des méthodes d'optimisation globale. Codes et simulations numériques. Applications." Rouen, 1994. http://www.theses.fr/1994ROUES069.
Full textDang, Cong-Thuat. "Méthodes de construction des courbes de fragilité sismique par simulations numériques." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2014. http://tel.archives-ouvertes.fr/tel-01023973.
Full textAdouobo, Tokou Bernard. "Simulations numériques des méthodes particulaires et particules-maillage sur machines parallèles." Le Havre, 1998. http://www.theses.fr/1998LEHA0011.
Full textDe, Buhan Maya. "Problèmes inverses et simulations numériques en viscoélasticité 3D." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00552111.
Full textPeyroux, Julien. "Simulations numériques de l'équation de Vlasov à l'aide d'outils parallèles." Nancy 1, 2005. http://docnum.univ-lorraine.fr/public/SCD_T_2005_0114_PEYROUX.pdf.
Full textThe problems related to a laser-matter interaction or turbulence in takomak plasmas encountered in magnetic fusion call for a study of not strongly linear/relativist Vlasov plasmas. It becomes necessary to use powerful tools for simulation on powerful computers in order to better include/understand the physical mechanisms put in play in these two domains. The development of nonparticular (or more exactly semi-Lagrangian) methods for the resolution of kinetic equations and, in particular, for the study of the wave-particle interactions remain a particularly promising way, taking into account the importance of results already obtained. This project aims to make even more powerful the resolution of Vlasov codes through the various parallelisation tools (MPI, OpenMP. . . ). For our work, a simplified ``test case'' served for us as a base for constructing the parallel codes for obtaining a data-processing skeleton which, thereafter, could be re-used for increasingly complex models (more than four variables of phase space). What will thus make it possible to treat more realistic situations linked, for example, to the injection of ultra short and ultra intense impulses in inertial fusion plasmas, or the study of the instability of trapped ions now taken as being responsible for the generation of turbulence in tokamak plasmas
Elie, Romuald. "Contrôle stochastique et méthodes numériques en finance mathématique." Phd thesis, Paris 9, 2006. http://tel.archives-ouvertes.fr/tel-00122883.
Full textNous présentons dans la première partie une méthode non-paramétrique d'estimation des sensibilités des prix d'options. A l'aide d'une perturbation aléatoire du paramètre d'intérêt, nous représentons ces sensibilités sous forme d'espérance conditionnelle, que nous estimons à l'aide de simulations Monte Carlo et de régression par noyaux. Par des arguments d'intégration par parties, nous proposons plusieurs estimateurs à noyaux de ces sensibilités, qui ne nécessitent pas la connaissance de la densité du sous-jacent, et nous obtenons leurs propriétés asymptotiques. Lorsque la fonction payoff est irrégulière, ils convergent plus vite que les estimateurs par différences finies, ce que l'on vérifie numériquement.
La deuxième partie s'intéresse à la résolution numérique de systèmes découplés d'équations différentielles stochastiques progressives rétrogrades. Pour des coefficients Lipschitz, nous proposons un schéma de discrétisation qui converge plus vite que $n^{-1/2+e}$, pour tout $e>0$, lorsque le pas de temps $1/n$ tends vers $0$, et sous des hypothèses plus fortes de régularité, le schéma atteint la vitesse de convergence paramétrique. L'erreur statistique de l'algorithme dûe a l'approximation non-paramétrique d'espérances conditionnelles est également controlée et nous présentons des exemples de résolution numérique de systèmes couplés d'EDP semi-linéaires.
Enfin, la dernière partie de cette thèse étudie le comportement d'un gestionnaire de fond, maximisant l'utilité intertemporelle de sa consommation, sous la contrainte que la valeur de son portefeuille ne descende pas en dessous d'une fraction fixée de son maximum courant. Nous considérons une classe générale de fonctions d'utilité, et un marché financier composé d'un actif risqué de dynamique black-Scholes. Lorsque le gestionnaire se fixe un horizon de temps infini, nous obtenons sous forme explicite sa stratégie optimale d'investissement et de consommation, ainsi que la fonction valeur du problème. En horizon fini, nous caractérisons la fonction valeur comme unique solution de viscosité de l'équation d'Hamilton-Jacobi-Bellman correspondante.
Gamet, Lionel. "Simulations numériques d'écoulements compressibles : application à l'aéroacoustique des jets." Toulouse, ENSAE, 1996. http://www.theses.fr/1996ESAE0014.
Full textMathis, Hugues. "Simulations numériques de modèles gaussiens et non-gaussiens de formation des galaxies." Toulouse 3, 2002. http://www.theses.fr/2002TOU30070.
Full textCanot, Hélène. "Méthodes d’homogénéisation et simulations numériques appliquées à la réponse électromagnétique des matériaux multi-échelles complexes." Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS515/document.
Full textThe work of this thesis concerns the homogenization of three-dimensional harmonic Maxwell equations, modeling the propagation of an electromagnetic wave originating from lightning, from air in the composite material. The problem of composites being, for example in aeronautics, the evacuation of the lightning and the protection against the electromagnetic aggressions. We consider a structure made of carbon fibers included in an epoxy resin which will itself be nano- charged. Thus rendering the composite electrically conductive. In order to obtain the homogenized problem, we use asymptotic analysis at two scales. Then we mathematically justify the result by two-scale convergence. The solution of the electric field is approximated by the addition of the average electric field and the correct field, depending on the microstructure, and solution of the cell problems. In the second part, we propose a numerical validation of the simplified model in 2D via simulations with the free finite element software Freefem ++. Three test cases will be presented before validating the homogenization method. Finally, as an illustration of the model, two examples of electromagnetic aggression: the Type A lightning bolt and a nuclear electromagnetic pulse will be tested in the frequency domain
Benmedjadi, Abdelkader. "Etude des méthodes de simulations numériques par codes eulériens de Vlasov pour les plasmas chauds." Nancy 1, 1991. http://docnum.univ-lorraine.fr/public/SCD_T_1991_0040_BENMEDJADI.pdf.
Full textNguyen-Dinh, Maxime. "Qualification des simulations numériques par adaptation anisotropique de maillages." Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-00987202.
Full textKuhn, Matthieu. "Calcul parallèle et méthodes numériques pour la simulation de plasmas de bords." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAD023/document.
Full textThe main goal of this work is to significantly reduce the computational cost of the scientific application Emedge3D, simulating the edge of tokamaks. Improvements to this code are made on two axes. First, innovations on numerical methods have been implemented. The advantage of semi-implicit time schemes are described. Their inconditional stability allows to consider larger timestep values, and hence to lower the number of temporal iteration required for a simulation. The benefits of a high order (time and space) are also presented. Second, solutions to the parallelization of the code are proposed. This study addresses the more general non linear advection-diffusion problem. The hot spots of the application have been sequentially optimized and parallelized with OpenMP. Then, a hybrid MPI OpenMP parallel algorithm for the memory bound part of the code is described and analyzed. Good scalings are observed up to 384 cores. This Ph. D. thesis is part of the interdisciplinary project ANR E2T2 (CEA/IRFM, University of Aix-Marseille/PIIM, University of Strasbourg/ICube)
Vu, Do Huy Cuong. "Méthodes numériques pour les écoulements et le transport en milieu poreux." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112348/document.
Full textThis thesis bears on the modelling of groundwater flow and transport in porous media; we perform numerical simulations by means of finite volume methods and prove convergence results. In Chapter 1, we first apply a semi-implicit standard finite volume method and then the generalized finite volume method SUSHI for the numerical simulation of density driven flows in porous media; we solve a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We apply the standard finite volume method to compute the solutions of a problem involving a rotating interface between salt and fresh water and of Henry's problem. We then apply the SUSHI scheme to the same problems as well as to a three dimensional saltpool problem. We use adaptive meshes, based upon square volume elements in space dimension two and cubic volume elements in space dimension three. In Chapter 2, we apply the generalized finite volume method SUSHI to the discretization of Richards equation, an elliptic-parabolic equation modeling groundwater flow, where the diffusion term can be anisotropic and heterogeneous. This class of locally conservative methods can be applied to a wide range of unstructured possibly non-matching polyhedral meshes in arbitrary space dimension. As is needed for Richards equation, the time discretization is fully implicit. We obtain a convergence result based upon a priori estimates and the application of the Fréchet-Kolmogorov compactness theorem. We implement the scheme and present numerical tests. In Chapter 3, we study a gradient scheme for the Signorini problem. Gradient schemes are nonconforming methods written in discrete variational formulation which are based on independent approximations of the functions and the gradients. We prove the existence and uniqueness of the discrete solution as well as its convergence to the weak solution of the Signorini problem. Finally we introduce a numerical scheme based upon the SUSHI discretization and present numerical results. In Chapter 4, we apply a semi-implicit scheme in time together with a generalized finite volume method for the numerical solution of density driven flows in porous media; it comes to solve nonlinear convection-diffusion parabolic equations for the solute and temperature transport as well as for the pressure. We compute the solutions for a specific problem which describes the advance of a warm fresh water front coupled to heat transfer in a confined aquifer which is initially charged with cold salt water. We use adaptive meshes, based upon square volume elements in space dimension two
Tayllamin, Bruno. "Evaluation d'une méthode de Frontières immergées pour les simulations numériques d'écoulements cardiovasculaires." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20100.
Full textThe most common approach in Computational Fluid Dynamics(CFD) for simulating blood flow into vessel is to make use of a body-fitted me-thod. This approach has lead to accurate and useful simulations of blood flowinto arteries. However, generation of the body-fitted grid is time consuming andrequires from the user an engineering knowledge.The Immersed Boundary Method has emerged as an alternate method whichdoes not require from the user any grid generation task. Simulations are done on astructured Cartesian grid which can be automatically generated. Here we addressthe question of the capability of an Immersed Boundary Method to cope withcardiovascular flow simulations.In particular, we assess the impermeable and moving properties of the wallwhen using the Immersed Boundary Method on simple but relevant vascular flowcases. Then, we show more complex and realistic cardiovascular flow simulations.The first application consists of blood flow simulation inside an aorta cross model.Then, the simulation of blood flow inside a cardiac ventricle with moving wall isshown
Guérin, Guillaume. "Modélisationet simulations numériques des effets dosimétriques dans les sédiments quaternaires : application aux méthodes de datation par luminescence." Bordeaux 3, 2011. https://extranet.u-bordeaux-montaigne.fr/memoires/diffusion.php?nnt=2011BOR30051.
Full textWhereas research on the determination of equivalent doses has made significant progress in the field of luminescence dating during the last decade, research on dose rates has severely lagged behind. The particle-matter simulation toolkit GEANT4 was here been used to study the effects of heterogeneities in sedimentary media. A series of virtual experiments was designed to refine a field gamma spectrometry technique, improving accuracy and precision while reducing counting times. These results were used for the experimental calibration of a gamma ray probe. A technique, which is non invasive and compatible with archaeological excavations, was proposed for mapping gamma dose rate in soils. On a grain scale, numerical simulations of dosimetric effects revealed the limited validity of the widely used concept of infinite matrix in palaeodosimetric dating. A new set of factors influencing dose rates to sedimentary grains were identified, and called geometry factors. Adequate tools for quantifying the corresponding microdosimetry effects were developed. Finally, thermoluminescence and optically stimulated luminescence were applied to the chronology of the Paleolithic site of the Roc de Marsal. The results were used to provide a chronological frame for the human occupations and their climatic and environmental contexts, in regard of past global climate variations
Segui, Troth Luis Miguel. "Multiphysics coupled simulations of gas turbines." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19530/7/SeguiTroth_Luis.pdf.
Full textVincent, Edwige. "Simulations numériques à l'échelle atomique de l'évolution microstructurale sous irradiation d'alliages ferritiques." Lille 1, 2006. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2006/50376-2006-Vincent.pdf.
Full textNgayam, Happy Raoul. "Prévisions de l’évolution microstructurale sous irradiation d’alliages ferritiques par simulations numériques à l’échelle atomique." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10173/document.
Full textIn this work, we have improved a diffusion model for point defects (vacancies and self-interstitials) by introducing hetero-interstitials. The model has been used to simulate by Kinetic Monte Carlo (KMC) the formation of solute rich clusters that are observed experimentally in irradiated ferritic model alloys of type Fe – CuMnNiSiP – C.Electronic structure calculations have been used to characterize the interactions between self-interstitials and all solute atoms, and also carbon. P interacts with vacancies and strongly with self-interstitials. Mn also interacts with self-interstitials to form mixed dumbbells. C, with occupies octahedral sites, interacts strongly with vacancies and less with self-interstitials. Binding and migration energies, as well as others atomic scale properties, obtained by ab initio calculations, have been used as parameters for the KMC code. Firstly, these parameters have been optimized over isochronal annealing experiments, in the literature, of binary alloys that have been electron-irradiated. Isochronal annealing simulations, by reproducing experimental results, have allowed us to link each mechanism to a single evolution of the resistivity during annealing. Moreover, solubility limits of all the elements have been determined by Metropolis Monte Carlo. Secondly, we have simulated the evolution at 300 °C of the microstructure under irradiation of different alloys of increasing complexity: pure Fe, binary alloys, ternaries, quaternaries, and finally complex alloys which compositions are close to those of pressure vessel steels. The results show that the model globally reproduces all the experimental tendencies, what has led us to propose mechanisms to explain the behaviours observed
Delay, Guillaume. "Etude d'un problème d'interaction fluide-structure : modélisation, analyse, stabilisation et simulations numériques." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30170/document.
Full textThis PhD thesis deals with the study of a fluid-structure interaction system. We are interested in several aspects such as modelling, stabilization and numerical simulation. In the first chapter of the manuscript, we show the modelling of the system and prove the existence of strong solutions in small times. The fluid is modelled by the incompressible Navier- Stokes equations. The structure is deformable and depends on a finite number of parameters. The equations are obtained with a virtual work principle. The final system of equations is nonlinear. We prove local existence of a solution to this system, first on the linearized system. Then, existence of solutions in small times to the full nonlinear system is obtained with a fixed point argument. In the second chapter, we prove feedback stabilization of the problem around a non-null stationary state. The feedback operator is computed with the solution to a Riccati equation obtained by the analysis of the linearized problem around the stationary state. The stabilization result holds on the full nonlinear system and requires small data. It is proven by a fixed point argument. In the third chapter, we focus on the numerical aspects of the problem. The feedback operator used corresponds to a discretization of the feedback operator of Chapter 2. The solution to the full nonlinear system is computed by the use of a fictitious domain method
Malandain, Mathias. "Simulations massivement parallèles des écoulements turbulents à faible nombre de Mach." Phd thesis, INSA de Rouen, 2013. http://tel.archives-ouvertes.fr/tel-00834845.
Full textAkoa, François Bertrand. "Approches de points intérieurs et de la programmation DC en optimisation non convexe. Codes et simulations numériques industrielles." Rouen, INSA, 2005. http://www.theses.fr/2005ISARA001.
Full textGueye, Abdoulaye. "Modélisation et simulations numériques des écoulements et instabilités thermiques de fluides non-Newtonien en milieu poreux." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10154/document.
Full textThe present thesis on porous media concentrates in two parts. The first concerns the numerical study of the flow of a Newtonian or a non-Newtonian fluid within a fluid/porous system. The approach of a single domain, which consists of/in writing the Navier-Stokes equation including the Darcy-Brinkham-Forchheimer term, is chosen in this study. The linear relation between the pressure gradient and the bulk velocity in the Darcy case, for which the fluid is Newtonian, is obtained. This relation is extended to the non-Darcy case, for which the fluid is non-Newtonian. The influence of Darcy and Forchheimer numbers on the structure of the flow is presented. In the second part, linear stability and numerical analysis of the natural convection of viscoelastic fluids saturating a horizontal porous layer heated by a constant flux is performed. A primary and secondary instability study allowed to show that, for a Newtonian fluid, the unicellular convection loses its stability to the benefit of longitudinal rolls. In the case of viscoelastic fluids, the elasticity of the fluid leads to the selection of propagation transverse rolls. A numerical solution based on a finite difference scheme has reinforced these analytical results
Nguyen, Quang Huy. "Tail distribution of the sums of regularly varying random variables, computations and simulations." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10224.
Full textThis thesis aims to study computation and simulation methods to approximate tail distribution of the sums of regularly varying random variables. The paper proceeds as follows: The first chapter provides the general introduction of the thesis. The second chapter is essentially constituted by the article ”Series expansions for the sum of the independent Pareto random variables” which was co-written with Professor Christian ROBERT, actually submitted for publication. It deals with the problem of estimating tail distribution of the sum of independent Pareto variables. This problem has been studied for a long time but a complete solution has not yet been found. In this section, we acquire an exact formula, a series expansions, for the distribution of the sum of independent Pareto of non-integer tail indices. Not only is this formula simple and easy to apply but it also gives better numerical results than most of existing methods.The third chapter rests on the article ”New efficient estimators in rare event simulation with heavy tails”, co-written with Professor Christian ROBERT, currently published on ”Journal of Computational and Applied Mathematics 261, 39-47” in 2013. Practically, efficient estimation for tail distribution of the sum of i.i.d. regularly varying random variables is one of widely researched problems in rare event simulation. In this context, Asmussen and Kroese’s estimator has performed better than other works. This part will introduce a new way to approach the sum. Our obtained estimator is more efficient than Asmussen and Kroese’s estimator in the case of regularly varying tail. In other cases, combined with techniques of conditional Monte Carlo and importance sampling, our estimator is still better. In the fourth chapter, we continue to study the tail behavior of the sum of regularly varying variables, with additional assumption that the dependence follows an Archimedean copula or an Archimedean survival copula. This section hinges on the article ”Efficient simulation of tail probabilities of sums with heavy tailed random variables and Archimedean copulas” which is under consideration for being published. Almost all previous studies on this problem used asymptotic approaches which are hard to control the errors. Therefore, techniques of simulation to calculate the tail probability of the sum are presented. Though some of our estimators have bounded relative errors while the others do not, all of them give favorable numerical performances for such a challenging problem
Viroulet, Sylvain. "Simulations de tsunamis générés par glissements de terrains aériens." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4790.
Full textTsunami waves are long waves generated by impulsive geophysical events of earth's crust, volcanoes, asteroids impacts or landslides. Even if most of the tsunamis are generated by submarine earthquakes, the massive collapse of coastal landscape may constitute an important source of tsunami hazard. After introducing historical tsunami events, chapter 1 presents a state-of-the-art on the generation and propagation of tsunami waves and the main equations dealing with extreme water waves. Chapter 2 presents the numerical codes used in this thesis: Gerris and SPHysics. Chapter 3 focuses on the generation of tsunami by a solid landslide. Experimental results are compared to numerical simulations obtained using both codes. From this results, we derive scaling laws on the arrival time and amplitude of the first generated wave. The chapter 4 deals with the interactions between the slide and the generated wave by taking into account the impact of an initially dry granular media into water. Systematic studies varying the different parameters exhibit the significance of the internal properties of the slide on the generated wave. Finally, chapter 5 is dedicated to the collapse of the Cap Canaille near Cassis. A idealized model for the generation and the propagation are used to estimate the hazard associated to such a massive collapse
Cartel, Sophie. "Méthodes numériques de représentation à variables séparées pour la résolution des problèmes paramétriques en mécanique non-linéaire des structures." Phd thesis, École Nationale Supérieure des Mines de Paris, 2011. http://pastel.archives-ouvertes.fr/pastel-00661905.
Full textBarthélemy, Hervé. "Analyse et approfondissement des méthodes de radiosité et d'illumination globale pour le contrôle et la visualisation de simulations numériques de rendu réaliste." Vandoeuvre-les-Nancy, INPL, 2001. http://www.theses.fr/2001INPL561N.
Full textChardin, Jonathan. "Analyse multi-échelle du processus de réionisation dans les simulations cosmologiques." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00985573.
Full textVohralík, Martin. "Méthodes numériques pour les équations elliptiques et paraboliques non linéaires : application à des problèmes d'écoulement en milieux poreux et fracturés." Paris 11, 2004. https://tel.archives-ouvertes.fr/tel-00008451.
Full textWe study numerical methods for the simulation of flow and contaminant transport in porous and fractured media. In Chapter 1 we propose a scheme allowing for efficient, robust, conservative, and stable discretizations of nonlinear degenerate parabolic convection–reaction–diffusion equations on unstructured grids in two or three space dimensions. We discretize the generally anisotropic diffusion term by means of the nonconforming finite element method and the other terms by means of the finite volume method and show the existence and uniqueness of a discrete solution and its convergence to a weak solution. We finally propose a version of this scheme for nonmatching grids and apply it to real simulations. In Chapter 2 we present a direct proof of the discrete Poincaré–Friedrichs inequalities and indicate optimal values of the constants in these inequalities. The results are important in the analysis of nonconforming numerical methods. In Chapter 3 we show that the lowest-order Raviart–Thomas mixed finite element method is equivalent to a particular multi-point finite volume scheme. This approach allows significant reduction of the computational time of the mixed finite element method without any loss of its high precision, which is confirmed by numerical experiments. Finally, in Chapter 4 we propose a version of the lowest-order Raviart–Thomas mixed finite element method for flow simulation in fracture networks that perturb rock massifs, prove that it is well posed, and study its relation to the nonconforming finite element method
Furieri, Bruno. "Erosion éolienne de tas de stockage de matières granulaires sur sites industriels : amélioration des méthodes de quantification des émissions." Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2012. http://tel.archives-ouvertes.fr/tel-00853659.
Full textRambaud, Amélie. "Modélisation, analyse mathématique et simulations numériques de quelques problèmes aux dérivées partielles multi-échelles." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00656013.
Full textBarrette, Carl. "Simulations numériques et projections des variations de l'épaisseur de la couche active du pergélisol à Salluit jusqu'en 2025." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27501/27501.pdf.
Full textBey, Mohamed Amine. "Modélisation mathématique et simulations numériques des écoulements sanguins dans des artères avec ou sans stents." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD027/document.
Full textThis thesis is devoted to mathematical modeling and numerical simulations of the blood-flows in arteries in the presence of a vascular prosthesis of type stent. The presence of stent can be considered as a local perturbation of a smooth edge of flow, more precisely the walls artery can be seen as a strongly rough surface.Weare mainly interested in controlling the H² regularity of a simplified model which takes into account the impact of these stents when the blood flow is controlled by a Laplace equation (in link with the axial component rateof flow) with a Dirichlet boundary condition, in a domain with a rough board (according to a small parameter ε). First, we raise the question of existence and unicity of the solution of this model of blood-flow and we study the H² regularity using variational analysis methods. By a detailed study, we control the H² regularity of order O(ε−1). The second part is devoted to the study of the regularity H² regularity using multi-scale analysis.We prove that the H² norm of the solution of this model is singular of order O(ε−½). Moreover, we improve the convergence rate of the existing results on the construction of the multi-scale approximation. Finally, we present an error estimation and numerical results. These numerical results illustrate the well-founded of the error estimates on a practical level. We show the importance of the asymptotic methods that seem to be more effective than a direct computation
Bouzat, Nicolas. "Algorithmes à grain fin et schémas numériques pour des simulations exascales de plasmas turbulents." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD052/document.
Full textRecent high performance computing architectures come with more and more cores on a greater number of computational nodes. Memory buses and communication networks are facing critical levels of use. Programming parallel codes for those architectures requires to put the emphasize on those matters while writing tailored algorithms. In this thesis, a plasma turbulence simulation code is analyzed and its parallelization is overhauled. The gyroaverage operator benefits from a new algorithm that is better suited with regard to its data distribution and that uses a computation -- communication overlapping scheme. Those optimizations lead to an improvement by reducing both execution times and memory footprint. We also study new designs for the code by developing a prototype based on task programming model and an asynchronous communication scheme. It allows us to reach a better load balancing and thus to achieve better execution times by minimizing communication overheads. A new reduced mesh is introduced, shrinking the overall mesh size while keeping the same numerical accuracy but at the expense of more complex operators. This prototype also uses a new data distribution and twists the mesh to adapt to the complex geometries of modern tokamak reactors. Performance of the different optimizations is studied and compared to that of the current code. A case scaling on a large number of cores is given
Vohralik, Martin. "Méthodes numériques pour des équations elliptiques et paraboliques non linéaires. Application à des problèmes d'écoulement en milieux poreux et fracturés." Phd thesis, Université Paris Sud - Paris XI, 2004. http://tel.archives-ouvertes.fr/tel-00008451.
Full textDelassaux, François. "Modélisation instationnaire de l'aérodynamique externe automobile." Thesis, Paris, CNAM, 2018. http://www.theses.fr/2018CNAM1202.
Full textThe main goal of this PhD is to develop an unsteady numerical method to study the external aerodynamic flow around real vehicles. The first part of the study focuses on the flow around simplified geometries, such as 25° Ahmed bodies (with sharp and rounded edges on the back of the body), in order to determine the optimal turbulence model, mesh setup and numerical parameters. Computational Fluid Dynamics (CFD) results are compared to experimental data reported in literature conducted in the La Ferté Vidame wind tunnel. Based on this study, Shear-Stress Transport Delayed Detached Eddy Simulation (SST DDES) demonstrates superiority over Reynolds Averaged Navier-Stokes (RANS), Scale Adaptive Simulation (SAS) and Stress Blended Eddy Simulation (SBES) turbulence models, regarding both drag and lift coefficients predictions, and flow topology.Secondly, the numerical procedure is adapted for a real vehicle, the Peugeot 308 SW estate car. A substantial experimental campaign was carried out in the Groupement d’Intérêt Economique Souffleries Aéroacoustiques Automobiles (GIE S2A) wind tunnel to provide data against which the numerical results are compared. Given the geometric complexity of a real vehicle, the car is simplified for this study as follows: the front air inlets are closed, the underbody is smoothed with additional panels and the wheels are replaced by fairings. DDES computations show encouraging results. A significant improvement of the flow topology is obtained with DDES compared to RANS models. However, the prediction of the lift coefficient remains a major difficulty with these hybrid methods
Faure, Carole. "Simulations des effets des bras spiraux sur la dynamique stellaire dans la Voie Lactée." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE030/document.
Full textIn an equilibrium axisymmetric galactic disc, the mean galactocentric radial and vertical velocities are expected to be zero everywhere. Recent spectroscopic surveys have however shown that stars of the Milky Way disc exhibit non-zero mean velocities outside of the Galactic plane in both the radial and vertical velocity components. While radial velocity structures have already often been assumed to be linked with non-axisymmetric components of the potential, non-zero vertical velocity structures are usually rather attributed to excitations by external sources. We show that the stellar response to a spiral perturbation induces both a radial velocity flow and non-zero vertical motions. The resulting structure of the mean velocity field is qualitatively similar to the observations. Such a pattern also emerges from an analytic toy model based on linearized Euler equations. In conclusion, non-axisymmetric internal perturbations can also be the source of the observed mean velocity patterns
Nichele, Sylvain. "Modélisation physique et simulations numériques des écoulements dans les disjoncteurs électriques haute tension." Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10110/document.
Full textThe numerical simulations are become a very important tool to design the high voltage circuit breaker (HVCB) chamber. They help for the understanding of the different phenomena which can take place between the 2 electrodes during an interruption process. The electric arc brings together many fields of physics more or less complex and many of these phenomena are still poorly studied. So many aspects remain to be explored to improve simulations. With the increase of the calculation power, these numerical simulations can take into account more phenomena. However, for reasonable simulation times, we need to know which phenomena are preponderant. The aim of these numerical simulations is to rapidly conclude on the capacity of geometry to success an interruption process compared to different other geometries, under a given stress. In this PhD dissertation, we are particularly interested on thermal and chemical non equilibrium that can occur in HVCB during an interruption process. Currently, most simulations are carried out with a strong hypothesis: the hypothesis of Local Thermodynamic Equilibrium (LTE). This assumption allows us to alleviate the problem and to reduce the computing time. But this assumption becomes not valid when high temperature or density gradients occur. To do these simulations, the CARBUR numerical code has been used. In order to simulate flow behaviors in HVCB, an electrical arc (Joule effect and radiation) model and a module of mobile electrode have been added. Six different studies have been done and are presented: influence of the electrode shape, influence of the Navier-Stokes equations compared to the Euler equations, influence of the gas (SF6, CO2 et N2), influence of the thermal non equilibrium in a nitrogen case, influence of the position of the arc source terms in the different energy equations. In this work, a study on different nitrogen chemical kinetics is proposed. In these models, 5 chemical species are distinguished: N2, N, N+, N2+ and e-. Finally, 4 different temperatures are used: T, TVib-N2, TVib-N2+ and Te
Abudawia, Amel. "Analyse numérique d'une approximation élément fini pour un modèle d'intrusion saline dans les aquifères côtiers." Thesis, Littoral, 2015. http://www.theses.fr/2015DUNK0390/document.
Full textIn this work, we study a finite element scheme we apply to a model describing saltwater intrusion into coastal aquifers confined and free. The model is based on the hydraulic approach of vertically averaging the 3D original problem, this approximation is based on a quasi-hydrostatic flow hypothesis which, instead of the walls and springs, is checked. To model the interface between freshwater and salt water (respectively between the saturated zone and dry zone), we combine the approach net interface (approach with the diffuse interface) ; This approach is derived from the phase field theory introduced by Allen-Cahn, to describe the phenomena of transition between two zones. Given these approximations, the problem consists of a strongly couple to edps parabolic quasi-linear system in the case of unconfined aquifers describing the evolution of the depths of two free surfaces and elliptical-parabolic type in the case confined aquifer, the unknowns being then the depth of salt water / fresh water and the hydraulic load of fresh water. In the first part of the thesis, we give in the case of a confined aquifer, error estimation results of a semi-implicit scheme in a combined time discretization space finite element type Pk Lagrange. This result among other uses a regularity result of the gradient of the exact solution in the space Lr(ΩT), r > 2, which can handle the non-linearity and to establish the error estimate under assumptions reasonable regularity of the exact solution. In the second part of the thesis, we generalize the previous study to the case of the free aquifer. The main difficulty is related to the complexity of the system of parabolic edps but again, thanks to regularity result Lr(ΩT), r > 2 gradients established for the free surfaces, we show that the scheme is of order 1 time and space k for sufficiently regular solutions. We conclude this work by numerical simulations in different contexts (impact of porosity and hydraulic conductivity of the evolution of the interface, and pumping fresh water injection, tidal effects) thus validating the model and diagram. The we compare the results with those obtained using a finite volume scheme constructed from a structured mesh
Reese, Daniel. "La modélisation des oscillations d'étoiles en rotation rapide." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00123615.
Full textRoy, Fabrice. "Etude du système couplé Boltzmann sans collisions-Poisson pour la gravitation : simulations numériques de la formation des systèmes auto-gravitants." Phd thesis, Versailles-St Quentin en Yvelines, 2004. http://pastel.archives-ouvertes.fr/pastel-00002403.
Full textChevillot, Fabrice. "Dynamique non-linéaire des instabilités vibratoires induites par le frottement dans les freins aéronautiques : études numériques et confrontations essais-simulations." Thesis, Ecully, Ecole centrale de Lyon, 2009. http://www.theses.fr/2009ECDL0027.
Full textThis study deals with the linear and non-linear transient analyses of instabilities induced by friction in aircraft braking systems. The investigation of these instability phenomena, under experimental and theoretical considerations, is useful to design brakes in which vibrations will not be harmful. The aim of this thesis is to predict the amplitude of the oscillations generated by frictioninduced instabilities in an aircraft braking system. To achieve this, a non-linear analytical model of the brake is built in order to reproduce the mechanisms responsible for friction-induced vibrations. Experimental records of the brake under working conditions performed by Messier-Bugatti- SAFRAN Group allow identifying two main vibrations identified in the 0-1,000 Hz range : squeal and whirl. The work is focused on these two phenomena. The first step in the study of a vibration problem is a stability analysis obtained by calculation of the eigenvalues of the Jacobian matrix of the system of non-linear equations linearized at the equilibrium point. The stability of the brake is then investigated with respect to brake parameters : coefficient of friction, hydraulic pressure, non-linear stiffness, etc... In particular, the effects of damping in mode-coupling instabilities are assessed. It appears that the addition of damping into the equations of motion does not lead systematically to the stabilization of the system, which runs counter to the generally accepted idea. The second step concerns the non-linear dynamics. If the system is unstable, the stability analysis gives no information on the amplitude of the oscillations or on the non-linear transient behavior. By integration of the full set of non-linear equations, the stationary and transient regimes are computed. The sensibility of the non-linear response of the brake is then studied with respect to brake parameters. In particular, the effects of damping are investigated in details : the conclusions established on the stability analysis are extended to the non-linear dynamics. Complex non-linear transient behaviors when several instabilities occur are also highlighted and analyzed. Finally, experimental tests reveal that the brake can generate vibrations of various amplitude, although the experimental conditions are identical. The introduction of statistical laws in the braking parameters allow simulating with a good agreement the variability of the vibratory levels observed when a series of tests is performed
Maunoury, Matthieu. "Méthode de visualisation adaptée aux simulations d'ordre élevé : application à la compression-reconstruction de champs rayonnés pour des ondes harmoniques." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30021.
Full textWhile high order methods allow to perform very accurate simulations with low costs, there is a lack of tools to analyze and exploit results obtained by these new schemes. The objective of this thesis is to design a framework and efficient algorithms to visualize solutions computed by high order methods. Our approach is based on the construction of an optimized affine approximation of the numerical solution which can be handled by any standard visualization software. A representation mesh is created via an a posteriori estimate which control visualization error between the numerical solution and its representation, and is performed pointwise. A strategy is established to ensure that (dis)continuities are well-rendered. A special work is done to treat high order elements (curved elements) and in particular use specific a posteriori estimates. Several numerical examples demonstrate the potential of the visualization method. In a second part, we examine the computation and reconstruction of radiated fields for wave problems in harmonic regime. We propose a methodology to generate an accurate reconstruction of radiated fields while limiting the information needed (i.e. compressing the data). For this purpose, we rely on basis functions composed of high order polynomials and plane waves, as well as a development of the kernel used for the integral representation. The visualization method allows to faithfully represent (decompression process) the cartographies obtained
Soler, vasco Juan Antonio. "Méthodes numériques alignées pour problèmes elliptiques anisotropes en domaines bornés pour simulations du plasma de bord A new conservatise finite-difference scheme for anisotropic elliptic problems in bounded domain." Thesis, Ecole centrale de Marseille, 2019. http://www.theses.fr/2019ECDM0005.
Full textHighly anisotropic elliptic problems occur in many physical models that need to be solved numerically. In the problems investigated in this thesis, a direction of dominant diffusion exists (called here parallel direction), along which the diffusivity is several orders of magnitude larger than in the perpendicular direction. In this case, standard finite-difference methods are generally not designed to provide an optimal discretization and may lead to the perpendicular diffusion being artificially supplemented by a potentially large contribution stemming from errors in approximating parallel diffusion. This thesis focuses on three main axes to suitably solve anisotropic elliptic equations: an aligned, conservative finite-difference scheme to discretize the Laplacian operator, a reformulated Helmholtz equation to avoid spurious numerical diffusion, and a solver based on multigrid methods as a preconditioner of GMRES routine. Although the scope of this thesis is the application on plasma edge physics, results are relevant to any highly anisotropic model flow in bounded domains. In Chapter 1, a short introduction to magnetically confined fusion is presented identifying the numerical problems raised by solving fluid equations, in particular in the Scrape-Off Layer region. The numerical problem which is dealt with is an anisotropic elliptic problem where diffusivity is 5 to 8 orders of magnitude larger in the parallel direction. This large parallel diffusivity results in long wavelengths in the parallel direction, a central characteristic to the understanding of methods discussed in this thesis. In Chapter 2, a bibliographic introduction to numerical methods dedicated to the solution of anisotropic elliptic equations is presented, with a focus on finite-difference methods. Aligned methods, and their potential to compute solutions with accuracy comparable to standard methods with much lower number of mesh points, are presented. In Chapter 3 we propose an original aligned discretization scheme using non-aligned Cartesian grids. Based on the Support Operator Method, the self-adjointness of the parallel diffusion operator is maintained at the discrete level. Compared with existing methods, the present formulation further guarantees the conservativity of the fluxes in both parallel and perpendicular directions. For bounded domains, a discretization of boundary conditions is presented ensuring comparable accuracy of the solution. Numerical tests based on manufactured solutions show that the method provides accurate and stable numerical approximations in both periodic and bounded domains with a drastically reduced number of degrees of freedom with respect to non-aligned approaches. A reformulation of the Helmholtz equation is presented in Chapter 4 to limit spurious numerical diffusion. The method is based on splitting of the original problem into two distinct problems for the aligned and the non-aligned parts of the solution. These two contributions are separated by filtering methods which are evaluated. Tests cases showthis reformulation eliminates spurious perpendicular diffusion, with larger impact on accuracy with higher parallel diffusivities.Finally, with the aim of solving elliptic anisotropic equations for large systems efficiently, a geometric multigrid algorithm is proposed in Chapter 5 in bounded domains. The algorithm scales adequately with the number of degrees of freedom, and shows a clear advantage upon standard iterative methods when the parallel diffusivity is very large. This algorithm is later posed as preconditioner of a GMRES solver, finding computationally efficient algorithm compared with direct solvers solving elliptic equations under any boundary conditions.The thesis is concluded by a critical analysis of the numerical aspects of aligned discretizations investigated. Special attention is given to the application of the investigated schemes in 3D plasma turbulence codes, such as the TOKAM3X developed by CEA
Drui, Florence. "Modélisation et simulation Eulériennes des écoulements diphasiques à phases séparées et dispersées : développement d’une modélisation unifiée et de méthodes numériques adaptées au calcul massivement parallèle." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC033/document.
Full textIn an industrial context, reduced-order two-phase models are used in predictive simulations of the liquid fuel injection in combustion chambers and help designing more efficient and less polluting devices. The combustion quality strongly depends on the atomization process, starting from the separated phase flow at the exit of the nozzle down to the cloud of fuel droplets characterized by a disperse-phase flow. Today, simulating all the physical scales involved in this process requires a major breakthrough in terms of modeling, numerical methods and high performance computing (HPC). These three aspects are addressed in this thesis. First, we are interested in mixture models, derived through Hamilton’s variational principle and the second principle of thermodynamics. We enrich these models, so that they can describe sub-scale pulsations mechanisms. Comparisons with experimental data in a context of bubbly flows enables to assess the models and the methodology. Based on a geometrical study of the interface evolution, new tracks are then proposed for further enriching the mixture models using the same methodology. Second, we propose a numerical strategy based on finite volume methods composed of an operator splitting strategy, approximate Riemann solvers for the resolution of the convective part and specific ODE solvers for the source terms. These methods have been adapted so as to handle several difficulties related to two-phase flows, like the large acoustic impedance ratio, the stiffness of the source terms and low-Mach issues. Moreover, a cell-based Adaptive Mesh Refinement (AMR) strategy is considered. This involves to develop refinement criteria, the setting of the solution values on the new grids and to adapt the standard methods for regular structured grids to non-conforming grids. Finally, the scalability of this AMR tool relies on the p4est AMR library, that shows excellent scalability on several thousands cores. A code named CanoP has been developed and enables to solve fluid dynamics equations on AMR grids. We show that CanoP can be used for future simulations of the liquid atomization
Rosdahl, Karl Joakim. "Cosmological RHD simulations of early galaxy formation." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10075/document.
Full textWith the increasing sophistication and efficiency of cosmological hydrodynamics codes, ithas become viable to include ionizing radiative transfer (RT) in cosmological simulations,either in post-processing or in full-blown radiation-hydrodynamics (RHD) simulations. Inspite of the many hurdles involved, there has been much activity during the last decade or soon different strategies and implementations, because a number of interesting problems canbe addressed with RT and RHD, e.g. how and when the Universe became reionized, howradiation from stars and active galactic nuclei plays a part in regulating structure formationon small and large scales, and what predictions and interpretations we can make of observedphenomena such as the Lyman-alpha forest and diffuse sources of radiation.This coincides with the advent of the James Webb space telescope (JWST) and otherstate-of-the-art instruments which are about to give us an unprecedented glimpse into theend of the dark ages of the Universe, when the cosmos switched from a cold and neutralstate to a hot and ionized one, due to the turn-on of ionizing radiative sources.With a primary interest in the problem of radiative feedback in early structure formation,we have implemented an RHD version of the Ramses cosmological code we call RamsesRT,which is moment based and employs the local M1 Eddington tensor closure. This code allowsus to study the effects of ionizing radiation on-the-fly in cosmological RHD simulationsthat take full advantage of the adaptive mesh refinement and parallelization strategies ofRamses. For self-consistent RHD we have also implemented a non-equilibrium chemistry ofthe atomic hydrogen and helium species that interact with the transported radiation.I present in this thesis an extensive description of the RamsesRT implementation andnumerous tests to validate it.Thus far we have used the RHD implementation to study extended line emission fromaccretion streams, which are routinely predicted to exist at early redshift by cosmologicalsimulations but have never been unambiguously verified by observations, and to investigatewhether gravitational heating in those streams could be the dominant power source ofso-called Lyman-alpha blobs, an observed phenomenon which has been much studied anddebated during the last decade or two. Our conclusions from this investigation are thatLyman-alpha blobs can in principle be powered by gravitational heating, and furthermorethat accretion streams are on the verge of being directly detectable for the first time withupcoming instruments.My future intent is to use RamsesRT for high-resolution cosmological zoom simulations ofearly galaxy formation, up to the epoch of reionization, to study how radiative feedbackaffects the formation and evolution of those galaxies and to make observational predictionsthat can be tested with upcoming instruments such as the JWST
Gopinath, Venkatesh. "Analysis of time-domain integration methods for the simulation of thermal convection in an annulus." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC035.
Full textNumerical simulations of outer core thermal convection of the Earth have been an essential tool in understanding the dynamics of magnetic field generation which surrounds the Earth. Efficient numerical strategies to solve this system of governing equations are of interest in the community of deep Earth research because, current numerical geodynamo models are on the quest to operate at the actual parameters of the Earth. There are many avenues for the improvement of the numerical model. In this thesis, we focus on the time domain integration techniques for solving such problems so that we may push the parameter boundaries further. We solve for a thermal convection problem in a 2D annulus. We use a pseudospectral method for spatial discretization. With respect to the time discretization part, the governing equations contain both numerically stiff (diffusive) and non-stiff (advective) components. A common practice is to treat the diffusive part implicitly and the advective part explicitly so as to alleviate the timestep restriction which happens when we use a purely explicit method. These are known as the IMEX time integrators. We focus on these IMEX methods and analyze their performance when applied to this problem. We consider two families of IMEX methods, the multistep methods and the multistage IMEX Runge-Kutta methods (IMEX-RK). We do a systematic survey of input parameters namely the Rayleigh number (Ra) and the Prandtl number (Pr), which control the thermal forcing and the ratio of momentum to thermal diffusivities respectively. Our focus is on the strongly nonlinear flow regimes and we observe that, as the Reynolds number increases, few of the IMEX-RK methods perform better than multistep methods. Specifically, we compare the performances of the IMEX-RK methods with the second order Crank-Nicholson and Adams-Bashforth (CNAB2) method, which is widely used in the geodynamo community. We find some of the higher order methods to perform better than CNAB2 for large Reynolds numbers. This result opens up the possibility of utilizing such higher order methods for the full 3D dynamo calculations. However, in most other cases, multistep methods of a given order outperform IMEX-RK methods of the same order
Noel, Claire. "Hydrodynamical simulations of detonations in superbursts." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210652.
Full textIn a firt step we obtain the detonation profiles in pure carbon and in a mixture of carbon and iron. In both cases we underline the large difference between the total reaction length and the length on which some species burn. This difference leads to enormous numerical difficulties because all the length scales cannot be resolved at the same time in a single simulation. We show that the carbon detonation might be studied in a partial resolution approach like the one of Gamezo & al. (1999).
In a second step we construct a new reduced nuclear reaction network able to reproduce the energy production due to the photo-disintegrations of heavy elements, like ruthenium, which are thought to occur during superbursts in mixed H/He accreting systems. Using this new nuclear network we simulate detonations in mixture of carbon and ruthenium. An interesting feature is that, in this case, all the reaction lengths can be resolved in the same simulation. This makes the C/Ru detonations easier to study in future multi-dimensional simulations than the pure carbon ones (Noel & al. 2007b).
Finally we perform some numerical experiments which show that our algorithm is able to deal with initially inhomogeneous medium, and that the multi-dimensional simulations are attainable even if they are quite computational time consuming.
- B. Van Leer, J. Comp. Phys. 21, 101, 1979
- Fryxell, B.A. Muller, E. and Arnett, W.D. Technical report MPA 449, 1989
- Busegnies, Y. Francois, J. and Paulus, G. Shock Waves, 11, 2007
- Gamezo, V.N. Wheeler, J.C. Khokhlov, A.M. and Oran, E.S. ApJ, 512, 827, 1999
- Noël, C. Busegnies, Y. Papalexandris, M.V. & al. A&A, 470, 653, 2007
- Noël, C. Goriely, S. Busegnies, Y. & Papalexandris, M.V. submitted to A&A, 2007b
/
Un algorithme parallèle basé sur une méthode aux volumes finis inspirée du schéma MUSCL de Van Leer (1979) a été construit. Il a été développé sur base de la méthode de Lappas & al. (1999) qui permet de résoudre simultanément toutes les dimensions spatiales. Cette méthode se base sur la construction de surfaces appropriées dans l'espace-temps, le long desquelles les équations de bilan se découplent en équations plus simples à intégrer. Cet algorithme est actuellement le seul à éviter le "splitting" des dimensions spatiales. Dans les modèles conventionnels (PPM, FCT, etc.), l'intégration spatiale des équations est réalisée de manière unidimensionnelle pour chaque direction.
Un réseau de réactions nucléaires ainsi qu'une équation d'état astrophysique ont été inclus dans l'algorithme et celui-ci a ensuite été soumis à une grande variété de cas tests réactifs et non réactifs. Il a été comparé à d'autres codes généralement utilisés en astrophysique (Fryxell & al. 1989, Fryxell & al. 2000, Busegnies & al. 2007) et il reproduit correctement leurs résultats. L'algorithme est décrit dans Noël & al. (2007).
Sur base de cet algorithme, les premières simulations de détonation dans des conditions thermodynamiques représentatives des Superbursts ont été réalisées. Différentes compositions du milieu ont été envisagées (carbone pur, mélange de carbone et de fer, mélange de carbone et de cendres du processus rp). Dans la plupart des systèmes où des Superbursts ont été observés, la matière accrétée est un mélange d'hydrogène et d'hélium. Dans ce cas, des phases de combustion précédant le Superburst produisent des nucléides plus lourd que le fer (Schatz & al. 2003). Ces nucléides peuvent être photodésintégrés durant le Superburst. Pour prendre en compte ces réactions endothermiques de photodésintégration, nous avons construit un nouveau réseau réduit de réactions nucléaires qui a été incorporé dans l'algorithme hydrodynamique (Noël & al. 2007b). Ce réseau réduit reproduit globalement l'énergétique d'un réseau complet et a permis de faire la première simulation numérique de détonation dans des conditions caractéristiques de systèmes accréteurs d'un mélange hydrogène-hélium.
Finallement quelques simulations multidimensionelles préliminaires ont éte réalisées.
- Busegnies, Y. Francois, J. and Paulus, G. Shock Waves, 11, 2007
- Fryxell, B.A. Muller, E. and Arnett, W.D. Technical report MPA 449, 1989
- Fryxell, B.A. Olson, K. Ricker, P. & al. ApJS, 131, 273, 2000
- Lappas, T. Leonard, A. and Dimotakis, P.E. SIAM J. Sci. Comput. 20, 1064, 1999
- Noël, C. Busegnies, Y. Papalexandris, M.V. & al. A&A, 470, 653, 2007
- Noël, C. Goriely, S. Busegnies, Y. & Papalexandris, M.V. submitted to A&A, 2007b
- Röpke, F. K. PhD thesis, Technischen Universitat Munchen, 2003
- Schatz, H. Bildsten, L. Cumming, A. and Ouellette, M. Nuclear Physics A, 718, 247, 2003
- Van Leer, B. Comp. Phys. 21, 101, 1979
- Weinberg, N.N. and Bildsten, L. ArXiv e-prints, 0706.3062, 2007
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Gao, Yueyuan. "Méthodes de volumes finis pour des équations aux dérivées partielles déterministes et stochastiques." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS187/document.
Full textThis thesis bears on numerical methods for deterministic and stochastic partial differential equations; we perform numerical simulations by means of finite volume methods and prove convergence results.In Chapter 1, we apply a semi-implicit time scheme together with the generalized finite volume method SUSHI for the numerical simulation of density driven flows in porous media; it amounts to solve a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We then propose a numerical scheme to simulate density driven flows in porous media coupled to heat transfer. We use adaptive meshes, based upon square or cubic volume elements.In Chapter 2, We perform Monte-Carlo simulations in the one-dimensional torus for the first order Burgers equation forced by a stochastic source term with zero spatial integral. We suppose that this source term is a white noise in time, and consider various regularities in space. We apply a finite volume scheme combining the Godunov numerical flux with the Euler-Maruyama integrator in time. It turns out that the empirical mean converges to the space-average of the deterministic initial condition as t → ∞. The empirical variance also stabilizes for large time, towards a limit which depends on the space regularity and on the intensity of the noise.In Chapter 3, we study a time explicit finite volume method with an upwind scheme for a first order conservation law with a monotone flux function and a multiplicative source term involving a Q-Wiener process. We present some a priori estimates including a weak BV estimate. After performing a time interpolation, we prove two entropy inequalities for the discrete solution and show that it converges up to a subsequence to a stochastic measure-valued entropy solution of the conservation law in the sense of Young measures.In Chapter 4, we obtain similar results as in Chapter 3, in the case that the flux function is non-monotone, and that the convection term is discretized by means of a monotone scheme
Fakhereddine, Rana. "Méthodes de Monte Carlo stratifiées pour l'intégration numérique et la simulation numériques." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM047/document.
Full textMonte Carlo (MC) methods are numerical methods using random numbers to solve on computers problems from applied sciences and techniques. One estimates a quantity by repeated evaluations using N values ; the error of the method is approximated through the variance of the estimator. In the present work, we analyze variance reduction methods and we test their efficiency for numerical integration and for solving differential or integral equations. First, we present stratified MC methods and Latin Hypercube Sampling (LHS) technique. Among stratification strategies, we focus on the simple approach (MCS) : the unit hypercube Is := [0; 1)s is divided into N subcubes having the same measure, and one random point is chosen in each subcube. We analyze the variance of the method for the problem of numerical quadrature. The case of the evaluation of the measure of a subset of Is is particularly detailed. The variance of the MCS method may be bounded by O(1=N1+1=s). The results of numerical experiments in dimensions 2,3, and 4 show that the upper bounds are tight. We next propose an hybrid method between MCS and LHS, that has properties of both approaches, with one random point in each subcube and such that the projections of the points on each coordinate axis are also evenly distributed : one projection in each of the N subintervals that uniformly divide the unit interval I := [0; 1). We call this technique Sudoku Sampling (SS). Conducting the same analysis as before, we show that the variance of the SS method is bounded by O(1=N1+1=s) ; the order of the bound is validated through the results of numerical experiments in dimensions 2,3, and 4. Next, we present an approach of the random walk method using the variance reduction techniques previously analyzed. We propose an algorithm for solving the diffusion equation with a constant or spatially-varying diffusion coefficient. One uses particles, that are sampled from the initial distribution ; they are subject to a Gaussian move in each time step. The particles are renumbered according to their positions in every step and the random numbers which give the displacements are replaced by the stratified points used above. The improvement brought by this technique is evaluated in numerical experiments. An analogous approach is finally used for numerically solving the coagulation equation ; this equation models the evolution of the sizes of particles that may agglomerate. The particles are first sampled from the initial size distribution. A time step is fixed and, in every step and for each particle, a coalescence partner is chosen and a random number decides if coalescence occurs. If the particles are ordered in every time step by increasing sizes an if the random numbers are replaced by statified points, a variance reduction is observed, when compared to the results of usual MC algorithm
Imbert-Gérard, Lise-Marie. "Analyse mathématique et numérique de problèmes d'ondes apparaissant dans les plasmas magnétiques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00870184.
Full text