To see the other types of publications on this topic, follow the link: Methyl cyanide.

Journal articles on the topic 'Methyl cyanide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Methyl cyanide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Schneider, J., V. Bürger, and F. Arnold. "Methyl cyanide and hydrogen cyanide measurements in the lower stratosphere: Implications for methyl cyanide sources and sinks." Journal of Geophysical Research: Atmospheres 102, no. D21 (1997): 25501–6. http://dx.doi.org/10.1029/97jd02364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, You-Sheng, and Jian-Hong Zhang. "2-Methyl-3-nitrobenzyl cyanide." Acta Crystallographica Section E Structure Reports Online 65, no. 4 (2009): o767. http://dx.doi.org/10.1107/s1600536809008484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dechamps, Noémie, Robert Flammang, Michaël Boulvin, et al. "Ion—Molecule Reactions Involving Methyl Isocyanide and Methyl Cyanide." European Journal of Mass Spectrometry 13, no. 6 (2007): 385–95. http://dx.doi.org/10.1255/ejms.896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de Meester, P., S. S. C. Chu, and J. E. Johnson. "(E)-O-Methyl-p-nitrobenzohydroximoyl cyanide." Acta Crystallographica Section C Crystal Structure Communications 42, no. 11 (1986): 1656–57. http://dx.doi.org/10.1107/s0108270186091084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rosero, V., P. Hofner, S. Kurtz, J. Bieging, and E. D. Araya. "METHYL CYANIDE OBSERVATIONS TOWARD MASSIVE PROTOSTARS." Astrophysical Journal Supplement Series 207, no. 1 (2013): 12. http://dx.doi.org/10.1088/0067-0049/207/1/12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Green, Sheldon. "Collisional excitation of interstellar methyl cyanide." Astrophysical Journal 309 (October 1986): 331. http://dx.doi.org/10.1086/164605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abd-Ei-Aziz, Alaa S., Debbie A. Armstrong, Shelly Bernardin, and Harold M. Hutton. "Nucleophilic addition to di- and poly-iron arene complex cations." Canadian Journal of Chemistry 74, no. 11 (1996): 2073–82. http://dx.doi.org/10.1139/v96-236.

Full text
Abstract:
Hydride and cyanide addition to a series of di- and polycyclopentadienyliron arene complex cations with etheric bridges is described. Reaction of the di-iron complexes with sodium borohydride resulted in the formation of a number of adducts.p-Methyl- and o,o-dimethylphenoxybenzene cyclopentadienyliron complexes were used as models in this study to allow for the characterization of the analagous di-iron complexes. The use of HH COSY and CH COSY NMR techniques enabled us to identify the isomeric nature of these adducts. The hydride addition results indicated that the etheric substituent had the
APA, Harvard, Vancouver, ISO, and other styles
8

Arnold, Donald R., Kimberly A. McManus, and Mary S. W. Chan. "Photochemical nucleophile–olefin combination, aromatic substitution (photo-NOCAS) reaction, Part 13. The scope and limitations of the reaction with cyanide anion as the nucleophile." Canadian Journal of Chemistry 75, no. 8 (1997): 1055–75. http://dx.doi.org/10.1139/v97-126.

Full text
Abstract:
The scope of the photochemical nucleophile–olefin combination, aromatic substitution (photo-NOCAS) reaction has been extended to include cyanide anion as the nucleophile. Highest yields of adducts were obtained when the alkene or diene has an oxidation potential less than ca. 1.5 V (SCE). No adducts were obtained from 2-methylpropene (9), oxidation potential 2.6 V. Oxidation of cyanide anion, by the radical cation of the alkene or diene, can compete with the combination. With the alkenes, 2,3-dimethyl-2-butene (2) and 2-methyl-2-butene (10), both nitriles and isonitriles were obtained; isonitr
APA, Harvard, Vancouver, ISO, and other styles
9

Noland, Wayland E., Ryan J. Herzig, Abigail J. Engwall, Renee C. Jensen, and Kenneth J. Tritch. "Crystal structures of methyl 3,5-dibromo-4-cyanobenzoate and methyl 3,5-dibromo-4-isocyanobenzoate." Acta Crystallographica Section E Crystallographic Communications 74, no. 3 (2018): 345–48. http://dx.doi.org/10.1107/s2056989018002256.

Full text
Abstract:
The title crystals, C9H5Br2NO2, are the first reported 2,6-dihalophenyl cyanide–isocyanide pair that have neither three- nor two-dimensional isomorphism. Both crystals contain contacts between the carbonyl O atom and a Br atom. In the crystal of the cyanide,R22(10) inversion dimers form based on C[triple-bond]N...Br contacts, a common packing feature in this series of crystals. In the isocyanide, the corresponding N[triple-bond]C...Br contacts are not observed. Instead, the isocyano C atom forms contacts with the methoxy C atom. RNC was refined as a two-component pseudo-merohedral twin.
APA, Harvard, Vancouver, ISO, and other styles
10

French, Richard C., Peter T. Kujawski, and Gerald R. Leather. "Effect of Various Flavor-Related Compounds on Germination of Curly Dock Seed (Rumex crispus) and Curly Dock Rust (Uromyces rumicis)." Weed Science 34, no. 3 (1986): 398–402. http://dx.doi.org/10.1017/s0043174500067060.

Full text
Abstract:
Chemicals that stimulate germination of curly dock seed (Rumex crispus L. # RUMCR) and urediniospores of curly dock rust [Uromyces rumicis Schum. (Wint.)], an obligate parasite of this weed, were studied and compared. Methyl salicylate, benzyl cyanide, and benzonitrile were the best stimulators of germination of curly dock seed. The compounds tested were most effective at concentrations ranging from 250 to 1000 μl/L. A 500 μl/L concentration of methyl salicylate caused 99% of the curly dock seed to germinate. Exposure to volatiles from 10 μl methyl salicylate or octyl cyanide for 16 to 24 h wa
APA, Harvard, Vancouver, ISO, and other styles
11

Sarkkinen, H., R. Paso, and R. Anttila. "Assignment of methyl cyanide FIR laser lines." Infrared Physics & Technology 37, no. 6 (1996): 643–53. http://dx.doi.org/10.1016/s1350-4495(96)00013-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Koohestani, Hassan, and Amirabbas Kheilnejad. "Hydrogen Generation and Pollution Degradation from Wastewater Using TiO2–CuO Nanocomposite." Journal of Nanoscience and Nanotechnology 20, no. 9 (2020): 5970–75. http://dx.doi.org/10.1166/jnn.2020.18544.

Full text
Abstract:
Simultaneous production of hydrogen and degradation of cyanide ion and methyl red dye were successfully accomplished by employing nano-particles of TiO2–CuO under the radiation of UV light. Exploiting composites improves the electron–hole separation and consequently optimizes photocatalytic processes. Furthermore, the simultaneity of several photocatalytic processes decreases the rate of electron–hole recombination. According to the results, more hydrogen was produced in lower pHs. Up to the initial concentration of 0.3 and 0.8 mol/L for methyl red and cyanide ion respectively, the presence of
APA, Harvard, Vancouver, ISO, and other styles
13

Calcutt, H., M. R. Fiechter, E. R. Willis, et al. "The ALMA-PILS survey: first detection of methyl isocyanide (CH3NC) in a solar-type protostar." Astronomy & Astrophysics 617 (September 2018): A95. http://dx.doi.org/10.1051/0004-6361/201833140.

Full text
Abstract:
Context. Methyl isocyanide (CH3NC) is the isocyanide with the largest number of atoms confirmed in the interstellar medium (ISM), but it is not an abundant molecule, having only been detected towards a handful of objects. Conversely, its isomer, methyl cyanide (CH3CN), is one of the most abundant complex organic molecules detected in the ISM, with detections in a variety of low- and high-mass sources. Aims. The aims of this work are to determine the abundances of methyl isocyanide in the solar-type protostellar binary IRAS 16293–2422 and to understand the stark abundance differences observed b
APA, Harvard, Vancouver, ISO, and other styles
14

POULSEN, MATT, STEPHEN DUCHARME, A. V. SOROKIN, et al. "Investigation of Ferroelectricity in Poly(methyl vinylidene cyanide)." Ferroelectrics Letters Section 32, no. 3-4 (2005): 91–97. http://dx.doi.org/10.1080/07315170500311614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pearson, J. C., and H. S. P. Muller. "The Submillimeter Wave Spectrum of Isotopic Methyl Cyanide." Astrophysical Journal 471, no. 2 (1996): 1067–72. http://dx.doi.org/10.1086/178034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Carlotti, M., G. Di Lonardo, L. Fusina, and B. Carli. "The far-infrared spectrum of methyl cyanide, CH3CN." Journal of Molecular Spectroscopy 129, no. 2 (1988): 314–25. http://dx.doi.org/10.1016/0022-2852(88)90038-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Marimuthu, Aravindh N., Frank Huis in’t Veld, Sven Thorwirth, Britta Redlich, and Sandra Brünken. "Infrared predissociation spectroscopy of protonated methyl cyanide, CH3CNH+." Journal of Molecular Spectroscopy 379 (May 2021): 111477. http://dx.doi.org/10.1016/j.jms.2021.111477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Szilágyi, Tibor. "Infrared spectra of methyl cyanide and methyl isocyanide adsorbed on Pt/SiO2." Applied Surface Science 35, no. 1 (1988): 19–26. http://dx.doi.org/10.1016/0169-4332(88)90034-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ben Khalifa, M., E. Quintas-Sánchez, R. Dawes, K. Hammami, and L. Wiesenfeld. "Rotational quenching of an interstellar gas thermometer: CH3CN⋯He collisions." Physical Chemistry Chemical Physics 22, no. 31 (2020): 17494–502. http://dx.doi.org/10.1039/d0cp02985h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

RAHIMI, R., and P. HAMBRIGHT. "Anti-Cyanide Drugs: Kinetics of the Removal of Copper(II) and Nickel(II) from N-Methyl-tetra(4-sulfonatophenyl)porphyrins by Cyanide. LD50s of Common Metalloporphyrins and Metallophthalocyanines." Journal of Porphyrins and Phthalocyanines 02, no. 06 (1998): 493–99. http://dx.doi.org/10.1002/(sici)1099-1409(199811/12)2:6<493::aid-jpp88>3.0.co;2-y.

Full text
Abstract:
The purpose of this project was to develop prophylactic water-soluble anti-cyanide drugs. The 24 h mean LD 50s in mice of 13 common metalloporphyrins and metallophthalocyanines are reported. At doses of 1/4, 1/16 and 1/64 of the LD 50 administered 15 or 60 min prior to a 2LD50 challenge of sodium cyanide, none of these compounds protected mice against cyanide. While Co ( H 2 O )6 Cl 2 and Ni ( H 2 O )6Cl2 were found to be effective, they are too toxic to be useful. A stable metalloporphyrin that could scavenge cyanide by donating metal ions to produce non-toxic polycyano species in the presenc
APA, Harvard, Vancouver, ISO, and other styles
21

Wehres, N., J. Maßen, K. Borisov, et al. "A laboratory heterodyne emission spectrometer at submillimeter wavelengths." Physical Chemistry Chemical Physics 20, no. 8 (2018): 5530–44. http://dx.doi.org/10.1039/c7cp06394f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Rachid, Leena N., та Peter W. R. Corfield. "Poly[3-methyl-1,3-oxazolidin-2-iminium[µ3-cyanido-tri-µ2-cyanido-κ9C:N-tricuprate(I)]]". Molbank 2021, № 3 (2021): M1259. http://dx.doi.org/10.3390/m1259.

Full text
Abstract:
The unexpected formation of an oxazole ring has occurred during synthesis of a copper(I) cyanide network polymer as part of our ongoing studies of the structural chemistry of these networks. Crystals of the title compound were formed during the synthesis of a previously reported CuCN network solid containing protonated N-methylethanolamine and have been characterized by single crystal X-ray structure analysis. The structure shows well-defined oxazole-2-iminium cations sitting in continuous channels along the short a-axis of the crystal in a new three-dimensional copper(I) cyanide polymeric net
APA, Harvard, Vancouver, ISO, and other styles
23

Majewski, Marek, Marc DeCaire, Pawel Nowak, and Fan Wang. "Studies on enolate chemistry of 8-thiabicyclo[3.2.1]- octan-3-one: enantioselective deprotonation and synthesis of sulfur analogs of tropane alkaloids." Canadian Journal of Chemistry 79, no. 11 (2001): 1792–98. http://dx.doi.org/10.1139/v01-157.

Full text
Abstract:
Enantioselective deprotonation of 8-thiabicyclo[3.2.1]octan-3-one (1) with chiral lithium amides, followed by reactions with electrophiles affords sulfur analogs of tropane alkaloids of pyranotropane family. Thus, deprotonation of 1 with (S)-N-(diphenyl)methyl-1-phenylethylamine (11d), followed by the reaction of the resulting nonracemic enolate with benzaldehyde gives the corresponding aldol product as one diastereoisomer (exo, threo) and in high enanatiomeric purity (95% ee). Trimethylsilyl chloride, acetic anhydride, and acyl cyanides react readily with the lithium enolate to give the corre
APA, Harvard, Vancouver, ISO, and other styles
24

Kemper, Paul R., Lewis M. Bass, and Michael T. Bowers. "A reexamination of the methyl + hydrogen cyanide association reaction including the methyl/methyl-d3 isotope effect." Journal of Physical Chemistry 89, no. 7 (1985): 1105–7. http://dx.doi.org/10.1021/j100253a012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rye, R. R., J. T. Yatess, and M. R. Albert. "Functional group contributions to the auger spectra of methyl cyanide and methyl isocyanide." Journal of Electron Spectroscopy and Related Phenomena 40, no. 1 (1986): 69–83. http://dx.doi.org/10.1016/0368-2048(86)80007-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Appleton, TG, JR Hall, and MA Williams. "Dimethylplatinum(IV) Complexes With Cyanide: Thermal and Photoassisted Substitution Reactions, and Characterization of Products by N.M.R." Australian Journal of Chemistry 40, no. 9 (1987): 1565. http://dx.doi.org/10.1071/ch9871565.

Full text
Abstract:
Reactions of cyanide with the dimethylplatinum (IV) complexes, [PtMe2(OH) (H20)1.5 n, [PtMe2Br2]n and fac-PtMe2Br(H2O)3+, have been studied, principally by 1H, 13C and 195Pt n.m.r. Cyanide rapidly displaces the ligands trans to the methyl groups. Subsequent reactions cis to the methyl groups occur more slowly with heating, or, for bromo complexes, on ultraviolet irradiation. These substitution reactions compete with reductive elimination of groups from the platinum(IV) compounds to produce platinum(II) products. All attempts to prepare solutions of fac-PtMe2(CN)(H2O)3+ were unsuccessful. Oxida
APA, Harvard, Vancouver, ISO, and other styles
27

Green, Sheldon. "Rotational excitation in low-energy methyl cyanide-helium collisions." Journal of Physical Chemistry 89, no. 24 (1985): 5289–94. http://dx.doi.org/10.1021/j100270a034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kalenskii, S. V., V. G. Promislov, A. V. Alakoz, A. Winnberg, and L. E. B. Johansson. "Determination of molecular gas properties using methyl cyanide lines." Astronomy Reports 44, no. 11 (2000): 725–37. http://dx.doi.org/10.1134/1.1320498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Le Guennec, M., G. Wlodarczak, J. Burie, and J. Demaison. "Rotational spectrum of CH2DCN and structure of methyl cyanide." Journal of Molecular Spectroscopy 154, no. 2 (1992): 305–23. http://dx.doi.org/10.1016/0022-2852(92)90210-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

van Driel, C. A. A., and W. L. Groeneveld. "The oxidation of methyl cyanide by vanadium(IV) chloride." Recueil des Travaux Chimiques des Pays-Bas 88, no. 8 (2010): 891–96. http://dx.doi.org/10.1002/recl.19690880802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Spentzos, Ariana Z., Michael R. Gau, Patrick J. Carroll, and Neil C. Tomson. "Unusual cyanide and methyl binding modes at a dicobalt macrocycle following acetonitrile C–C bond activation." Chemical Communications 56, no. 67 (2020): 9675–78. http://dx.doi.org/10.1039/d0cc03521a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gu, Lijun, Cheng Jin, Hongtao Zhang, Jiyan Liu, Ganpeng Li Ganpeng Li, and Zhi Yang. "An aerobic Cu-mediated practical approach to aromatic nitriles using cyanide anions as the nitrogen source." Organic & Biomolecular Chemistry 14, no. 28 (2016): 6687–90. http://dx.doi.org/10.1039/c6ob01269h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Burrow, P. D., A. E. Howard, A. R. Johnston, and K. D. Jordan. "Temporary anion states of hydrogen cyanide, methyl cyanide, and methylene dicyanide, selected cyanoethylenes, benzonitrile, and tetracyanoquinodimethane." Journal of Physical Chemistry 96, no. 19 (1992): 7570–78. http://dx.doi.org/10.1021/j100198a017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tandon, Santokh S., and C. Robert Lucas. "Metal-induced facile synthesis of a tricyclic system — 10-Methyl-12-thia-2,9-diaza-tricyclo[8.3.1.03,8]tetradeca-3,5,7-triene-1-carbonitrile. Formation of an intramolecular carbon–carbon bond." Canadian Journal of Chemistry 86, no. 9 (2008): 912–17. http://dx.doi.org/10.1139/v08-100.

Full text
Abstract:
The reaction between 4-thiaheptane-2,6-dione and 1,2-diaminobenzene in the presence of nickel(II) perchlorate results in the formation of a nickel(II) complex of a novel new heterotricyclic system: 1-methoxy-10-methyl-12-thia-2,9-diaza-tricyclo[8.3.1.03,8]tetradeca-3,5,7-triene, which on treatment with potassium cyanide gives 10-methy-12-thia-2,9-diaza-tricyclo[8.3.1.03,8]tetradeca-3,5,7-triene-1-carbonitrile, a case of metal-induced carbon–carbon bond formation.Key words: nickel-induced carbon–carbon bond formation, intramolecular cyclization, tricyclic formation.
APA, Harvard, Vancouver, ISO, and other styles
35

Edard, Florence, Adam P. Hitchcock, and Michel Tronc. "The .pi.* and .sigma.* shape resonances in the vibrational excitation of hydrogen cyanide, methyl cyanide, and methyl isocyanide by low-energy electron impact." Journal of Physical Chemistry 94, no. 7 (1990): 2768–74. http://dx.doi.org/10.1021/j100370a010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kulkarni, S., MR Grimmett, LR Hanton, and J. Simpson. "Nucleophilic Displacements of Imidazoles. I. Oxygen, Nitrogen and Carbon Nucleophiles." Australian Journal of Chemistry 40, no. 8 (1987): 1399. http://dx.doi.org/10.1071/ch9871399.

Full text
Abstract:
4(5)- Bromo - and - iodo-imidazoles, activated by an adjacent nitro substituent, undergo nucleophilic displacement with methoxide, phenoxide , cyclic secondary chines and cyanide. The regiochemistry of the reactions of 5-iodo-4-nitroimidazole with methoxide has been confirmed by spectroscopic and X-ray methods, and a number of erroneous structures from the literature have been revised. Some apparently anomalous reactions of methoxide with 5-halo-1,2-dimethyl-4- nitroimidazoles, and of cyanide with 4-halo-1-methyl-5-nitroimidazole have been noted. The crystal and molecular structure of 5-methox
APA, Harvard, Vancouver, ISO, and other styles
37

Hung, T., Sheng-Yuan Liu, Yu-Nung Su, et al. "A Mini Survey of Methyl Cyanide toward Extended Green Objects." Astrophysical Journal 872, no. 1 (2019): 61. http://dx.doi.org/10.3847/1538-4357/aafc23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Rinsland, Curtis P., Steven W. Sharpe, and Robert L. Sams. "Temperature-dependent infrared absorption cross sections of methyl cyanide (acetonitrile)." Journal of Quantitative Spectroscopy and Radiative Transfer 96, no. 2 (2005): 271–80. http://dx.doi.org/10.1016/j.jqsrt.2005.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wilner, D. J., M. C. H. Wright, and R. L. Plambeck. "Maps of 92 GHz methyl cyanide emission in Orion-KL." Astrophysical Journal 422 (February 1994): 642. http://dx.doi.org/10.1086/173757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

O'Leary, Deirdre M., Albert A. Ruth, Sophie Dixneuf, Johannes Orphal, and Ravi Varma. "The near infrared cavity-enhanced absorption spectrum of methyl cyanide." Journal of Quantitative Spectroscopy and Radiative Transfer 113, no. 11 (2012): 1138–47. http://dx.doi.org/10.1016/j.jqsrt.2012.02.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Duthie, Andrew, Peter Scammells, Andrew Katsifis, and Edward R. T. Tiekink. "(1,3-Benzo[d]dioxol-5-yl)(2-pyridyl)methyl cyanide." Acta Crystallographica Section E Structure Reports Online 57, no. 2 (2001): o104—o105. http://dx.doi.org/10.1107/s1600536801000198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Codella, C., M. Benedettini, M. T. Beltrán, et al. "Methyl cyanide as tracer of bow shocks in L1157-B1." Astronomy & Astrophysics 507, no. 2 (2009): L25—L28. http://dx.doi.org/10.1051/0004-6361/200913340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Park, Min-Goo, Bo-Kyung Sung, and Jae-Young Cho. "Residual Characteristics of Methyl Bromide and Hydrogen Cyanide in Banana, Orange, and Pineapple." Journal of Applied Biological Chemistry 54, no. 3 (2011): 214–17. http://dx.doi.org/10.3839/jabc.2011.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Díaz, C., and N. Yutronic. "Donor-Acceptor Properties of the Methyl Cyanide and Methyl Isocyanide Ligands Towards the Fragment CpFe(dppe)+." Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 27, no. 1 (1997): 119–26. http://dx.doi.org/10.1080/00945719708000187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

McEwan, Murray J., Arthur B. Denison, Wesley T. Huntress, Vincent G. Anicich, J. Snodgrass, and M. T. Bowers. "Association reactions at low pressure. 2. The methylium/methyl cyanide system." Journal of Physical Chemistry 93, no. 10 (1989): 4064–68. http://dx.doi.org/10.1021/j100347a039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Huet, T. R. "The ν 1 and ν 5 fundamental bands of methyl cyanide". Journal of Molecular Structure 517-518 (лютий 2000): 127–31. http://dx.doi.org/10.1016/s0022-2860(99)00243-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pankonin, V., E. Churchwell, C. Watson, and J. H. Bieging. "A Methyl Cyanide Search for the Earliest Stages of Massive Protostars." Astrophysical Journal 558, no. 1 (2001): 194–203. http://dx.doi.org/10.1086/322249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bell, T. A., J. Cernicharo, S. Viti, et al. "Extended warm gas in Orion KL as probed by methyl cyanide." Astronomy & Astrophysics 564 (April 2014): A114. http://dx.doi.org/10.1051/0004-6361/201321872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Akeson, R. L., and J. E. Carlstrom. "Lifetimes of Ultracompact H II Regions: High-Resolution Methyl Cyanide Observations." Astrophysical Journal 470 (October 1996): 528. http://dx.doi.org/10.1086/177885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sutton, E. C., Geoffrey A. Blake, R. Genzel, C. R. Masson, and T. G. Phillips. "Excitation of methyl cyanide in the hot core of the Orion." Astrophysical Journal 311 (December 1986): 921. http://dx.doi.org/10.1086/164829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!