Contents
Academic literature on the topic 'Methylcitrate cycle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Methylcitrate cycle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Methylcitrate cycle"
Savvi, Suzana, Digby F. Warner, Bavesh D. Kana, John D. McKinney, Valerie Mizrahi, and Stephanie S. Dawes. "Functional Characterization of a Vitamin B12-Dependent Methylmalonyl Pathway in Mycobacterium tuberculosis: Implications for Propionate Metabolism during Growth on Fatty Acids." Journal of Bacteriology 190, no. 11 (March 28, 2008): 3886–95. http://dx.doi.org/10.1128/jb.01767-07.
Full textHorswill, Alexander R., and Jorge C. Escalante-Semerena. "Salmonella typhimurium LT2 Catabolizes Propionate via the 2-Methylcitric Acid Cycle." Journal of Bacteriology 181, no. 18 (September 15, 1999): 5615–23. http://dx.doi.org/10.1128/jb.181.18.5615-5623.1999.
Full textDomin, Nicole, Duncan Wilson, and Matthias Brock. "Methylcitrate cycle activation during adaptation of Fusarium solani and Fusarium verticillioides to propionyl-CoA-generating carbon sources." Microbiology 155, no. 12 (December 1, 2009): 3903–12. http://dx.doi.org/10.1099/mic.0.031781-0.
Full textYan, Yuxin, Huan Wang, Siyi Zhu, Jing Wang, Xiaohong Liu, Fucheng Lin, and Jianping Lu. "The Methylcitrate Cycle is Required for Development and Virulence in the Rice Blast Fungus Pyricularia oryzae." Molecular Plant-Microbe Interactions® 32, no. 9 (September 2019): 1148–61. http://dx.doi.org/10.1094/mpmi-10-18-0292-r.
Full textDolan, Stephen K., Andre Wijaya, Stephen M. Geddis, David R. Spring, Rafael Silva-Rocha, and Martin Welch. "Loving the poison: the methylcitrate cycle and bacterial pathogenesis." Microbiology 164, no. 3 (March 1, 2018): 251–59. http://dx.doi.org/10.1099/mic.0.000604.
Full textClaes, Wilfried A., Alfred Pühler, and Jörn Kalinowski. "Identification of Two prpDBC Gene Clusters in Corynebacterium glutamicum and Their Involvement in Propionate Degradation via the 2-Methylcitrate Cycle." Journal of Bacteriology 184, no. 10 (May 15, 2002): 2728–39. http://dx.doi.org/10.1128/jb.184.10.2728-2739.2002.
Full textFeng, Jiao, Liya He, Xing Xiao, Zhiwen Chen, Chunmei Chen, Jieming Chu, Sha Lu, Xiqing Li, Eleftherios Mylonakis, and Liyan Xi. "Methylcitrate cycle gene MCD is essential for the virulence of Talaromyces marneffei." Medical Mycology 58, no. 3 (July 9, 2019): 351–61. http://dx.doi.org/10.1093/mmy/myz063.
Full textLee, Seung-Ho, You-Kyoung Han, Sung-Hwan Yun, and Yin-Won Lee. "Roles of the Glyoxylate and Methylcitrate Cycles in Sexual Development and Virulence in the Cereal Pathogen Gibberella zeae." Eukaryotic Cell 8, no. 8 (June 12, 2009): 1155–64. http://dx.doi.org/10.1128/ec.00335-08.
Full textZheng, Cao, Zhaoqing Yu, Cuiying Du, Yujing Gong, Wen Yin, Xinfeng Li, Zhou Li, Ute Römling, Shan‐Ho Chou, and Jin He. "2‐Methylcitrate cycle: a well‐regulated controller of Bacillus sporulation." Environmental Microbiology 22, no. 3 (December 28, 2019): 1125–40. http://dx.doi.org/10.1111/1462-2920.14901.
Full textZhang, Yong-Qiang, and Nancy P. Keller. "Blockage of methylcitrate cycle inhibits polyketide production in Aspergillus nidulans." Molecular Microbiology 52, no. 2 (March 4, 2004): 541–50. http://dx.doi.org/10.1111/j.1365-2958.2004.03994.x.
Full textDissertations / Theses on the topic "Methylcitrate cycle"
Santos, Luiz Paulo Araújo dos. "Metabolismo do propionato em Paracoccidioides lutzii." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/8633.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T15:03:29Z (GMT) No. of bitstreams: 2 Dissertação - Luiz Paulo Araújo dos Santos - 2015.pdf: 1282200 bytes, checksum: ceda1b43513d7bf6756357d40f977117 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-07-03T15:03:29Z (GMT). No. of bitstreams: 2 Dissertação - Luiz Paulo Araújo dos Santos - 2015.pdf: 1282200 bytes, checksum: ceda1b43513d7bf6756357d40f977117 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2015-01-30
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Pathogens can find different carbon sources in host niches generating propionyl-CoA, among them propionate. This compound is toxic to the organism if accumulated within the cell, and can be generated in the host tissue by the metabolism of amino acids isoleucine, valine and methionine, or by the metabolism of odd-chain fatty acids. Therefore, during infection, the propionyl-CoA metabolism to nontoxic nutrient and usable energetically is of great relevance. Nonetheless, there are no studies about the propionyl-CoA metabolization pathway in fungi of the genus Paracoccidioides, causer of paracoccidioidomycosis, a systemic mycosis of high incidence in Latin America. Thus, to characterize of which metabolic pathway this fungus utilizes to propionyl-CoA metabolization, it was made a search the genes coding to enzymes of methylcitrate cycle in genome of Paracoccidioides spp. and were identified genes coding to the three exclusive enzymes of this cycle, which are methylcitrate synthase, methylcitrate dehydrogenase and methylcitrate lyase. After analysis of growth and viability, which demonstrated that Paracoccidioides lutzii utilizes propionate as carbon source, it was made gene expression analysis of enzymes of methylcitrate cycle and was observed that are regulated in response to propionate. Additionally, the enzymatic activity of the MCS showed that this enzyme is active inside of fungal cells and also when is secreted, as well as its dual capacity of to act with a citrate synthase and metylcitrate synthase. Finally, the proteomic profile of P. lutzii in propionate showed enzymes induction of methylcitrate cycle, glyoxylate cycle, amino acid metabolism and gluconeogenesis, and the repression of glycolytic pathway, fermentation and fatty acid synthesis, which demonstrated of metabolic rearrangement to supply the cellular energetic demand, metabolizing propionate. In this sense, to understand the mechanism of propionyl-CoA metabolism in P. lutzii provides data for visualization of metabolic adaptation that this fungus makes use in different colonization of niches.
Micro-organismos patogênicos podem encontrar em nichos do hospedeiro diferentes fontes de carbono geradoras de propionil-CoA, dentre elas, o propionato. Este composto é tóxico para a célula se acumulado no seu interior, e pode ser gerado nos tecidos do hospedeiro pelo metabolismo dos aminoácidos isoleucina, valina e metionina, ou pelo metabolismo de ácidos graxos de cadeia ímpar. Portanto, durante a infecção, o metabolismo de propionil-CoA a um nutriente não tóxico e aproveitável energeticamente se faz de grande relevância. Contudo, não há estudos sobre a via de metabolização de propionil-CoA em fungo do gênero Paracoccidioides, causador da paracoccidioidomicose, uma micose sistêmica de alta incidência na América Latina. Sendo assim, para caracterização de qual via metabólica este organismo utiliza para metabolização de propionil-CoA, foi feita uma busca dos genes codificantes para enzimas do ciclo do metilcitrato no genoma de Paracoccidioides spp. e foram identificados genes codificantes para as três enzimas exclusivas desse ciclo, as quais são metilcitrato sintase, metilcitrato desidrogenase e metilcitrato liase. Após análise de crescimento e viabilidade, a qual demonstrou que Paracoccidioides lutzii utiliza propionato como fonte de carbono, foi feita a análise de expressão gênica das enzimas do ciclo do metilcitrato e observou-se que são reguladas em resposta ao propionato. Adicionalmente, a atividade enzimática da MCS demonstrou que essa enzima é ativa no interior da célula fúngica ou mesmo quando é secretada. Além disso, foi demostrada sua capacidade de atuar também como uma citrato sintase. Por fim, o perfil proteômico de P. lutzii em propionato mostrou a indução do ciclo do metilcitrato, ciclo do glioxilato, metabolismo de aminoácidos e gliconeogênese, e a repressão de vias como glicólise, fermentação e síntese de ácidos graxos, os quais demonstram o rearranjo metabólico para suprir a demanda energética celular metabolizando propionato. Neste sentido, entender os mecanismos pelo qual P. lutzii lança mão para metabolizar propionil-CoA permite a compreensão dos mecanismos de adaptação metabólica que esse fungo lança mão em diferentes nichos de colonização.