Journal articles on the topic 'Methylotrophy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Methylotrophy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jourand, Philippe, Adeline Renier, Sylvie Rapior, et al. "Role of Methylotrophy During Symbiosis Between Methylobacterium nodulans and Crotalaria podocarpa." Molecular Plant-Microbe Interactions® 18, no. 10 (2005): 1061–68. http://dx.doi.org/10.1094/mpmi-18-1061.
Full textYanpirat, Patcha, Yukari Nakatsuji, Shota Hiraga, et al. "Lanthanide-Dependent Methanol and Formaldehyde Oxidation in Methylobacterium aquaticum Strain 22A." Microorganisms 8, no. 6 (2020): 822. http://dx.doi.org/10.3390/microorganisms8060822.
Full textYurimoto, Hiroya, Masahide Oku, and Yasuyoshi Sakai. "Yeast Methylotrophy: Metabolism, Gene Regulation and Peroxisome Homeostasis." International Journal of Microbiology 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/101298.
Full textCastilloVillanueva, Elizabeth, Jorge Valdivia-Anistro, Ariadnna CruzCórdova, Valeria Souza, and Irma Rosas-Pérez. "Diversity of cultivated methylotrophs from the extremely oligotrophic system in the Cuatro Cienegas Basin, Mexico: An unexplored ecological guild." Journal of Microbiology & Experimentation 10, no. 6 (2022): 208–14. http://dx.doi.org/10.15406/jmen.2022.10.00375.
Full textChistoserdova, Ludmila, Alla Lapidus, Cliff Han, et al. "Genome of Methylobacillus flagellatus, Molecular Basis for Obligate Methylotrophy, and Polyphyletic Origin of Methylotrophy." Journal of Bacteriology 189, no. 11 (2007): 4020–27. http://dx.doi.org/10.1128/jb.00045-07.
Full textIslam, Tajul, Marcela Hernández, Amare Gessesse, J. Colin Murrell, and Lise Øvreås. "A Novel Moderately Thermophilic Facultative Methylotroph within the Class Alphaproteobacteria." Microorganisms 9, no. 3 (2021): 477. http://dx.doi.org/10.3390/microorganisms9030477.
Full textKlein, Vivien Jessica, Marta Irla, Marina Gil López, Trygve Brautaset, and Luciana Fernandes Brito. "Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy." Microorganisms 10, no. 2 (2022): 220. http://dx.doi.org/10.3390/microorganisms10020220.
Full textHenriques, Ana C., Rui M. S. Azevedo, and Paolo De Marco. "Metagenomic survey of methanesulfonic acid (MSA) catabolic genes in an Atlantic Ocean surface water sample and in a partial enrichment." PeerJ 4 (October 6, 2016): e2498. http://dx.doi.org/10.7717/peerj.2498.
Full textBrautaset, Trygve, Øyvind M. Jakobsen, Michael C. Flickinger, Svein Valla, and Trond E. Ellingsen. "Plasmid-Dependent Methylotrophy in Thermotolerant Bacillus methanolicus." Journal of Bacteriology 186, no. 5 (2004): 1229–38. http://dx.doi.org/10.1128/jb.186.5.1229-1238.2004.
Full textSy, Abdoulaye, Antonius C. J. Timmers, Claudia Knief, and Julia A. Vorholt. "Methylotrophic Metabolism Is Advantageous for Methylobacterium extorquens during Colonization of Medicago truncatula under Competitive Conditions." Applied and Environmental Microbiology 71, no. 11 (2005): 7245–52. http://dx.doi.org/10.1128/aem.71.11.7245-7252.2005.
Full textMarx, Christopher J., Brooke N. O'Brien, Jennifer Breezee, and Mary E. Lidstrom. "Novel Methylotrophy Genes of Methylobacterium extorquens AM1 Identified by using Transposon Mutagenesis Including a Putative Dihydromethanopterin Reductase." Journal of Bacteriology 185, no. 2 (2003): 669–73. http://dx.doi.org/10.1128/jb.185.2.669-673.2003.
Full textFunk, Michael A. "Dawn of methylotrophy." Science 366, no. 6461 (2019): 69.6–70. http://dx.doi.org/10.1126/science.366.6461.69-f.
Full textWackett, Lawrence P. "Methanotrophy and methylotrophy." Environmental Microbiology Reports 4, no. 1 (2012): 156–57. http://dx.doi.org/10.1111/j.1758-2229.2011.00321.x.
Full textMartinez-Gomez, N. Cecilia, Nathan M. Good, and Mary E. Lidstrom. "Methenyl-Dephosphotetrahydromethanopterin Is a Regulatory Signal for Acclimation to Changes in Substrate Availability in Methylobacterium extorquens AM1." Journal of Bacteriology 197, no. 12 (2015): 2020–26. http://dx.doi.org/10.1128/jb.02595-14.
Full textChistoserdova, Ludmila, and Marina G. Kalyuzhnaya. "Current Trends in Methylotrophy." Trends in Microbiology 26, no. 8 (2018): 703–14. http://dx.doi.org/10.1016/j.tim.2018.01.011.
Full textChistoserdova, Ludmila. "Modularity of methylotrophy, revisited." Environmental Microbiology 13, no. 10 (2011): 2603–22. http://dx.doi.org/10.1111/j.1462-2920.2011.02464.x.
Full textZhang, Wenming, Ting Zhang, Sihua Wu, et al. "Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy." RSC Advances 7, no. 7 (2017): 4083–91. http://dx.doi.org/10.1039/c6ra27038g.
Full textDe Marco, Paolo. "Methylotrophy versus heterotrophy: a misconception." Microbiology 150, no. 6 (2004): 1606–7. http://dx.doi.org/10.1099/mic.0.27165-0.
Full textHendrickson, Erik L., David A. C. Beck, Tiansong Wang, Mary E. Lidstrom, Murray Hackett, and Ludmila Chistoserdova. "Expressed Genome of Methylobacillus flagellatus as Defined through Comprehensive Proteomics and New Insights into Methylotrophy." Journal of Bacteriology 192, no. 19 (2010): 4859–67. http://dx.doi.org/10.1128/jb.00512-10.
Full textFukala, Ivo, and Igor Kučera. "Natural Polyhydroxyalkanoates—An Overview of Bacterial Production Methods." Molecules 29, no. 10 (2024): 2293. http://dx.doi.org/10.3390/molecules29102293.
Full textLe, Thien-Kim, Su-Bin Ju, Hyewon Lee, et al. "Biosensor-Based Directed Evolution of Methanol Dehydrogenase from Lysinibacillus xylanilyticus." International Journal of Molecular Sciences 22, no. 3 (2021): 1471. http://dx.doi.org/10.3390/ijms22031471.
Full textBreuer, Uta, Jörg-Uwe Ackermann, and Wolfgang Babel. "Accumulation of poly(3-hydroxybutyric acid) and overproduction of exopolysaccharides in a mutant of a methylotrophic bacterium." Canadian Journal of Microbiology 41, no. 13 (1995): 55–59. http://dx.doi.org/10.1139/m95-168.
Full textJewell, Talia, Sherry L. Huston, and Douglas C. Nelson. "Methylotrophy in Freshwater Beggiatoa alba Strains." Applied and Environmental Microbiology 74, no. 17 (2008): 5575–78. http://dx.doi.org/10.1128/aem.00379-08.
Full textOchsner, Andrea M., Frank Sonntag, Markus Buchhaupt, Jens Schrader, and Julia A. Vorholt. "Methylobacterium extorquens: methylotrophy and biotechnological applications." Applied Microbiology and Biotechnology 99, no. 2 (2014): 517–34. http://dx.doi.org/10.1007/s00253-014-6240-3.
Full textHennig, Guido, Carsten Haupka, Luciana F. Brito, et al. "Methanol-Essential Growth of Corynebacterium glutamicum: Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway." International Journal of Molecular Sciences 21, no. 10 (2020): 3617. http://dx.doi.org/10.3390/ijms21103617.
Full textHung, Wei-Lian, William G. Wade, Rich Boden, Donovan P. Kelly, and Ann P. Wood. "Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia, and Microbacterium." Archives of Microbiology 193, no. 6 (2011): 407–17. http://dx.doi.org/10.1007/s00203-011-0689-6.
Full textYomantas, Yurgis A. V., Irina L. Tokmakova, Natalya V. Gorshkova, et al. "Aromatic Amino Acid Auxotrophs Constructed by Recombinant Marker Exchange in Methylophilus methylotrophus AS1 Cells Expressing the aroP-Encoded Transporter of Escherichia coli." Applied and Environmental Microbiology 76, no. 1 (2009): 75–83. http://dx.doi.org/10.1128/aem.02217-09.
Full textMcTaggart, Tami, David Beck, Usanisa Setboonsarng, et al. "Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria." Microorganisms 3, no. 1 (2015): 94–112. http://dx.doi.org/10.3390/microorganisms3010094.
Full textTakeya, Tomoyuki, Miyabi Yamakita, Daisuke Hayashi, Kento Fujisawa, Yasuyoshi Sakai, and Hiroya Yurimoto. "Methanol production by reversed methylotrophy constructed in Escherichia coli." Bioscience, Biotechnology, and Biochemistry 84, no. 5 (2020): 1062–68. http://dx.doi.org/10.1080/09168451.2020.1715202.
Full textWang, Yu, Liwen Fan, Philibert Tuyishime, Ping Zheng, and Jibin Sun. "Synthetic Methylotrophy: A Practical Solution for Methanol-Based Biomanufacturing." Trends in Biotechnology 38, no. 6 (2020): 650–66. http://dx.doi.org/10.1016/j.tibtech.2019.12.013.
Full textLv, Haoxin, and Akio Tani. "Genomic characterization of methylotrophy of Oharaeibacter diazotrophicus strain SM30T." Journal of Bioscience and Bioengineering 126, no. 6 (2018): 667–75. http://dx.doi.org/10.1016/j.jbiosc.2018.05.023.
Full textAgafonova, N. V., N. V. Doronina, E. N. Kaparullina, et al. "A novel Delftia plant symbiont capable of autotrophic methylotrophy." Microbiology 86, no. 1 (2017): 96–105. http://dx.doi.org/10.1134/s0026261717010039.
Full textMartinez-Gomez, N. Cecilia, Nathan Good, Alexa Zytnick, and Morgan Su. "Abstract 2174: The surprising connection between lanthanides and methylotrophy." Journal of Biological Chemistry 299, no. 3 (2023): S333. http://dx.doi.org/10.1016/j.jbc.2023.103642.
Full textKaraseva, Tatiana, Dmitry Fedorov, Sophia Baklagina, et al. "Isolation and Characterization of Homologically Expressed Methanol Dehydrogenase from Methylorubrum extorquens AM1 for the Development of Bioelectrocatalytical Systems." International Journal of Molecular Sciences 23, no. 18 (2022): 10337. http://dx.doi.org/10.3390/ijms231810337.
Full textChistoserdova, Ludmila. "Methylotrophy in a Lake: from Metagenomics to Single-Organism Physiology." Applied and Environmental Microbiology 77, no. 14 (2011): 4705–11. http://dx.doi.org/10.1128/aem.00314-11.
Full textWoolston, Benjamin M., Timothy Roth, Ishwar Kohale, David R. Liu, and Gregory Stephanopoulos. "Development of a formaldehyde biosensor with application to synthetic methylotrophy." Biotechnology and Bioengineering 115, no. 1 (2017): 206–15. http://dx.doi.org/10.1002/bit.26455.
Full textKrüsemann, Jan L., Vittorio Rainaldi, Charles AR Cotton, Nico J. Claassens, and Steffen N. Lindner. "The cofactor challenge in synthetic methylotrophy: bioengineering and industrial applications." Current Opinion in Biotechnology 82 (August 2023): 102953. http://dx.doi.org/10.1016/j.copbio.2023.102953.
Full textKalyuzhnaya, Marina G., Krassimira R. Hristova, Mary E. Lidstrom, and Ludmila Chistoserdova. "Characterization of a Novel Methanol Dehydrogenase in Representatives of Burkholderiales: Implications for Environmental Detection of Methylotrophy and Evidence for Convergent Evolution." Journal of Bacteriology 190, no. 11 (2008): 3817–23. http://dx.doi.org/10.1128/jb.00180-08.
Full textChistoserdova, Ludmila, Sung-Wei Chen, Alla Lapidus, and Mary E. Lidstrom. "Methylotrophy in Methylobacterium extorquens AM1 from a Genomic Point of View." Journal of Bacteriology 185, no. 10 (2003): 2980–87. http://dx.doi.org/10.1128/jb.185.10.2980-2987.2003.
Full textOchsner, Andrea M., Matthias Christen, Lucas Hemmerle, Rémi Peyraud, Beat Christen, and Julia A. Vorholt. "Transposon Sequencing Uncovers an Essential Regulatory Function of Phosphoribulokinase for Methylotrophy." Current Biology 27, no. 17 (2017): 2579–88. http://dx.doi.org/10.1016/j.cub.2017.07.025.
Full textAntoniewicz, Maciek R. "Synthetic methylotrophy: Strategies to assimilate methanol for growth and chemicals production." Current Opinion in Biotechnology 59 (October 2019): 165–74. http://dx.doi.org/10.1016/j.copbio.2019.07.001.
Full textDubey, Abhishek Anil, and Vikas Jain. "Mycofactocin is essential for the establishment of methylotrophy in Mycobacterium smegmatis." Biochemical and Biophysical Research Communications 516, no. 4 (2019): 1073–77. http://dx.doi.org/10.1016/j.bbrc.2019.07.008.
Full textKrause, Sascha M. B., Timothy Johnson, Yasodara Samadhi Karunaratne, et al. "Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions." Proceedings of the National Academy of Sciences 114, no. 2 (2016): 358–63. http://dx.doi.org/10.1073/pnas.1619871114.
Full textKane, Staci R., Anu Y. Chakicherla, Patrick S. G. Chain, et al. "Whole-Genome Analysis of the Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1." Journal of Bacteriology 189, no. 5 (2006): 1931–45. http://dx.doi.org/10.1128/jb.01259-06.
Full textStrovas, Tim J., Linda M. Sauter, Xiaofeng Guo, and Mary E. Lidstrom. "Cell-to-Cell Heterogeneity in Growth Rate and Gene Expression in Methylobacterium extorquens AM1." Journal of Bacteriology 189, no. 19 (2007): 7127–33. http://dx.doi.org/10.1128/jb.00746-07.
Full textButterfield, Cristina N., Zhou Li, Peter F. Andeer, et al. "Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone." PeerJ 4 (November 8, 2016): e2687. http://dx.doi.org/10.7717/peerj.2687.
Full textFassel, T. A., M. J. Schaller, M. E. Lidstrom, and C. C. Remsen. "Comparative surface and ultrastructural views of methylotrophic bacteria by TEM, STEM, SE, and freeze-etch electron microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 792–93. http://dx.doi.org/10.1017/s0424820100128274.
Full textBeck, David A. C., Tami L. McTaggart, Usanisa Setboonsarng, et al. "Multiphyletic origins of methylotrophy inAlphaproteobacteria, exemplified by comparative genomics of Lake Washington isolates." Environmental Microbiology 17, no. 3 (2015): 547–54. http://dx.doi.org/10.1111/1462-2920.12736.
Full textNercessian, Olivier, Emma Noyes, Marina G. Kalyuzhnaya, Mary E. Lidstrom, and Ludmila Chistoserdova. "Bacterial Populations Active in Metabolism of C1 Compounds in the Sediment of Lake Washington, a Freshwater Lake." Applied and Environmental Microbiology 71, no. 11 (2005): 6885–99. http://dx.doi.org/10.1128/aem.71.11.6885-6899.2005.
Full textYurimoto, Hiroya, Kosuke Shiraishi, and Yasuyoshi Sakai. "Physiology of Methylotrophs Living in the Phyllosphere." Microorganisms 9, no. 4 (2021): 809. http://dx.doi.org/10.3390/microorganisms9040809.
Full text