Academic literature on the topic 'Metre multistage shuttle run test (20 mst)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metre multistage shuttle run test (20 mst).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metre multistage shuttle run test (20 mst)"

1

Léger, L. A., D. Mercier, C. Gadoury, and J. Lambert. "The multistage 20 metre shuttle run test for aerobic fitness." Journal of Sports Sciences 6, no. 2 (1988): 93–101. http://dx.doi.org/10.1080/02640418808729800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamlin, Michael J., Meegan Fraser, Catherine A. Lizamore, Nick Draper, Jeremy P. Shearman, and Nicholas E. Kimber. "Measurement of Cardiorespiratory Fitness in Children from Two Commonly Used Field Tests After Accounting for Body Fatness and Maturity." Journal of Human Kinetics 40, no. 1 (2014): 83–92. http://dx.doi.org/10.2478/hukin-2014-0010.

Full text
Abstract:
Abstract Body fat and maturation both influence cardiorespiratory fitness, however few studies have taken these variables into account when using field tests to predict children’s fitness levels. The purpose of this study was to determine the relationship between two field tests of cardiorespiratory fitness (20 m Maximal Multistage Shuttle Run [20-MST], 550 m distance run [550-m]) and direct measurement of VO2max after adjustment for body fatness and maturity levels. Fifty-three participants (25 boys, 28 girls, age 10.6 ± 1.2 y, mean ± SD) had their body fat levels estimated using bioelectrical impedance (16.6% ± 6.0% and 20.0% ± 5.8% for boys and girls, respectively). Participants performed in random order, the 20-MST and 550-m run followed by a progressive treadmill test to exhaustion during which gas exchange measures were taken. Pearson correlation coefficient analysis revealed that the participants’ performance in the 20-MST and 550-m run were highly correlated to VO2max obtained during the treadmill test to exhaustion (r = 0.70 and 0.59 for 20-MST and 550-m run, respectively). Adjusting for body fatness and maturity levels in a multivariate regression analysis increased the associations between the field tests and VO2max (r = 0.73 for 20-MST and 0.65 for 550-m). We may conclude that both the 20-MST and the 550-m distance run are valid field tests of cardiorespiratory fitness in New Zealand 8-13 year old children and incorporating body fatness and maturity levels explains an additional 5-7% of the variance.
APA, Harvard, Vancouver, ISO, and other styles
3

"Development of multistage 10-m shuttle run test for VO2max estimation in healthy adults." Journal of Men’s Health, 2021. http://dx.doi.org/10.31083/jomh.2021.066.

Full text
Abstract:
Background and objective: The disadvantage of the traditional 20-m multistage shuttle run test (MST) is that it requires a long space for measurements and does not include various age groups to develop the test. Therefore, we developed a new MST to improve the spatial limitation by reducing the measurement to a 10-m distance and to resolve the bias via uniform distributions of gender and age. Material and methods: Study subjects included 120 healthy adults (60 males and 60 females) aged 20 to 50 years. All subjects performed a graded maximal exercise test (GXT) and a 10-m MST at five-day intervals. We developed a regression model using 70% of the subject's data and performed a cross-validation test using 30% of the data. Results: The male regression model's coefficient of determination (R2) was 58.8%, and the standard error of estimation (SEE) was 4.17 mL/kg/min. The female regression model's R2 was 69.2%, and the SEE was 3.39 mL/kg/min. The 10-m MST showed a high correlation with GXT on the VO2max (males: 0.816; females: 0.821). In the cross-validation test for the developed regression models, the male's SEE was 4.38 mL/kg/min, and the female's SEE was 4.56 mL/kg/min. Conclusion: Thus, the 10-m MST is an accurate and valid method for estimating the VO2max. Therefore, the 10-m MST developed by us can be used when the existing 20-m MST cannot be used due to spatial limitations and can be applied to both men and women in their 20s and 50s.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Metre multistage shuttle run test (20 mst)"

1

Kuisis, Suzan Mary. "Modification of the 20 Metre Shuttle Run Test (20 MST) for ice-sports." Pretoria : [s.n.], 2003. http://upetd.up.ac.za/thesis/available/etd-10292004-141657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuisis, S. M. (Suzan Mary). "Modification of the 20 Metre Shuttle Run Test (20 MST) for ice-sports." Diss., 2003. http://hdl.handle.net/2263/29104.

Full text
Abstract:
The 20 Metre Multistage Shuttle Run Test (20 MST) was modified for application to ice-sports, more specifically for ice-hockey and figure-skating. Seventy two participants in ice-sports served as the total subject group. Subjects included in the study were National and Provincial standard male ice-hockey subjects (n=67) and female figure skaters (n=5) participating in the Gauteng area of South Africa (altitude of 1497 metres above sea level and barometric pressure of 655 mmHg). The mean age for the total group was 17.44±1.33 years. The research methodology entailed a repeated measures design to determine: a) velocity of motion on-ice vs. over-ground; b) energy expenditure on-ice vs. over-ground; and c) mechanical efficiency on-ice vs. over-ground. The mean velocity of motion measured over three distances (0 to 20, 0 to 30 and 0 to 40 m) indicated a significantly (p≤0.05) faster velocity on-ice (5.99±0.72 m/s) versus over-ground (5.75±0.63 m/s). The corresponding mean time-lapsed on-ice/over-ground ratio was 0.97±0.11. Differences in mean energy expenditure whilst performing the original 20 MST over-ground as opposed to on-ice were measured at low (at 4 minutes of exercise and 10 km/h), intermediate (after 8 minutes of exercise and 12 km/h), and high intensity (after 12 min of exercise and 14 km/h). The mean of the three indicated a significantly (p≤0.05) higher energy expenditure over-ground (14.04±4.86 kcal/min) as apposed to on-ice (10.51±2.95 kcal/min). The mean energy expenditure ratio for the three different intensities on-ice vs. over-ground was 0.74±0.21. Similarly, the mechanical efficiency index over-ground (4.92±0.59) was found to be significantly (p≤0.001) poorer than on-ice (6.83±1.49). The mean mechanical efficiency ratio over-ground/over-ice was 0.74±0.13. Subsequently, based on the above results, the 20 MST was modified by: a) adapting (increasing) the velocity of motion required for each level of the test (distance of 20 m per shuttle); and b) establishing the reliability and validity of the modified 20 MST for use on-ice. The adapted 20 Metre Multistage Shuttle Skating Test (the modified (skating) 20 MST) started at a velocity of 2.8 m/s (10.1 km/h) and permitted 7.1 seconds to complete each shuttle for the first level of the test, which then decreased progressively at each level. This was based on an over-all variable-derived on-ice to over ground ratio of 0.84. Test-retest, on-ice reliability measures (n=15) for predicted VO2max (49.5±8.37 vs. 49.29±7.95 ml/kg/min) showed a highly significant (p£0.001) consistency (r=0.87). Similarly test-retest concurrent validity measures (n=10) for predicted VO2max over-ground with the original 20 MST (48.09±6.25 ml/kg/min) as designed by Léger and Lambert (1982) versus on-ice values with the adapted on-ice 20 MST (49.98±7.23 ml/kg/min), showed a very significant (p£0.01) correlation of 0.73 between the two tests. In conclusion the original 20 MST, as designed by Léger and Lambert (1982) for over-ground, proved inappropriate for use on-ice. Modification of the starting velocity as well as a progressive increase in velocity for all subsequent stages renders the modified 20 MST for ice-sports a reliable and valid test for cardiorespiratory fitness (VO2max), with surface-specific utility. The 20 Metre Multistage Shuttle Run Test (20 MST) was modified for application to ice-sports, more specifically for ice-hockey and figure-skating. Seventy two participants in ice-sports served as the total subject group. Subjects included in the study were National and Provincial standard male ice-hockey subjects (n=67) and female figure skaters (n=5) participating in the Gauteng area of South Africa (altitude of 1497 metres above sea level and barometric pressure of 655 mmHg). The mean age for the total group was 17.44±1.33 years. The research methodology entailed a repeated measures design to determine: a) velocity of motion on-ice vs. over-ground; b) energy expenditure on-ice vs. over-ground; and c) mechanical efficiency on-ice vs. over-ground. The mean velocity of motion measured over three distances (0 to 20, 0 to 30 and 0 to 40 m) indicated a significantly (p≤0.05) faster velocity on-ice (5.99±0.72 m/s) versus over-ground (5.75±0.63 m/s). The corresponding mean time-lapsed on-ice/over-ground ratio was 0.97±0.11. Differences in mean energy expenditure whilst performing the original 20 MST over-ground as opposed to on-ice were measured at low (at 4 minutes of exercise and 10 km/h), intermediate (after 8 minutes of exercise and 12 km/h), and high intensity (after 12 min of exercise and 14 km/h). The mean of the three indicated a significantly (p≤0.05) higher energy expenditure over-ground (14.04±4.86 kcal/min) as apposed to on-ice (10.51±2.95 kcal/min). The mean energy expenditure ratio for the three different intensities on-ice vs. over-ground was 0.74±0.21. Similarly, the mechanical efficiency index over-ground (4.92±0.59) was found to be significantly (p≤0.001) poorer than on-ice (6.83±1.49). The mean mechanical efficiency ratio over-ground/over-ice was 0.74±0.13. Subsequently, based on the above results, the 20 MST was modified by: a) adapting (increasing) the velocity of motion required for each level of the test (distance of 20 m per shuttle); and b) establishing the reliability and validity of the modified 20 MST for use on-ice. The adapted 20 Metre Multistage Shuttle Skating Test (the modified (skating) 20 MST) started at a velocity of 2.8 m/s (10.1 km/h) and permitted 7.1 seconds to complete each shuttle for the first level of the test, which then decreased progressively at each level. This was based on an over-all variable-derived on-ice to over ground ratio of 0.84. Test-retest, on-ice reliability measures (n=15) for predicted VO2max (49.5±8.37 vs. 49.29±7.95 ml/kg/min) showed a highly significant (p£0.001) consistency (r=0.87). Similarly test-retest concurrent validity measures (n=10) for predicted VO2max over-ground with the original 20 MST (48.09±6.25 ml/kg/min) as designed by Léger and Lambert (1982) versus on-ice values with the adapted on-ice 20 MST (49.98±7.23 ml/kg/min), showed a very significant (p£0.01) correlation of 0.73 between the two tests. In conclusion the original 20 MST, as designed by Léger and Lambert (1982) for over-ground, proved inappropriate for use on-ice. Modification of the starting velocity as well as a progressive increase in velocity for all subsequent stages renders the modified 20 MST for ice-sports a reliable and valid test for cardiorespiratory fitness (VO2max), with surface-specific utility.<br>Dissertation (MA (Human Movement Science))--University of Pretoria, 2005.<br>Biokinetics, Sport and Leisure Sciences<br>unrestricted
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography