Journal articles on the topic 'Metric learning paradigm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Metric learning paradigm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Brockmeier, Austin J., John S. Choi, Evan G. Kriminger, Joseph T. Francis, and Jose C. Principe. "Neural Decoding with Kernel-Based Metric Learning." Neural Computation 26, no. 6 (2014): 1080–107. http://dx.doi.org/10.1162/neco_a_00591.
Full textSaha, Soumadeep, Utpal Garain, Arijit Ukil, Arpan Pal, and Sundeep Khandelwal. "MedTric : A clinically applicable metric for evaluation of multi-label computational diagnostic systems." PLOS ONE 18, no. 8 (2023): e0283895. http://dx.doi.org/10.1371/journal.pone.0283895.
Full textGong, Xiuwen, Dong Yuan, and Wei Bao. "Online Metric Learning for Multi-Label Classification." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 4012–19. http://dx.doi.org/10.1609/aaai.v34i04.5818.
Full textQiu, Wei. "Based on Semi-Supervised Clustering with the Boost Similarity Metric Method for Face Retrieval." Applied Mechanics and Materials 543-547 (March 2014): 2720–23. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.2720.
Full textXiao, Qiao, Khuan Lee, Siti Aisah Mokhtar, et al. "Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review." Applied Sciences 13, no. 8 (2023): 4964. http://dx.doi.org/10.3390/app13084964.
Full textNiu, Gang, Bo Dai, Makoto Yamada, and Masashi Sugiyama. "Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization." Neural Computation 26, no. 8 (2014): 1717–62. http://dx.doi.org/10.1162/neco_a_00614.
Full textWilde, Henry, Vincent Knight, and Jonathan Gillard. "Evolutionary dataset optimisation: learning algorithm quality through evolution." Applied Intelligence 50, no. 4 (2019): 1172–91. http://dx.doi.org/10.1007/s10489-019-01592-4.
Full textZhukov, Alexey, Jenny Benois-Pineau, and Romain Giot. "Evaluation of Explanation Methods of AI - CNNs in Image Classification Tasks with Reference-based and No-reference Metrics." Advances in Artificial Intelligence and Machine Learning 03, no. 01 (2023): 620–46. http://dx.doi.org/10.54364/aaiml.2023.1143.
Full textPinto, Danna, Anat Prior, and Elana Zion Golumbic. "Assessing the Sensitivity of EEG-Based Frequency-Tagging as a Metric for Statistical Learning." Neurobiology of Language 3, no. 2 (2022): 214–34. http://dx.doi.org/10.1162/nol_a_00061.
Full textGomoluch, Paweł, Dalal Alrajeh, and Alessandra Russo. "Learning Classical Planning Strategies with Policy Gradient." Proceedings of the International Conference on Automated Planning and Scheduling 29 (May 25, 2021): 637–45. http://dx.doi.org/10.1609/icaps.v29i1.3531.
Full textDou, Jason Xiaotian, Lei Luo, and Raymond Mingrui Yang. "An Optimal Transport Approach to Deep Metric Learning (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12935–36. http://dx.doi.org/10.1609/aaai.v36i11.21604.
Full textWang, Yabin, Zhiheng Ma, Zhiwu Huang, Yaowei Wang, Zhou Su, and Xiaopeng Hong. "Isolation and Impartial Aggregation: A Paradigm of Incremental Learning without Interference." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 10209–17. http://dx.doi.org/10.1609/aaai.v37i8.26216.
Full textGe, Ce, Jingyu Wang, Qi Qi, Haifeng Sun, Tong Xu, and Jianxin Liao. "Semi-transductive Learning for Generalized Zero-Shot Sketch-Based Image Retrieval." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 7678–86. http://dx.doi.org/10.1609/aaai.v37i6.25931.
Full textDe Santis, Enrico, Alessio Martino, and Antonello Rizzi. "On component-wise dissimilarity measures and metric properties in pattern recognition." PeerJ Computer Science 8 (October 10, 2022): e1106. http://dx.doi.org/10.7717/peerj-cs.1106.
Full textJaiswal, Mimansa, and Emily Mower Provost. "Privacy Enhanced Multimodal Neural Representations for Emotion Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (2020): 7985–93. http://dx.doi.org/10.1609/aaai.v34i05.6307.
Full textYuan, Fei, Longtu Zhang, Huang Bojun, and Yaobo Liang. "Simpson's Bias in NLP Training." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 16 (2021): 14276–83. http://dx.doi.org/10.1609/aaai.v35i16.17679.
Full textKhan, Koffka, and Wayne Goodridge. "Comparative study of One-Shot Learning in Dynamic Adaptive Streaming over HTTP : A Taxonomy-Based Analysis." International Journal of Advanced Networking and Applications 15, no. 01 (2023): 5822–30. http://dx.doi.org/10.35444/ijana.2023.15112.
Full textWOLFMAN, STEVEN A., and DANIEL S. WELD. "Combining linear programming and satisfiability solving for resource planning." Knowledge Engineering Review 16, no. 1 (2001): 85–99. http://dx.doi.org/10.1017/s0269888901000017.
Full textLin, Jianman, Jiantao Lin, Yuefang Gao, Zhijing Yang, and Tianshui Chen. "Webly Supervised Fine-Grained Image Recognition with Graph Representation and Metric Learning." Electronics 11, no. 24 (2022): 4127. http://dx.doi.org/10.3390/electronics11244127.
Full textSamann, Fady Esmat Fathel, Adnan Mohsin Abdulazeez, and Shavan Askar. "Fog Computing Based on Machine Learning: A Review." International Journal of Interactive Mobile Technologies (iJIM) 15, no. 12 (2021): 21. http://dx.doi.org/10.3991/ijim.v15i12.21313.
Full textElfakharany, Ahmed, and Zool Hilmi Ismail. "End-to-End Deep Reinforcement Learning for Decentralized Task Allocation and Navigation for a Multi-Robot System." Applied Sciences 11, no. 7 (2021): 2895. http://dx.doi.org/10.3390/app11072895.
Full textSotiropoulos, Dionisios N., Efthimios Alepis, Katerina Kabassi, Maria K. Virvou, George A. Tsihrintzis, and Evangelos Sakkopoulos. "Artificial Immune System-Based Learning Style Stereotypes." International Journal on Artificial Intelligence Tools 28, no. 04 (2019): 1940008. http://dx.doi.org/10.1142/s0218213019400086.
Full textMwata-Velu, Tat’y, Juan Gabriel Avina-Cervantes, Jose Ruiz-Pinales, et al. "Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture." Mathematics 10, no. 13 (2022): 2302. http://dx.doi.org/10.3390/math10132302.
Full textLiu, Pingping, Guixia Gou, Xue Shan, Dan Tao, and Qiuzhan Zhou. "Global Optimal Structured Embedding Learning for Remote Sensing Image Retrieval." Sensors 20, no. 1 (2020): 291. http://dx.doi.org/10.3390/s20010291.
Full textLi, Hui, Jinhao Liu, and Dian Wang. "A Fast Instance Segmentation Technique for Log End Faces Based on Metric Learning." Forests 14, no. 4 (2023): 795. http://dx.doi.org/10.3390/f14040795.
Full textMotaung, William B., Kingsley A. Ogudo, and Chabalala S. Chabalala. "Optimal Video Compression Parameter Tuning for Digital Video Broadcasting (DVB) using Deep Reinforcement Learning." International Conference on Intelligent and Innovative Computing Applications 2022 (December 31, 2022): 270–76. http://dx.doi.org/10.59200/iconic.2022.030.
Full textBenvenuto, Giovana A., Marilaine Colnago, Maurício A. Dias, Rogério G. Negri, Erivaldo A. Silva, and Wallace Casaca. "A Fully Unsupervised Deep Learning Framework for Non-Rigid Fundus Image Registration." Bioengineering 9, no. 8 (2022): 369. http://dx.doi.org/10.3390/bioengineering9080369.
Full textSakakushev, Boris E., Blagoi I. Marinov, Penka P. Stefanova, Stefan St Kostianev, and Evangelos K. Georgiou. "Striving for Better Medical Education: the Simulation Approach." Folia Medica 59, no. 2 (2017): 123–31. http://dx.doi.org/10.1515/folmed-2017-0039.
Full textKuang, Jiachen, Tangfei Tao, Qingqiang Wu, et al. "Domain-Adaptive Prototype-Recalibrated Network with Transductive Learning Paradigm for Intelligent Fault Diagnosis under Various Limited Data Conditions." Sensors 22, no. 17 (2022): 6535. http://dx.doi.org/10.3390/s22176535.
Full textManzoor, Sumaira, Ye-Chan An, Gun-Gyo In, Yueyuan Zhang, Sangmin Kim, and Tae-Yong Kuc. "SPT: Single Pedestrian Tracking Framework with Re-Identification-Based Learning Using the Siamese Model." Sensors 23, no. 10 (2023): 4906. http://dx.doi.org/10.3390/s23104906.
Full textXu, Yanbing, Yanmei Zhang, Tingxuan Yue, Chengcheng Yu, and Huan Li. "Graph-Based Domain Adaptation Few-Shot Learning for Hyperspectral Image Classification." Remote Sensing 15, no. 4 (2023): 1125. http://dx.doi.org/10.3390/rs15041125.
Full textAlshammari, Abdulaziz, and Rakan C. Chabaan. "Sppn-Rn101: Spatial Pyramid Pooling Network with Resnet101-Based Foreign Object Debris Detection in Airports." Mathematics 11, no. 4 (2023): 841. http://dx.doi.org/10.3390/math11040841.
Full textLi, Shuyuan, Huabin Liu, Rui Qian, et al. "TA2N: Two-Stage Action Alignment Network for Few-Shot Action Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (2022): 1404–11. http://dx.doi.org/10.1609/aaai.v36i2.20029.
Full textAlonso-Betanzos, Amparo, Verónica Bolón-Canedo, Guy R. Heyndrickx, and Peter L. M. Kerkhof. "Exploring Guidelines for Classification of Major Heart Failure Subtypes by Using Machine Learning." Clinical Medicine Insights: Cardiology 9s1 (January 2015): CMC.S18746. http://dx.doi.org/10.4137/cmc.s18746.
Full textUzair, Muhammad, Mohsen Eskandari, Li Li, and Jianguo Zhu. "Machine Learning Based Protection Scheme for Low Voltage AC Microgrids." Energies 15, no. 24 (2022): 9397. http://dx.doi.org/10.3390/en15249397.
Full textMartinelli, M., C. J. A. P. Martins, S. Nesseris, et al. "Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes." Astronomy & Astrophysics 644 (December 2020): A80. http://dx.doi.org/10.1051/0004-6361/202039078.
Full textLyu, Yangxintong, Ionut Schiopu, Bruno Cornelis, and Adrian Munteanu. "Framework for Vehicle Make and Model Recognition—A New Large-Scale Dataset and an Efficient Two-Branch–Two-Stage Deep Learning Architecture." Sensors 22, no. 21 (2022): 8439. http://dx.doi.org/10.3390/s22218439.
Full textAmari, Shun-ichi, Hyeyoung Park, and Tomoko Ozeki. "Singularities Affect Dynamics of Learning in Neuromanifolds." Neural Computation 18, no. 5 (2006): 1007–65. http://dx.doi.org/10.1162/neco.2006.18.5.1007.
Full textVoulodimos, Athanasios, Eftychios Protopapadakis, Iason Katsamenis, Anastasios Doulamis, and Nikolaos Doulamis. "A Few-Shot U-Net Deep Learning Model for COVID-19 Infected Area Segmentation in CT Images." Sensors 21, no. 6 (2021): 2215. http://dx.doi.org/10.3390/s21062215.
Full textAnand, S. S., P. W. Hamilton, J. G. Hughes, and D. A. Bell. "On Prognostic Models, Artificial Intelligence and Censored Observations." Methods of Information in Medicine 40, no. 01 (2001): 18–24. http://dx.doi.org/10.1055/s-0038-1634459.
Full textYAN, YUHONG, and HAN LIANG. "LAZY LEARNER ON DECISION TREE FOR RANKING." International Journal on Artificial Intelligence Tools 17, no. 01 (2008): 139–58. http://dx.doi.org/10.1142/s0218213008003819.
Full textRayala, Venkat, and Satyanarayan Reddy Kalli. "Big Data Clustering Using Improvised Fuzzy C-Means Clustering." Revue d'Intelligence Artificielle 34, no. 6 (2020): 701–8. http://dx.doi.org/10.18280/ria.340604.
Full textLongo, Mathias, Matías Hirsch, Cristian Mateos, and Alejandro Zunino. "Towards Integrating Mobile Devices into Dew Computing: A Model for Hour-Wise Prediction of Energy Availability." Information 10, no. 3 (2019): 86. http://dx.doi.org/10.3390/info10030086.
Full textTamm, Markus-Oliver, Yar Muhammad, and Naveed Muhammad. "Classification of Vowels from Imagined Speech with Convolutional Neural Networks." Computers 9, no. 2 (2020): 46. http://dx.doi.org/10.3390/computers9020046.
Full textDave, Chitrak Vimalbhai. "An Efficient Framework for Cost and Effort Estimation of Scrum Projects." International Journal for Research in Applied Science and Engineering Technology 9, no. 11 (2021): 1478–87. http://dx.doi.org/10.22214/ijraset.2021.39030.
Full textGalindo-Noreña, Steven, David Cárdenas-Peña, and Álvaro Orozco-Gutierrez. "Multiple Kernel Stein Spatial Patterns for the Multiclass Discrimination of Motor Imagery Tasks." Applied Sciences 10, no. 23 (2020): 8628. http://dx.doi.org/10.3390/app10238628.
Full textFeng, Jialiang, and Jie Gong. "AoI-Aware Optimization of Service Caching-Assisted Offloading and Resource Allocation in Edge Cellular Networks." Sensors 23, no. 6 (2023): 3306. http://dx.doi.org/10.3390/s23063306.
Full textPowers, David. "Unsupervised Learning of Linguistic Structure." International Journal of Corpus Linguistics 2, no. 1 (1997): 91–131. http://dx.doi.org/10.1075/ijcl.2.1.06pow.
Full textAzam, Abu Bakr, Yu Qing Chang, Matthew Leong Tze Ker, et al. "818 Using deep learning approaches with mIF images to enhance T cell identification for tumor -automation of infiltrating lymphocytes (TILs) scoring on H&E images." Journal for ImmunoTherapy of Cancer 9, Suppl 2 (2021): A855—A856. http://dx.doi.org/10.1136/jitc-2021-sitc2021.818.
Full textSamtani, Sagar, Yidong Chai, and Hsinchun Chen. "Linking Exploits from the Dark Web to Known Vulnerabilities for Proactive Cyber Threat Intelligence: An Attention-Based Deep Structured Semantic Model." MIS Quarterly 46, no. 2 (2022): 911–46. http://dx.doi.org/10.25300/misq/2022/15392.
Full text