Academic literature on the topic 'Metric spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metric spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Metric spaces"
Öner, Tarkan, and Alexander Šostak. "Some Remarks on Fuzzy sb-Metric Spaces." Mathematics 8, no. 12 (November 27, 2020): 2123. http://dx.doi.org/10.3390/math8122123.
Full textFora, Ali Ahmad Ali, Mourad Oqla Massa’deh, and Mohammad Saleh Bataineh. "M-FUZZY METRIC SPACES AND D-METRIC SPACES." Advances in Fuzzy Sets and Systems 21, no. 4 (April 7, 2017): 281–89. http://dx.doi.org/10.17654/fs021040281.
Full textNaidu, S. V. R., K. P. R. Rao, and N. Srinivasa Rao. "On the topology ofD-metric spaces and generation ofD-metric spaces from metric spaces." International Journal of Mathematics and Mathematical Sciences 2004, no. 51 (2004): 2719–40. http://dx.doi.org/10.1155/s0161171204311257.
Full textIsah, Ahmed. "METRICS AND METRIC SPACES OF SOFT MULTISETS." FUDMA JOURNAL OF SCIENCES 7, no. 1 (February 28, 2023): 188–92. http://dx.doi.org/10.33003/fjs-2023-0701-1275.
Full textNădăban, Sorin. "Fuzzy b-Metric Spaces." International Journal of Computers Communications & Control 11, no. 2 (January 26, 2016): 273. http://dx.doi.org/10.15837/ijccc.2016.2.2443.
Full textLi, Changqing, Yanlan Zhang, and Jing Zhang. "On statistical convergence in fuzzy metric spaces." Journal of Intelligent & Fuzzy Systems 39, no. 3 (October 7, 2020): 3987–93. http://dx.doi.org/10.3233/jifs-200148.
Full textBOWDITCH, BRIAN H. "Median and injective metric spaces." Mathematical Proceedings of the Cambridge Philosophical Society 168, no. 1 (July 27, 2018): 43–55. http://dx.doi.org/10.1017/s0305004118000555.
Full textWu, Hsien-Chung. "Convergence in Fuzzy Semi-Metric Spaces." Mathematics 6, no. 9 (September 17, 2018): 170. http://dx.doi.org/10.3390/math6090170.
Full textKumam, Poom, Nguyen Van Dung, and Vo Thi Le Hang. "Some Equivalences between Coneb-Metric Spaces andb-Metric Spaces." Abstract and Applied Analysis 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/573740.
Full textOltra, S., S. Romaguera, and E. A. Sánchez-Pérez. "Bicompleting weightable quasi-metric spaces and partial metric spaces." Rendiconti del Circolo Matematico di Palermo 51, no. 1 (February 2002): 151–62. http://dx.doi.org/10.1007/bf02871458.
Full textDissertations / Theses on the topic "Metric spaces"
Razafindrakoto, Ando Desire. "Hyperconvex metric spaces." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4106.
Full textENGLISH ABSTRACT: One of the early results that we encounter in Analysis is that every metric space admits a completion, that is a complete metric space in which it can be densely embedded. We present in this work a new construction which appears to be more general and yet has nice properties. These spaces subsequently called hyperconvex spaces allow one to extend nonexpansive mappings, that is mappings that do not increase distances, disregarding the properties of the spaces in which they are defined. In particular, theorems of Hahn-Banach type can be deduced for normed spaces and some subsidiary results such as fixed point theorems can be observed. Our main purpose is to look at the structures of this new type of “completion”. We will see in particular that the class of hyperconvex spaces is as large as that of complete metric spaces.
AFRIKAANSE OPSOMMING: Een van die eerste resultate wat in die Analise teegekom word is dat enige metriese ruimte ’n vervollediging het, oftewel dat daar ’n volledige metriese ruimte bestaan waarin die betrokke metriese ruimte dig bevat word. In hierdie werkstuk beskryf ons sogenaamde hiperkonvekse ruimtes. Dit gee ’n konstruksie wat blyk om meer algemeen te wees, maar steeds gunstige eienskappe het. Hiermee kan nie-uitbreidende, oftewel afbeeldings wat nie afstande rek nie, uitgebrei word sodanig dat die eienskappe van die ruimte waarop dit gedefinieer is nie ’n rol speel nie. In die besonder kan stellings van die Hahn- Banach-tipe afgelei word vir genormeerde ruimtes en sekere addisionele ressultate ondere vastepuntstellings kan bewys word. Ons hoofdoel is om hiperkonvekse ruimtes te ondersoek. In die besonder toon ons aan dat die klas van alle hiperkonvekse ruimtes net so groot soos die klas van alle metriese ruimtes is.
Al-Harbi, Sami. "Clustering in metric spaces." Thesis, University of East Anglia, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396604.
Full textLemaire-Beaucage, Jonathan. "Voronoi Diagrams in Metric Spaces." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20736.
Full textFärm, David. "Upper gradients and Sobolev spaces on metric spaces." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5816.
Full textThe Laplace equation and the related p-Laplace equation are closely associated with Sobolev spaces. During the last 15 years people have been exploring the possibility of solving partial differential equations in general metric spaces by generalizing the concept of Sobolev spaces. One such generalization is the Newtonian space where one uses upper gradients to compensate for the lack of a derivative.
All papers on this topic are written for an audience of fellow researchers and people with graduate level mathematical skills. In this thesis we give an introduction to the Newtonian spaces accessible also for senior undergraduate students with only basic knowledge of functional analysis. We also give an introduction to the tools needed to deal with the Newtonian spaces. This includes measure theory and curves in general metric spaces.
Many of the properties of ordinary Sobolev spaces also apply in the generalized setting of the Newtonian spaces. This thesis includes proofs of the fact that the Newtonian spaces are Banach spaces and that under mild additional assumptions Lipschitz functions are dense there. To make them more accessible, the proofs have been extended with comments and details previously omitted. Examples are given to illustrate new concepts.
This thesis also includes my own result on the capacity associated with Newtonian spaces. This is the theorem that if a set has p-capacity zero, then the capacity of that set is zero for all smaller values of p.
Lee, Seunghwan Han. "Probabilistic reasoning on metric spaces." [Bloomington, Ind.] : Indiana University, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3380096.
Full textTitle from PDF t.p. (viewed on Jul 19, 2010). Source: Dissertation Abstracts International, Volume: 70-12, Section: B, page: 7604. Adviser: Lawrence S. Moss.
Otafudu, Olivier Olela. "Convexity in quasi-metric spaces." Doctoral thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/10950.
Full textIncludes bibliographical references.
The principal aim of this thesis is to investigate the existence of an injective hull in the categories of T-quasi-metric spaces and of T-ultra-quasi-metric spaces with nonexpansive maps.
Calisti, Matteo. "Differential calculus in metric measure spaces." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21781/.
Full textAmato, Giuseppe. "Approximate similarity search in metric spaces." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964997347.
Full textPalmer, Ian Christian. "Riemannian geometry of compact metric spaces." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34744.
Full textKilbane, James. "Finite metric subsets of Banach spaces." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288272.
Full textBooks on the topic "Metric spaces"
Magnus, Robert. Metric Spaces. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94946-4.
Full textChistyakov, Vyacheslav. Metric Modular Spaces. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25283-4.
Full textLin, Shou, and Ziqiu Yun. Generalized Metric Spaces and Mappings. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-216-8.
Full textBenaïm, Michel, and Tobias Hurth. Markov Chains on Metric Spaces. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11822-7.
Full textTakushiro, Ochiai, ed. Kähler metric and moduli spaces. Boston: Academic Press, 1990.
Find full textZaslavski, Alexander J. Turnpike Phenomenon in Metric Spaces. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27208-0.
Full textAlvarado, Ryan, and Marius Mitrea. Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18132-5.
Full textA, Sutherland W. Introduction to metric and topological spaces. 2nd ed. Oxford: Oxford University Press, 2009.
Find full textBook chapters on the topic "Metric spaces"
Clason, Christian. "Metric Spaces." In Compact Textbooks in Mathematics, 3–8. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52784-6_1.
Full textRoman, Steven. "Metric Spaces." In Advanced Linear Algebra, 239–61. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2178-2_13.
Full textOvchinnikov, Sergei. "Metric Spaces." In Universitext, 19–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91512-8_2.
Full textTao, Terence. "Metric spaces." In Texts and Readings in Mathematics, 1–27. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1804-6_1.
Full textMontesinos, Vicente, Peter Zizler, and Václav Zizler. "Metric Spaces." In An Introduction to Modern Analysis, 283–338. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12481-0_6.
Full textKomornik, Vilmos. "Metric Spaces." In Springer Undergraduate Mathematics Series, 3–35. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7316-8_1.
Full textBourbaki, Nicolas. "Metric Spaces." In Elements of the History of Mathematics, 165–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-61693-8_16.
Full textLebedev, L. P., and I. I. Vorovich. "Metric Spaces." In Springer Monographs in Mathematics, 7–119. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/0-387-22725-3_2.
Full textHromadka, Theodore, and Robert Whitley. "Metric Spaces." In Foundations of the Complex Variable Boundary Element Method, 21–30. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05954-9_2.
Full textGasiński, Leszek, and Nikolaos S. Papageorgiou. "Metric Spaces." In Exercises in Analysis, 1–191. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06176-4_1.
Full textConference papers on the topic "Metric spaces"
Linial, Nathan. "Finite metric spaces." In the eighteenth annual symposium. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/513400.513441.
Full textMohammedali, Mayada N. "A new approach to G-metric spaces: Algebra G-fuzzy metric spaces." In INTERNATIONAL CONFERENCE ON SCIENTIFIC RESEARCH & INNOVATION (ICSRI 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0150796.
Full textFUTAMURA, TOSHIHIDE, PETTERI HARJULEHTO, PETER HÄSTÖ, YOSHIHIRO MIZUTA, and TETSU SHIMOMURA. "VARIABLE EXPONENT SPACES ON METRIC MEASURE SPACES." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0010.
Full textKovacs, L. "Rule approximation in metric spaces." In 2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2010). IEEE, 2010. http://dx.doi.org/10.1109/sami.2010.5423702.
Full textSimonov, Sergey. "Isometric model of metric spaces." In 2018 Days on Diffraction (DD). IEEE, 2018. http://dx.doi.org/10.1109/dd.2018.8553616.
Full textCroitoru, Anca, Gabriela Apreutesei, and Nikos E. Mastorakis. "Properties of C-metric spaces." In MATHEMATICAL METHODS AND COMPUTATIONAL TECHNIQUES IN SCIENCE AND ENGINEERING. Author(s), 2017. http://dx.doi.org/10.1063/1.4996673.
Full textMalleswari, V. Siva Naga, and Dr V. Amarendra Babu. "Intuitionistic fuzzy soft metric spaces." In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (ICMSA-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0014430.
Full textXue, Zhao-Rui, and Min-Xia Luo. "Interval-Valued Logic Metric Spaces." In 4th Annual International Conference on Management, Economics and Social Development (ICMESD 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icmesd-18.2018.168.
Full textAbraham, Ittai, Yair Bartal, and Ofer Neiman. "Local embeddings of metric spaces." In the thirty-ninth annual ACM symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1250790.1250883.
Full textSchroder, Matthias, and Florian Steinberg. "Bounded time computation on metric spaces and Banach spaces." In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2017. http://dx.doi.org/10.1109/lics.2017.8005139.
Full textReports on the topic "Metric spaces"
Ganti, Venkatesh, Raghu Ramakrishnan, Johannes Gehrke, Allison Powell, and James French. Clustering Large Datasets in Arbitrary Metric Spaces. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada447010.
Full textClayton, John D., David L. McDowell, and Douglas J. Bammann. Anholonomic Configuration Spaces and Metric Tensors in Finite Elastoplasticity. Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada445112.
Full textMatei, Ion, Christoforos Somarakis, and John S. Baras. A Randomized Gossip Consenus Algorithm on Convex Metric Spaces. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada588967.
Full textRao, C. R. Differential Metrics in Probability Spaces Based on Entropy and Divergence Measures. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada160301.
Full textYu, Weixiang, Gordon Richards, Peter Yoachim, and Christina Peters. A Metric for Differential Chromatic Refraction in the Context of the Legacy Survey of Space and Time. Github.com, 2020. http://dx.doi.org/10.17918/f5dn-8510.
Full textGrunsky, E. C., C. W. Brauhart, S. Hagemann, and B. Dubé. The magmato-hydrothermal space: a new metric for geochemical characterization of ore deposits. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/295662.
Full textPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, September 2021. http://dx.doi.org/10.46337/210930.
Full textDiDomizio, Matthew, and Jonathan Butta. Measurement of Heat Transfer and Fire Damage Patterns on Walls for Fire Model Validation. UL Research Institutes, July 2024. http://dx.doi.org/10.54206/102376/hnkr9109.
Full textBorgwardt, Stefan, Walter Forkel, and Alisa Kovtunova. Finding New Diamonds: Temporal Minimal-World Query Answering over Sparse ABoxes. Technische Universität Dresden, 2019. http://dx.doi.org/10.25368/2023.223.
Full textHausmann, Ricardo, and Bailey Klinger. Structural Transformation in Ecuador. Inter-American Development Bank, April 2010. http://dx.doi.org/10.18235/0008400.
Full text