Academic literature on the topic 'Metric spaces Hausdorff measures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Metric spaces Hausdorff measures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Metric spaces Hausdorff measures"

1

Costea, Ş. "Besov capacity and Hausdorff measures in metric measure spaces." Publicacions Matemàtiques 53 (January 1, 2009): 141–78. http://dx.doi.org/10.5565/publmat_53109_07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karak, Nijjwal, and Pekka Koskela. "Capacities and Hausdorff measures on metric spaces." Revista Matemática Complutense 28, no. 3 (2015): 733–40. http://dx.doi.org/10.1007/s13163-015-0174-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Jang-Mei. "Hausdorff dimension and doubling measures on metric spaces." Proceedings of the American Mathematical Society 126, no. 5 (1998): 1453–59. http://dx.doi.org/10.1090/s0002-9939-98-04317-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Björn, Jana, and Jani Onninen. "Orlicz capacities and Hausdorff measures on metric spaces." Mathematische Zeitschrift 251, no. 1 (2005): 131–46. http://dx.doi.org/10.1007/s00209-005-0792-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Franchi, Bruno, Raul Paolo Serapioni, and Francesco Serra Cassano. "Area formula for centered Hausdorff measures in metric spaces." Nonlinear Analysis 126 (October 2015): 218–33. http://dx.doi.org/10.1016/j.na.2015.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Banaś, Józef, and Antonio Martinón. "Some properties of the Hausdorff distance in metric spaces." Bulletin of the Australian Mathematical Society 42, no. 3 (1990): 511–16. http://dx.doi.org/10.1017/s0004972700028677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Karak, Nijjwal. "Triebel-Lizorkin capacity and hausdorff measure in metric spaces." Mathematica Slovaca 70, no. 3 (2020): 617–24. http://dx.doi.org/10.1515/ms-2017-0376.

Full text
Abstract:
AbstractWe provide a upper bound for Triebel-Lizorkin capacity in metric settings in terms of Hausdorff measure. On the other hand, we also prove that the sets with zero capacity have generalized Hausdorff h-measure zero for a suitable gauge function h.
APA, Harvard, Vancouver, ISO, and other styles
8

Jurina, S., N. MacGregor, A. Mitchell, L. Olsen, and A. Stylianou. "On the Hausdorff and packing measures of typical compact metric spaces." Aequationes mathematicae 92, no. 4 (2018): 709–35. http://dx.doi.org/10.1007/s00010-018-0548-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aïssaoui, Noureddine. "Strongly nonlinear potential theory on metric spaces." Abstract and Applied Analysis 7, no. 7 (2002): 357–74. http://dx.doi.org/10.1155/s1085337502203024.

Full text
Abstract:
We define Orlicz-Sobolev spaces on an arbitrary metric space with a Borel regular outer measure, and we develop a capacity theory based on these spaces. We study basic properties of capacity and several convergence results. We prove that each Orlicz-Sobolev function has a quasi-continuous representative. We give estimates for the capacity of balls when the measure is doubling. Under additional regularity assumption on the measure, we establish some relations between capacity and Hausdorff measures.
APA, Harvard, Vancouver, ISO, and other styles
10

MAULDIN, R. D., T. SZAREK, and M. URBAŃSKI. "Graph directed Markov systems on Hilbert spaces." Mathematical Proceedings of the Cambridge Philosophical Society 147, no. 2 (2009): 455–88. http://dx.doi.org/10.1017/s0305004109002448.

Full text
Abstract:
AbstractWe deal with contracting finite and countably infinite iterated function systems acting on Polish spaces, and we introduce conformal Graph Directed Markov Systems on Polish spaces. Sufficient conditions are provided for the closure of limit sets to be compact, connected, or locally connected. Conformal measures, topological pressure, and Bowen's formula (determining the Hausdorff dimension of limit sets in dynamical terms) are introduced and established. We show that, unlike the Euclidean case, the Hausdorff measure of the limit set of a finite iterated function system may vanish. Inve
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Metric spaces Hausdorff measures"

1

Howroyd, John David. "On the theory of Hausdorff measures in metric spaces." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Palmer, Ian Christian. "Riemannian geometry of compact metric spaces." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34744.

Full text
Abstract:
A construction is given for which the Hausdorff measure and dimension of an arbitrary abstract compact metric space (X, d) can be encoded in a spectral triple. By introducing the concept of resolving sequence of open covers, conditions are given under which the topology, metric, and Hausdorff measure can be recovered from a spectral triple dependent on such a sequence. The construction holds for arbitrary compact metric spaces, generalizing previous results for fractals, as well as the original setting of manifolds, and also holds when Hausdorff and box dimensions differ---in particular, it does n
APA, Harvard, Vancouver, ISO, and other styles
3

Siebert, Kitzeln B. "A modern presentation of "dimension and outer measure"." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1211395297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lopez, Marcos D. "Discrete Approximations of Metric Measure Spaces with Controlled Geometry." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439305529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Suzuki, Kohei. "Convergence of stochastic processes on varying metric spaces." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carlsson, Niclas. "Markov chains on metric spaces : invariant measures and asymptotic behaviour /." Åbo : Åbo akademi university, 2005. http://catalogue.bnf.fr/ark:/12148/cb400328312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kelly, Annela Rämmer. "Weakly analytic vector-valued measures /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9821334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yuan, Zhihui. "Analyse multifractale de mesures faiblement Gibbs aléatoires et de leurs inverses." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD098/document.

Full text
Abstract:
Nous montrons la validité du formalisme multifractal pour les mesures aléatoires faiblement Gibbs portées par l’ attracteur associé à une dynamique aléatoire C¹ codée par un sous-shift de type fini aléatoire, et expansive en moyenne. Nous établissons également des loi de type 0-∞ pour les mesures de Hausdorff et de packing généralisées des ensembles de niveau de la dimension locale, et calculons les dimensions de Hausdorff et de packing des ensembles de points en lesquels la dimension inférieure locale et la dimension supérieure locale sont prescrites. Lorsque l’attracteur est un ensemble de C
APA, Harvard, Vancouver, ISO, and other styles
9

Sénizergues, Delphin. "Structures arborescentes aléatoires : recollements d’espaces métriques et graphes stables." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCD013.

Full text
Abstract:
Le thème central de cette thèse est l'étude d'espaces métriques aléatoires dont la structure est apparentée à celle d'un arbre. On étudie d'abord une façon aléatoire de recoller une suite d'espaces métriques itérativement, en attachant à chaque étape de la procédure un nouveau bloc sur la structure construite jusque là. Sous certaines conditions sur les blocs que l'on agglomère, on calcule la dimension de Hausdorff de la structure obtenue et son expression est surprenante ! On s'intéresse ensuite à certaines propriétés asymptotiques (degrés, hauteur, profil) de deux modèles d'arbres discrets c
APA, Harvard, Vancouver, ISO, and other styles
10

Bettinelli, Jérémie. "Limite d'échelle de cartes aléatoires en genre quelconque." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00638065.

Full text
Abstract:
Au cours de ce travail, nous nous intéressons aux limites d'échelle de deux classes de cartes. Dans un premier temps, nous regardons les quadrangulations biparties de genre strictement positif g fixé et, dans un second temps, les quadrangulations planaires à bord dont la longueur du bord est de l'ordre de la racine carrée du nombre de faces. Nous voyons ces objets comme des espaces métriques, en munissant leurs ensembles de sommets de la distance de graphe, convenablement renormalisée. Nous montrons qu'une carte prise uniformément parmi les cartes ayant n faces dans l'une de ces deux classes t
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Metric spaces Hausdorff measures"

1

Probability measures on metric spaces. AMS Chelsea Pub., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ecole d'été de probabilités de Saint-Flour (35th : 2005), ed. Probability and real trees: École d'Été de Probabilités de Saint-Flour XXXV-2005. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bernik, V. I. Metric diophantine approximation on manifolds. Cambridge University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1951-, Domínguez Benavides T., and López Acedo G. 1956-, eds. Measures of noncompactness in metric fixed point theory. Birkhäuser Verlag, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carlsson, Niclas. Markov chains on metric spaces: Invariant measures and asymptotic behaviour. Åbo Akademi University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Billingsley, Patrick. Convergence of Probability Measures. 2nd ed. Wiley-Interscience, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nicola, Gigli, Savaré Giuseppe, Struwe Michael 1955-, and SpringerLink (Online service), eds. Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Birkhäuser Basel, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ambrosio, Luigi. Gradient flows: In metric spaces and in the space of probability measures. Birkhauser, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nicola, Gigli, and Savaré Giuseppe, eds. Gradient flows: In metric spaces and in the space of probability measures. Birkhäuser, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Metric In Measure Spaces. World Scientific Pub Co Inc, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Metric spaces Hausdorff measures"

1

Filter, W., and K. Weber. "Measures on Hausdorff spaces." In Integration Theory. Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-3194-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bourbaki, Nicolas. "Measures on Hausdorff topological spaces." In Integration II. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07931-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pachl, Jan. "Measures on Complete Metric Spaces." In Uniform Spaces and Measures. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5058-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Zenghu. "Random Measures on Metric Spaces." In Probability and Its Applications. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15004-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Simovici, Dan A., and Chabane Djeraba. "Metric Spaces Topologies and Measures." In Advanced Information and Knowledge Processing. Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6407-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Simovici, Dan A., and Chabane Djeraba. "Topologies and Measures on Metric Spaces." In Advanced Information and Knowledge Processing. Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-201-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dudley, R. M. "Measures on Non-Separable Metric Spaces." In Selected Works of R.M. Dudley. Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5821-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mosco, Umberto. "Self-Similar Measures in Quasi-Metric Spaces." In Recent Trends in Nonlinear Analysis. Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8411-2_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhattacharya, Rabi, and Edward C. Waymire. "Weak Convergence of Probability Measures on Metric Spaces." In A Basic Course in Probability Theory. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47974-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dudley, R. M. "Weak Convergence of Probabilities on Nonseparable Metric Spaces and Empirical Measures on Euclidean Spaces." In Selected Works of R.M. Dudley. Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5821-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Metric spaces Hausdorff measures"

1

Shan Cao. "Regularity of fuzzy measures on complete and separable metric spaces." In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2015. http://dx.doi.org/10.1109/fskd.2015.7381934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Phiangsungnoen, Supak. "Some New Fuzzy Fixed Point Theorems for Fuzzy Contractive Mappings in Hausdorff Fuzzy Metric Spaces." In 2018 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). IEEE, 2018. http://dx.doi.org/10.1109/iccairo.2018.00034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McWherter, David, Mitchell Peabody, William C. Regli, and Ali Shokoufandeh. "Transformation Invariant Shape Similarity Comparison of Solid Models." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/dfm-21191.

Full text
Abstract:
Abstract This paper presents two complementary approaches to comparing the shape and topology of solid models. First, we develop a mapping of solid models to Model Signature Graphs (MSGs) — labeled, undirected graphs that abstract the boundary representation of the model and capture relevant shape and engineering attributes. Model Signature Graphs are then used to define metric spaces over arbitrary sets of solid models. This paper introduces two such metric spaces: first, a mapping of MSGs to a high-dimension vector space where euclidean distance measures are applied; second, a distance compu
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!