Dissertations / Theses on the topic 'Metric spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Metric spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Razafindrakoto, Ando Desire. "Hyperconvex metric spaces." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4106.
Full textENGLISH ABSTRACT: One of the early results that we encounter in Analysis is that every metric space admits a completion, that is a complete metric space in which it can be densely embedded. We present in this work a new construction which appears to be more general and yet has nice properties. These spaces subsequently called hyperconvex spaces allow one to extend nonexpansive mappings, that is mappings that do not increase distances, disregarding the properties of the spaces in which they are defined. In particular, theorems of Hahn-Banach type can be deduced for normed spaces and some subsidiary results such as fixed point theorems can be observed. Our main purpose is to look at the structures of this new type of “completion”. We will see in particular that the class of hyperconvex spaces is as large as that of complete metric spaces.
AFRIKAANSE OPSOMMING: Een van die eerste resultate wat in die Analise teegekom word is dat enige metriese ruimte ’n vervollediging het, oftewel dat daar ’n volledige metriese ruimte bestaan waarin die betrokke metriese ruimte dig bevat word. In hierdie werkstuk beskryf ons sogenaamde hiperkonvekse ruimtes. Dit gee ’n konstruksie wat blyk om meer algemeen te wees, maar steeds gunstige eienskappe het. Hiermee kan nie-uitbreidende, oftewel afbeeldings wat nie afstande rek nie, uitgebrei word sodanig dat die eienskappe van die ruimte waarop dit gedefinieer is nie ’n rol speel nie. In die besonder kan stellings van die Hahn- Banach-tipe afgelei word vir genormeerde ruimtes en sekere addisionele ressultate ondere vastepuntstellings kan bewys word. Ons hoofdoel is om hiperkonvekse ruimtes te ondersoek. In die besonder toon ons aan dat die klas van alle hiperkonvekse ruimtes net so groot soos die klas van alle metriese ruimtes is.
Al-Harbi, Sami. "Clustering in metric spaces." Thesis, University of East Anglia, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396604.
Full textLemaire-Beaucage, Jonathan. "Voronoi Diagrams in Metric Spaces." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20736.
Full textFärm, David. "Upper gradients and Sobolev spaces on metric spaces." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5816.
Full textThe Laplace equation and the related p-Laplace equation are closely associated with Sobolev spaces. During the last 15 years people have been exploring the possibility of solving partial differential equations in general metric spaces by generalizing the concept of Sobolev spaces. One such generalization is the Newtonian space where one uses upper gradients to compensate for the lack of a derivative.
All papers on this topic are written for an audience of fellow researchers and people with graduate level mathematical skills. In this thesis we give an introduction to the Newtonian spaces accessible also for senior undergraduate students with only basic knowledge of functional analysis. We also give an introduction to the tools needed to deal with the Newtonian spaces. This includes measure theory and curves in general metric spaces.
Many of the properties of ordinary Sobolev spaces also apply in the generalized setting of the Newtonian spaces. This thesis includes proofs of the fact that the Newtonian spaces are Banach spaces and that under mild additional assumptions Lipschitz functions are dense there. To make them more accessible, the proofs have been extended with comments and details previously omitted. Examples are given to illustrate new concepts.
This thesis also includes my own result on the capacity associated with Newtonian spaces. This is the theorem that if a set has p-capacity zero, then the capacity of that set is zero for all smaller values of p.
Lee, Seunghwan Han. "Probabilistic reasoning on metric spaces." [Bloomington, Ind.] : Indiana University, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3380096.
Full textTitle from PDF t.p. (viewed on Jul 19, 2010). Source: Dissertation Abstracts International, Volume: 70-12, Section: B, page: 7604. Adviser: Lawrence S. Moss.
Otafudu, Olivier Olela. "Convexity in quasi-metric spaces." Doctoral thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/10950.
Full textIncludes bibliographical references.
The principal aim of this thesis is to investigate the existence of an injective hull in the categories of T-quasi-metric spaces and of T-ultra-quasi-metric spaces with nonexpansive maps.
Calisti, Matteo. "Differential calculus in metric measure spaces." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21781/.
Full textAmato, Giuseppe. "Approximate similarity search in metric spaces." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964997347.
Full textPalmer, Ian Christian. "Riemannian geometry of compact metric spaces." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34744.
Full textKilbane, James. "Finite metric subsets of Banach spaces." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288272.
Full textGuadagni, Clara. "Bornological convergences on local proximity spaces and ωµ −metric spaces." Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1929.
Full textThe main topics of this thesis are local proximity spaces jointly with some bornological convergences naturally related to them, and ωµ −metric spaces, in particular those which are Atsuji spaces (or UC spaces), jointly with their hyperstructures. Local proximities spaces carry with them two particular features: proximity [48] and boundedness [37], [40]. Proximities allow us to deal with a concept of nearness even though not providing a metric. Proximity spaces are located between topological and metric spaces. Boundedness is a natural generalization of the metric boundedness. When trying to refer macroscopic phenomena to local structures, local proximity spaces appear as a very attractive option. For that, jointly with Prof. A. Di Concilio, in a first step we displayed a uniform procedure as an exhaustive method of generating all local proximity spaces starting from unform spaces and suitable bornologies. After that, we looked at suitable topologies for the hyperspace of a local proximity space. In contrast with the proximity case, in which there is no canonical way of equipping the hyperspaces with a uniformity, the same with a proximity, the local proximity case is simpler. Apparently, at the beginning, we have three natural different ways to topologize the hyperspace CL(X) of all closed non-empty subsets of X: we can think at a local Fell hypertopology or a kind of hit and far-miss topology or also a particular uniform bornological topology. We proved that they match. In the light of the previous local proximity results, we looked for necessary and sufficient conditions of uniform nature for two different uniform bornological convergences to match. This led us to focus on a special class of uniformities: those with a linearly ordered base. They are connected with an interesting generalization of metric spaces, ωµ −metric spaces. These spaces are endowed with special distances valued in ordered abelian additive groups. Furthermore, in relation with ωµ−metric spaces, we looked at generalizations of well known hyperspace convergences, as Hausdorff and Kuratowski convergences obtaining analogue results with respect to the standard case, [28]. Finally, we dealt with Atsuji spaces.We were interested in the problem of constructing a dense extension Y of a given topological space X, which is Atsuji and in which X is topologically embedded. When such an extension there exists, we say that the space X is Atsuji extendable. Atsuji spaces play an important role above all because they allow us to deal with a very nice structure when we concentrate on the most significant part of the space, that is the derived set. Moreover, we know that each continuous function between metric or uniform spaces is uniformly continuous on compact sets. It is possible to have an analogous property on a larger class of topological spaces, Atsuji spaces. They are situated between complete metric spaces and compact ones. We proved a necessary and sufficient condition for a metrizable spaceX to be Atsuji extendable.Moreover we looked at conditions under which a continuous function f X R can be continuously extended to the Atsuji extension Y of X. UC metric spaces admit a very long list of equivalent formulations. We extended many of these to the class of ωµ−metric spaces. The results are contained in [29]. Finally it is presented the idea about the work done jointly with Professor J.F. Peters ( University of Manitoba , Canada). Our research involved the study of more general proximities leading to a kind of strong farness, [52]. Strong proximities are associated with Lodato proximities and the Efremoviˇc property.We say that A and B are −strongly far, where is a Lodato proximity, and we write ~ if and only if A ~ B and there exists a subset C of X such that A ~ X C and C ~ B, that is the Efremoviˇc property holds on A and B. Related to this idea we defined also a new concept of strong nearness, [53]. Starting by these new kinds of proximities we introduced also new kinds of hit-and-miss hypertopologies, concepts of strongly proximal continuity and strong connectedness. Finally we looked at some applicaii tions that in our opinion might reveal interesting.
XII n.s.
Farnana, Zohra. "The Double Obstacle Problem on Metric Spaces." Licentiate thesis, Linköping : Linköpings universitet, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10621.
Full textPersson, Nicklas. "Shortest paths and geodesics in metric spaces." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-66732.
Full textStares, Ian S. "Extension of functions and generalised metric spaces." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386678.
Full textFarnana, Zohra. "The Double Obstacle Problem on Metric Spaces." Doctoral thesis, Linköpings universitet, Tillämpad matematik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-51588.
Full textEriksson-Bique, Sylvester David. "Quantitative Embeddability and Connectivity in Metric Spaces." Thesis, New York University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10261097.
Full textThis thesis studies three analytic and quantitative questions on doubling metric (measure) spaces. These results are largely independent and will be presented in separate chapters.
The first question concerns representing metric spaces arising from complete Riemannian manifolds in Euclidean space. More precisely, we find bi-Lipschitz embeddings ƒ for subsets A of complete Riemannian manifolds M of dimension n, where N could depend on a bound on the curvature and diameter of A. The main difficulty here is to control the distortion of such embeddings in terms of the curvature of the manifold. In constructing the embeddings, we will study the collapsing theory of manifolds in detail and at multiple scales. Similar techniques give embeddings for subsets of complete Riemannian orbifolds and quotient metric spaces.
The second part of the thesis answers a question about finding quantitative and weak conditions that ensure large families of rectifiable curves connecting pairs of points. These families of rectifiable curves are quantified in terms of Poincaré inequalities. We identify a new quantitative connectivity condition in terms of curve fragments, which is equivalent to possessing a Poincaré inequality with some exponent. The connectivity condition arises naturally in three different contexts, and we present methods to find Poincaré inequalities for the spaces involved. In particular, we prove such inequalities for spaces with weak curvature bounds and thus resolve a question of Tapio Rajala.
In the final part of the thesis we study the local geometry of spaces admitting differentiation of Lipschitz functions with certain Banach space targets. The main result shows that such spaces can be characterized in terms of Poincaré inequalities and doubling conditions. In fact, such spaces can be covered by countably many pieces, each of which is an isometric subset of a doubling metric measure space admitting a Poincaré inequality. In proving this, we will find a new way to use hyperbolic fillings to enlarge certain sub-sets into spaces admitting Poincaré inequalities.
Bellachehab, Anass. "Pairwise gossip in CAT(k) metric spaces." Thesis, Evry, Institut national des télécommunications, 2017. http://www.theses.fr/2017TELE0017/document.
Full textThis thesis deals with the problem of consensus on networks. Networks under study consists of identical agents that can communicate with each other, have memory and computational capacity. The network has no central node. Each agent stores a value that, initially, is not known by other agents. The goal is to achieve consensus, i.e. all agents having the same value, in a fully distributed way. Hence, only neighboring agents can have direct communication. This problem has a long and fruitful history. If all values belong to some vector space, several protocols are known to solve this problem. A well-known solution is the pairwise gossip protocol that achieves consensus asymptotically. It is an iterative protocol that consists in choosing two adjacent nodes at each iteration and average them. The specificity of this Ph.D. thesis lies in the fact that the data stored by the agents does not necessarily belong to a vector space, but some metric space. For instance, each agent stores a direction (the metric space is the projective space) or position on a sphere (the metric space is a sphere) or even a position on a metric graph (the metric space is the underlying graph). Then the mentioned pairwise gossip protocols makes no sense since averaging implies additions and multiplications that are not available in metric spaces: what is the average of two directions, for instance? However, in metric spaces midpoints sometimes make sense and when they do, they can advantageously replace averages. In this work, we realized that, if one wants midpoints to converge, curvature matters. We focused on the case where the data space belongs to some special class of metric spaces called CAT(k) spaces. And we were able to show that, provided initial data is "close enough" is some precise meaning, midpoints-based gossip algorithm – that we refer to as Random Pairwise Midpoints - does converge to consensus asymptotically. Our generalization allows to treat new cases of data spaces such as positive definite matrices, the rotations group and metamorphic systems
Bellachehab, Anass. "Pairwise gossip in CAT(k) metric spaces." Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2017. http://www.theses.fr/2017TELE0017.
Full textThis thesis deals with the problem of consensus on networks. Networks under study consists of identical agents that can communicate with each other, have memory and computational capacity. The network has no central node. Each agent stores a value that, initially, is not known by other agents. The goal is to achieve consensus, i.e. all agents having the same value, in a fully distributed way. Hence, only neighboring agents can have direct communication. This problem has a long and fruitful history. If all values belong to some vector space, several protocols are known to solve this problem. A well-known solution is the pairwise gossip protocol that achieves consensus asymptotically. It is an iterative protocol that consists in choosing two adjacent nodes at each iteration and average them. The specificity of this Ph.D. thesis lies in the fact that the data stored by the agents does not necessarily belong to a vector space, but some metric space. For instance, each agent stores a direction (the metric space is the projective space) or position on a sphere (the metric space is a sphere) or even a position on a metric graph (the metric space is the underlying graph). Then the mentioned pairwise gossip protocols makes no sense since averaging implies additions and multiplications that are not available in metric spaces: what is the average of two directions, for instance? However, in metric spaces midpoints sometimes make sense and when they do, they can advantageously replace averages. In this work, we realized that, if one wants midpoints to converge, curvature matters. We focused on the case where the data space belongs to some special class of metric spaces called CAT(k) spaces. And we were able to show that, provided initial data is "close enough" is some precise meaning, midpoints-based gossip algorithm – that we refer to as Random Pairwise Midpoints - does converge to consensus asymptotically. Our generalization allows to treat new cases of data spaces such as positive definite matrices, the rotations group and metamorphic systems
CAMFIELD, CHRISTOPHER SCOTT. "Comparison of BV Norms in Weighted Euclidean Spaces and Metric Measure Spaces." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1211551579.
Full textElkins, Benjamin Joseph. "An investigation of ultrametric spaces." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/28863.
Full textPaulik, Gustav. "Gluing spaces and analysis." Bonn : Mathematisches Institut der Universität, 2005. http://catalog.hathitrust.org/api/volumes/oclc/62770010.html.
Full textCelik, Cengiz. "New approaches to similarity searching in metric spaces." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3454.
Full textThesis research directed by: Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Lesser, Alice. "Optimal and Hereditarily Optimal Realizations of Metric Spaces." Doctoral thesis, Uppsala University, Department of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8297.
Full textThis PhD thesis, consisting of an introduction, four papers, and some supplementary results, studies the problem of finding an optimal realization of a given finite metric space: a weighted graph which preserves the metric's distances and has minimal total edge weight. This problem is known to be NP-hard, and solutions are not necessarily unique.
It has been conjectured that extremally weighted optimal realizations may be found as subgraphs of the hereditarily optimal realization Γd, a graph which in general has a higher total edge weight than the optimal realization but has the advantages of being unique, and possible to construct explicitly via the tight span of the metric.
In Paper I, we prove that the graph Γd is equivalent to the 1-skeleton of the tight span precisely when the metric considered is totally split-decomposable. For the subset of totally split-decomposable metrics known as consistent metrics this implies that Γd is isomorphic to the easily constructed Buneman graph.
In Paper II, we show that for any metric on at most five points, any optimal realization can be found as a subgraph of Γd.
In Paper III we provide a series of counterexamples; metrics for which there exist extremally weighted optimal realizations which are not subgraphs of Γd. However, for these examples there also exists at least one optimal realization which is a subgraph.
Finally, Paper IV examines a weakened conjecture suggested by the above counterexamples: can we always find some optimal realization as a subgraph in Γd? Defining extremal optimal realizations as those having the maximum possible number of shortest paths, we prove that any embedding of the vertices of an extremal optimal realization into Γd is injective. Moreover, we prove that this weakened conjecture holds for the subset of consistent metrics which have a 2-dimensional tight span
Suzuki, Kohei. "Convergence of stochastic processes on varying metric spaces." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215281.
Full textShchur, Vladimir. "Quasi-isometries between hyperbolic metric spaces, quantitative aspects." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00867709.
Full textPutwain, Rosemary Johanna. "Partial translation algebras for certain discrete metric spaces." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/170227/.
Full textMushaandja, Zechariah. "A quasi-pseudometrizability problem for ordered metric spaces." Doctoral thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/4914.
Full textIncludes bibliographical references (leaves 83-88).
In this dissertation we obtain several results in the setting of ordered topological spaces related to the Hanai-Morita-Stone Theorem. The latter says that if f is a closed continuous map of a metric space X onto a topological space Y then the following statements are equivalent: (i) Y satisfies the first countability axiom; (ii) For each y 2 Y, f−1{y} has a compact boundary in X; (iii) Y is metrizable. A partial analogue of the above theorem for ordered topological spaces is herein obtained.
Agyingi, Collins Amburo. "Hyperconvex hulls in catergories of quasi-metric spaces." Doctoral thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/12708.
Full textIsbell showed that every metric space has an injective hull, that is, every metric space has a “minimal” hyperconvex metric superspace. Dress then showed that the hyperconvex hull is a tight extension. In analogy to Isbell’s theory Kemajou et al. proved that each T₀-quasi-metric space X has a q-hyperconvex hull QX , which is joincompact if X is joincompact. They called a T₀-quasi-metric space q-hyperconvex if and only if it is injective in the category of T₀-quasi-metric spaces and non-expansive maps. Agyingi et al. generalized results due to Dress on tight extensions of metric spaces to the category of T₀-quasi-metric spaces and non-expansive maps. In this dissertation, we shall study tight extensions (called uq-tight extensions in the following) in the categories of T₀-quasi-metric spaces and T₀-ultra-quasimetric spaces. We show in particular that most of the results stay the same as we move from T₀-quasi-metric spaces to T₀-ultra-quasi-metric spaces. We shall show that these extensions are maximal among the uq-tight extensions of the space in question. In the second part of the dissertation we shall study the q-hyperconvex hull by viewing it as a space of minimal function pairs. We will also consider supseparability of the space of minimal function pairs. Furthermore we study a special subcollection of bicomplete supseparable quasi-metric spaces: bicomplete supseparable ultra-quasi-metric spaces. We will show the existence and uniqueness (up to isometry) of a Urysohn Γ-ultra-quasi-metric space, for an arbitrary countable set Γ of non-negative real numbers including 0.
Haihambo, Paulus. "Hyperconvexity and endpoints in T₀-quasi-metric spaces." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/6617.
Full textBirch, Thomas. "Algorithmic randomness on computable metric spaces and hyperspaces." Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/22093.
Full textLi, Xining. "Preservation of bounded geometry under transformations metric spaces." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439309722.
Full textBabus, Octavian Vladut. "Generalised distributivity and the logic of metric spaces." Thesis, University of Leicester, 2016. http://hdl.handle.net/2381/37701.
Full textCapolli, Marco. "Selected Topics in Analysis in Metric Measure Spaces." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/288526.
Full textCapolli, Marco. "Selected Topics in Analysis in Metric Measure Spaces." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/288526.
Full textPALMISANO, Vincenzo. "Topics in calculus and geometry on metric spaces." Doctoral thesis, Università degli Studi di Palermo, 2022. https://hdl.handle.net/10447/554772.
Full textRuth, Harry Leonard Jr. "Conformal densities and deformations of uniform loewner metric spaces." Cincinnati, Ohio : University of Cincinnati, 2008. http://www.ohiolink.edu/etd/view.cgi?ucin1210203872.
Full textCommittee/Advisors: David Herron PhD (Committee Chair), David Minda PhD (Committee Member), Nageswari Shanmugalingam PhD (Committee Member). Title from electronic thesis title page (viewed Sep.3, 2008). Keywords: conformal density; uniform spaces; Loewner; quasisymmetry; quasiconofrmal. Includes abstract. Includes bibliographical references.
Howroyd, John David. "On the theory of Hausdorff measures in metric spaces." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283290.
Full textRUTH, HARRY LEONARD JR. "Conformal Densities and Deformations of Uniform Loewner Metric Spaces." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1210203872.
Full textLopez, Marcos D. "Discrete Approximations of Metric Measure Spaces with Controlled Geometry." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439305529.
Full textMiñana, Prats Juan José. "Fuzzy metric spaces and applications to perceptual colour-differences." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/50612.
Full text[ES] La matemática fuzzy ha constituido un amplio campo en la investigación, desde que en 1965 L. A. Zadeh introdujo el concepto de conjunto fuzzy. En particular, la construcción de una teoría satisfactoria de espacios métricos fuzzy ha sido un problema investigado por muchos autores. En 1994, George y Veeramani introdujeron y estudiaron una noción de espacio métrico fuzzy que constituía una modificación de la anteriormente dada por Kramosil y Michalek. Muchos autores han contribuido al estudio de este tipo de métricas fuzzy, desde el punto de vista matemático y de sus aplicaciones. En esta tesis hemos contribuido al desarrollo del estudio de estas métricas fuzzy, desde el punto de vista matemático, y hemos abordado el problema de la medida de la diferencia perceptual de color utilizando una de estas métricas. Las contribuciones que aportamos en esta tesis a dicho estudio, se resumen a continuación: \begin{enumerate} \item[(i)] Hemos hecho un estudio detallado del espacio métrico fuzzy $(X,M,\cdot)$ donde $M$ está dada sobre $[0,\infty[$ por la expresión $M(x,y,t)=\frac{\min\{x,y\}+t}{\max\{x,y\}+t}$ y de otros espacios métricos fuzzy relacionados con el. Como consecuencia de este estudio hemos introducido cinco cuestiones en la teoría de las métricas fuzzy relacionadas con continuidad, extensión, contractividad y completación. \item[(ii)] Hemos respondido a una cuestión abierta construyendo un espacio métrico fuzzy $(X,M,\ast)$ en el cual la asignación $f(t)=\lim_n M(a_n,b_n,t)$, donde $\{a_n\}$ y $\{b_n\}$ son sucesiones $M$-Cauchy, no es una función continua sobre $t$. La respuesta a esta cuestión nos ha permitido caracterizar la clase de los espacios métricos fuzzy strong completables. \item[(iii)] Hemos introducido y estudiado un concepto más fuerte que el de convergencia de sucesiones en espacios métricos fuzzy, al que hemos llamado $s$-convergencia. En nuestro estudio hemos conseguido una caracterización de aquellos espacios métricos fuzzy en los cuales toda sucesión convergente es $s$-convergente y hemos dado una clasificación de los espacios métricos fuzzy atendiendo a su comportamiento con respecto a los diferentes tipos de convergencia que se da en él. \item[(iv)] Hemos estudiado, en el contexto de los espacios métricos fuzzy, cuando ciertas familias de bolas abiertas centradas en un punto son base local de este punto. \item[(v)] Hemos respondido a dos cuestiones abiertas relacionadas con la convergencia standard, un concepto más fuerte que el de convergencia de sucesiones en espacios métricos fuzzy, introducido de forma natural a partir del concepto de sucesión de Cauchy standard (introducido en \cite{adomain}). Estas respuestas nos han llevado a establecer unas condiciones bajo las cuales un concepto relacionado con el concepto de sucesión de Cauchy y un concepto relacionado con el de convergencia deberían satisfacer para ser consideradas \textsl{compatibles}. \item[(vi)] Como aplicación práctica, hemos mostrado que una cierta métrica fuzzy es útil para medir diferencia perceptual de color entre muestras de color. \end{enumerate}
[CAT] La matemàtica fuzzy ha constituït un ampli camp en la investigació, des que el 1965 L. A. Zadeh va introduir el concepte de conjunt fuzzy. En particular, la construcció d'una teoria satisfactòria d'espais mètrics fuzzy ha estat un problema investigat per molts autors. El 1994, George i Veeramani introduiren i estudiaren una noció d'espai mètric fuzzy que constituïa una modificació de la donada per Kramosil i Michalek anteriorment. Molts autors han contribuït a l'estudi d'aquest tipus de mètriques fuzzy, des del punt de vista matemàtic i de les seves aplicacions. En aquesta tesi hem contribuït al desenvolupament de l'estudi d'aquestes mètriques fuzzy, des del punt de vista matemàtic, i hem abordat el problema de la mesura de la diferència perceptiva de color utilitzant aquestes mètriques. Les contribucions que aportem en aquesta tesi a tal estudi es resumeixen a continuació: \begin{enumerate} \item[(i)] Hem fet un estudi detallat de l'espai mètric fuzzy $(X,M,\cdot)$ on $M$ està donada sobre $[0,\infty[$ per l'expressió $M(x,y,t)=\frac{\min\{x,y\}+t}{\max\{x,y\}+t}$ i d'altres espais mètrics fuzzy relacionats amb ell. Com a conseqüència d'aquest estudi hem introduït cinc qüestions en la teoria de les mètriques fuzzy relacionades amb continuïtat, extensió, contractividad i completació. \item[(ii)] Hem respost a una qüestió oberta construint un espai mètric fuzzy $ (X, M, \ast) $ en el qual l'assignació $ f (t) = \lim_n M (a_n, b_n, t) $, on $ \{a_n\} $ i $ \{b_n \} $ són successions $ M $-Cauchy, no és una funció contínua sobre $ t $. La resposta a aquesta qüestió ens ha permès caracteritzar la classe dels espais mètrics fuzzy strong completables. \item[(iii)] Hem introduït i estudiat un concepte més fort que el de convergència de successions en espais mètrics fuzzy, al qual hem anomenat $ s $-Convergència. En el nostre estudi hem aconseguit una caracterització d'aquells espais mètrics fuzzy en els quals tota successió convergent és $ s $-convergente i hem donat una classificació dels espais mètrics fuzzy atenent al seu comportament respecte als diferents tipus de convergència que es dóna en ell. \item[(iv)] Hem estudiat, en el context dels espais mètrics fuzzy, quan certes famílies de boles obertes centrades en un punt són base local d'aquest punt. \item[(v)] Hem respost a dues qüestions obertes relacionades amb la convergència estàndard, un concepte més fort que el de convergència de successions en espais mètrics fuzzy, introduït de forma natural a partir del concepte de successió de Cauchy estàndard (introduït en \cite{adomain}). Aquestes respostes ens han portat a establir unes condicions sota les quals un concepte relacionat amb el concepte de successió de Cauchy i un concepte relacionat amb el de convergència haurien de satisfer per a ser considerats \textsl{compatibles}. \item[(vi)] Com a aplicació pràctica, hem mostrat que una certa mètrica fuzzy és útil per mesurar la diferència perceptiva de color entre mostres de color. \end{enumerate}
Miñana Prats, JJ. (2015). Fuzzy metric spaces and applications to perceptual colour-differences [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/50612
TESIS
Ribeiro, porto ferreira Monica. "Optimizing similarity queries in metric spaces meeting user's expectation." Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS040/document.
Full textThe complexity of data stored in large databases has increased at very fast paces. Hence, operations more elaborated than traditional queries are essential in order to extract all required information from the database. Therefore, the interest of the database community in similarity search has increased significantly. Two of the well-known types of similarity search are the Range (Rq) and the k-Nearest Neighbor (kNNq) queries, which, as any of the traditional ones, can be sped up by indexing structures of the Database Management System (DBMS). Another way of speeding up queries is to perform query optimization. In this process, metrics about data are collected and employed to adjust the parameters of the search algorithms in each query execution. However, although the integration of similarity search into DBMS has begun to be deeply studied more recently, the query optimization has been developed and employed just to answer traditional queries.The execution of similarity queries, even using efficient indexing structures, tends to present higher computational cost than the execution of traditional ones. Two strategies can be applied to speed up the execution of any query, and thus they are worth to employ to answer also similarity queries. The first strategy is query rewriting based on algebraic properties and cost functions. The second technique is when external query factors are applied, such as employing the semantic expected by the user, to prune the answer space. This thesis aims at contributing to the development of novel techniques to improve the similarity-based query optimization processing, exploiting both algebraic properties and semantic restrictions as query refinements
A complexidade dos dados armazenados em grandes bases de dados tem aumentadosempre, criando a necessidade de novas operaoes de consulta. Uma classe de operações de crescente interesse são as consultas por similaridade, das quais as mais conhecidas sãoas consultas por abrangência (Rq) e por k-vizinhos mais próximos (kNNq). Qualquerconsulta é agilizada pelas estruturas de indexaçãodos Sistemas de Gerenciamento deBases de Dados (SGBDs). Outro modo de agilizar as operações de busca é a manutençãode métricas sobre os dados, que são utilizadas para ajustar parâmetros dos algoritmos debusca em cada consulta, num processo conhecido como otimização de consultas. Comoas buscas por similaridade começaram a ser estudadas seriamente para integração emSGBDs muito mais recentemente do que as buscas tradicionais, a otimização de consultas,por enquanto, é um recurso que tem sido utilizado para responder apenas a consultastradicionais.Mesmo utilizando as melhores estruturas existentes, a execução de consultas por similaridadetende a ser mais custosa do que as operações tradicionais. Assim, duas estratégiaspodem ser utilizadas para agilizar a execução de qualquer consulta e, assim, podem serempregadas também para responder às consultas por similaridade. A primeira estratégiaé a reescrita de consultas baseada em propriedades algébricas e em funções de custo. Asegunda técnica faz uso de fatores externos à consulta, tais como a semântica esperadapelo usuário, para restringir o espaço das respostas. Esta tese pretende contribuir parao desenvolvimento de técnicas que melhorem o processo de otimização de consultas porsimilaridade, explorando propriedades algébricas e restrições semânticas como refinamentode consultas
Guidi, Chiara <1991>. "Harnack inequality in doubling quasi metric spaces and applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amsdottorato.unibo.it/8959/1/Guidi_Chiara_tesi.pdf.
Full textVedovato, Mattia. "Some variational and geometric problems on metric measure spaces." Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/337379.
Full textSarkar, Koushik. "Topology of different metric spaces and fixed point theories." Thesis, University of North Bengal, 2021. http://ir.nbu.ac.in/handle/123456789/4235.
Full textSarkar, Koushik. "Topology of different metric spaces and fixed point theories." Thesis, University of North Bengal, 2021. http://ir.nbu.ac.in/handle/123456789/4380.
Full textShao, Chuang Gao Su. "Urysohn ultrametric spaces and isometry groups." [Denton, Tex.] : University of North Texas, 2009. http://digital.library.unt.edu/permalink/meta-dc-9918.
Full textCastro, Company Francisco. "Fuzzy Quasi-Metric Spaces: Bicompletion, Contractions on Product Spaces, and Applications to Access Predictions." Doctoral thesis, Universitat Politècnica de València, 2010. http://hdl.handle.net/10251/8420.
Full textCastro Company, F. (2010). Fuzzy Quasi-Metric Spaces: Bicompletion, Contractions on Product Spaces, and Applications to Access Predictions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8420
Palancia
Chang, Cheng. "The Relative Complexity of Various Classification Problems among Compact Metric Spaces." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849626/.
Full textFreeman, Jeannette Broad. "Hyperspace Topologies." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc2902/.
Full textGhallab, Yasmine. "Ekeland's variational principle and some of its applications." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63945.
Full text