Dissertations / Theses on the topic 'Micro composite'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Micro composite.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
CHEN, LI. "A BIOINSPIRED MICRO-COMPOSITE STRUCTURE." Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1118471877.
Full textPeditto, Francesca Priola Aldo Gérard Jean-François. "Photopolymerized micro-and nano-composites interface chemistry and its role on interfacial adhesion /." Villeurbanne : Doc'INSA, 2005. http://docinsa.insa-lyon.fr/these/pont.php?id=peditto.
Full textPeng, Suili. "Nano/micro particle-based functional composites and applications /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?NSNT%202007%20PENG.
Full textBailey, Stephen Peter. "Design, fabrication and characterisation of functional cement-composite micro-devices." Thesis, Birkbeck (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401238.
Full textZhao, Hang. "Comportement multifonctionnel des composites comportant des nano/micro renforts." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLC020/document.
Full textDue to the outstanding mechanical electrical and thermal properties, carbon nanotubes (CNTs) received worldwide attentions and intensive investigations in last decades. CNTs are greatly potential in applications such as energy storage and microelectronics. The one dimensional structure, high aspect ratio and low density, promote CNTs serving as the excellent fillers in composites field. However, due to the strong interactions, CNTs are usually difficult to be dispersed and aligned in a polymer matrix. Designing the CNTs construction reasonably is an effective way to ameliorate the dispersion states of CNTs in matrix. These specific hybrid constructions allowed CNTs arrays synthesized vertically onto the substrates through catalyst chemical vapor deposition method. These CNT arrays effectively overcome the problem of CNTs aggregation and promote the interconnection among CNTs, leading to a considerable improvement of multi-functional properties of composites. Graphite nanoplatelets (GNPs) served as substrate make their synthesizing products-GNP-CNTs hybrids (GCHs) possess distinct merits of all-carbon composition, totally-conductive coupling structure and the low intrinsic density. These GCHs constructions provide a great improvement in the dielectric and electrical properties of composites. However, the relationship between GCHs organization and synthesizing conditions during CVD process and the influence of the addition of GCHs to internal conductive networks have not been reported in detail. These mentioned issues will be investigated and discussed in this thesis, which is divided into four chapters:The first chapter makes a general review of the structure, properties, application and synthesis of CNTs and GNP substrates, and the main procedures of fabricating composites and surface functionalization of CNTs. Moreover, a short introduction of the development of micro-nano hybrids applied to the functional composites is made. Most importantly, the developing electrical states and (di) electrical characteristics of composites with ever-increasing conducting filler loading are reviewed in detail at the last part.The second chapter discusses firstly the synthesis process through the CCVD approach and the relationship between CVD parameters and the corresponding construction of GCHs, where the temperature, gas composition and reaction time were controlled. The constructions CNT arrays are dependent on the synthesis conditions. Furthermore, the results obtained from analysis can provide a structural foundation for the huge application potential of GCHs constructions. The third chapter introduces the poly(vinylidene fluoride)-based nanocomposites containing GCH particles, the dielectric properties of which are improved more greatly than the ternary composites loading equivalent mixture of GNPs and CNTs. The composites achieved by dispersing GCH particles into matrix using the mechanical melt-mixing process, showing a strongly reduced percolation threshold (5.53 vol %) and the relatively high thermal stability. Their improved dielectric properties can be attributed to the formed microcapacitor networks and the change of crystalline formation of matrix, caused by well-designed CNT arrays constructions. The fourth chapter investigates the advanced GCHs/ polydimethylsilicone (PDMS) composites with high piezo-resistive performance at wide temperature range. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. The flexible composite shows an ultra-low percolation threshold (0.64 vol%) and high piezo-resistive sensitivity (gauge factor ~103 and pressure sensitivity ~ 0.6 kPa-1). Particularly, the much improvements of electrical properties achieved in GCHs/PDMS composites compared with composites filled with equivalent CNT, GNP or mixture of CNTs/GNPs. Slight motions of finger can be detected and distinguished accurately using the composites film as typical wearable sensor
Tertrais, Hermine. "Développement d’un outil de simulation pour le chauffage de matériaux composites par micro-ondes." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0061/document.
Full textThe context of the present work is the development of new processes for the heating and forming of composite materials in order to provide an answer to the industrials needs for less energy and less time-consuming processes. In that sense, microwave heating is perfect match as it relies on volumetric heating. The major drawback is that the behaviour of the electric field while interacting with composite material is poorly known. Therefore, the main objective of this thesis is to provide numerical solutions to go more deeply in the understanding of such process and put forward its capabilities for an industrial development.To fulfil this objective, the work is oriented over three main axes. First, an innovative simulation tool is presented in order to solve the Maxwell’s equations in a thin multi layered domain. Taking into account the 3D behaviour of the electric field is a major issue in order to describe precisely the impact of the different plies of the laminate on the propagation of the electric field.Then, the electromagnetic simulation is coupled with a thermal simulation in order to simulate the full heating process of a composite part. Parameters of the process are investigated to bring forward the most crucialones. Finally, real-time control of the process is tackled using a model order reduction simulation technique. These results are compared to experimental work on two sets of samples
Peters, Sarah June. "Fracture Toughness Investigations of Micro and Nano Cellulose Fiber Reinforced Ultra High Performance Concrete." Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/PetersSJ2009.pdf.
Full textGraham, Samuel Jr. "Effective thermal condutivity of damaged composites." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/16935.
Full textBen, ghzaiel Tayssir. "Synthèse, caractérisation et étude des propriétés magnétiques et diélectriques de nanocomposites Polyaniline/hexaferrite pour l'absorption des micro-ondes." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLN003/document.
Full textThis thesis deals with the formulation of Polyaniline/hexaferrite nanocomposite for absorbing electromagnetic waves. The main idea is the process of composite materials based on polymers intrinsic conductors such as polyaniline that we doped with different types of acids (HCl, CSA, NSA, and ... TSA) and barium hexaferrite with magnetoplumbite structure with or without substitution according to desired stoichiometries. In the barium hexaferrite, the substitution of Fe 3+ is made by Al3+, Bi3+, Cr3+ and Mn3+ ions.The barium hexaferrite and its substitutions by different ions mentioned above were synthesized dynamic hydrothermal method by varying various parameters during the synthesis (pH, temperature, time, ratio [OH-]/[NO3-] ...).The elaboration of polyaniline/hexaferrite composite (pure or substituted) was carried out by oxidative polymerization using various synthesis techniques: Aqueous-Based Polymerisation with or without agitation (taking into account the nature of the acid used) (ABP) and Solid-Based Polymerization (SBP). The optimization of these various synthesis techniques after physicochemical (XRD, FTIR, TGA, SEM, EDX), dielectric (ε ', ε' ', σdc) and magnetic (Mr, Ms, Hc, Tc, µ', µ'') characterizations of the samples showed that the solid route is the easiest method, economical and environmentally friendly. It is also suitable for the production of composite Pani/BaFe12O19 with good structural, physical and magnetic properties.The study of the substitution of Fe 3+ in the BaFe12O19 by Al3+, Bi3+, Cr3+ and Mn3+ showed a strong dependence of the structural and magnetic properties with the distribution of these ions in the hexagonal crystal lattice. In fact, Al3+, Cr3+ and Mn3+ ions tend to occupy the tetrahedral sites, while the Bi3+ favoured the octahedral sites. An increase in Hc associated with the small crystallite size observed for particles substituted with Al and Cr and the enhancement magnetocristalline anisotropy (strong higher order term) for Bi and Mn due to their high ionic radius.The incorporation of the substituted hexaferrite in the polyaniline to obtain Pani/BaMeFe11O19 composite, where Me = Al, Bi, Cr and Mn, reveals a variation in electromagnetic properties in the frequency range from 1 to 18 GHz. In fact, these variations are due to the formation of dipoles between the substituting ion and surrounding O2- cations in the ferrite which are responsible for the ferromagnetic resonance, the magnetocrystalline anisotropy and the exchange interaction with the polymer. The composite Pani/BaFe12O19 shows absorption bands at the X-band that shift to the Ku-band with the substitution of iron, confirming the potential of these materials for microwave applications
Naser, Hasan. "Développement de micro-composites architecturés en aciers inoxydables duplex : élaboration, microstructure et propriétés mécaniques." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI024/document.
Full textThe use of duplex stainless steel (DSS) grades for structural applications is considered as one of the most significant advances impacting the construction sector. This is because of their high mechanical properties coupled with interesting functional properties such as corrosion resistance or even the low thermal conductivity compared to carbon steels. Due to their complex microstructure and interaction between the phases, DSS have a significant potential for unique properties. A better understanding is needed to give the possibility to obtain break through properties and to provide the possibility to design tailor-made, architectured DSS for specific applications. In this work we proposed a different approach from that used until now to understand the behavior of DSS. The strategy adopted in this work was a top-down strategy in which at least two bulk metals with well known behavior and properties are mechanically alloyed by Severe Plastic Deformation (SPD). This proposed strategy served two main objectives: i) enhancing the properties by microstructure refining down to sub-micron scale ii) elaborating a material model for understanding the DSS behavior obtained by the conventional metallurgical methods. The first objective of this work was, therefore, the implementation of a methodology of manufacturing using SPD technique by co-drawing. This technique will allow obtaining an ultra-fine microstructure of 316L/430LNb composites. One of the challenges met during our study was the significant inter-diffusion during heat-treatment step necessary during processing preventing by consequence further refining. An optimization investigation was carried out to account the role of this inter-diffusion for 316L/430LNb couple. Multi-scale micro-composites have been then obtained. In this work, we showed the limitation of this process in terms of microstructure refining. A rationalization of these limits was given by studying the thermo-kinetics of both micro-composites and bulk materials. In parallel with the microstructural evaluation, the mechanical behavior of these new micr-composites was examined. In order to provide a more in-depth explanation of the plastic behavior of our composites, in situ tensile test using high energy X-ray synchrotron have been performed
Struble, John D. "Micro-scale planar and two-dimensional modeling of two phase composites with imperfect bonding between matrix and inclusion." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/17345.
Full textNjuguna, James A. K. "Micro- and macro-mechanical properties of aerospace composite structures and their dynamic behaviour." Thesis, City University London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440734.
Full textPatel, Nirajkumar. "Micro scale flow behavior, fiber wetting and void formation in liquid composite molding." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1299253097.
Full textLanzarini, Julien. "Elaboration et caractérisation thermo-physique de micro-composants fonctionnels à base de poudres magnétocaloriques." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2053.
Full textThis thesis proposes the development of a method of manufacturing micro-structured components made of a magnetocaloricmaterial. In the long term, these blade-type components will be integrated in magnetic refrigeration devices. On an industrialscale, their production by the conventional process, machining, is not possible. The solution proposed is based on shaping thecomponent by a replication process via a magnetocaloric composite material. This micro-composite is defined by the mixtureof hydrogenated magnetocaloric powders of La(Fe,Si)13 in a thermoplastic matrix (PP, LDPE). This technique allowsutilization of the polymer shaping process, extrusion. The development of this process is divided into two parts. The first partconcerns the development and characterization of the magnetocaloric micro-composite. Results from tests performed with themixer allow the proposal of several micro-composite formulations under different loading rates. These formulations are thenstudied for various aspects of micro-composite material. The rheological characterization based on capillary rheometer tests istaken to evaluate the shaping ability of the mixtures associated with the extrusion process. Specific properties ofmagnetocaloric materials such as the adiabatic temperature variation (ΔT) and the Curie temperature (Tc) are also investigated.The control of the Tc by DSC measurement highlighted problematic dehydrogenation of the powders as a result of theelaboration temperature. The impact of loading rate is studied by measuring the ΔT in order to estimate the final performanceof the micro-composite. The second part deals with the development of the shaping process by extrusion. A tooling linededicated to extrusion of the micro-structured blades is carried out and validated at the laboratory scale. The stability of Tc ischecked throughout the elaboration process of the micro-structured components. The extrusion parameters are defined to avoidthe dehydrogenation of magnetocaloric powders. The extruded components are characterized in terms of homogeneity of thepowder loading rate and geometric tolerances resulting in the validation of the developed process. The industrial transfer isnow possible to a large scale production
Malaspina, Odirlei Arruda. "Avaliação da estabilidade de cor e rugosidade superficial de resinas compostas micro-híbridas, submetidas ao processo de envelhecimento artificial acelerado, em função da fotoativação com lâmpada halógena e LED." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/25/25131/tde-05112009-104015/.
Full textThis study aimed to evaluate changes in color and surface roughness, before and after artificial accelerated aging of six micro hybrids composites resins (comparable to Vita shade A2) cured by quartz tungsten halogen (H) or a light emitting diode (L) polymerization unit with 300 mW/cm2 or 600 mW/cm2. Forty disc specimens (7 x 2 mm) were prepared for each composite (Charisma®, Filtek Z-250®, Herculite XRV®, Opallis®, TPH Spectrum®, W3D®), being 10 specimens for each condition (Q 300/600 mW/cm2 or L 300/600 mW/cm2). After cured, each specimen was evaluated by color (Easy Shade® spectrophotometer) according to CIE L*a*b* color scale and by surface roughness (Hommelwerke GmbH ) Ra values before and after submitting to artificial accelerated aging (4 h UV-B/4 h condensing vapor) for 384 hours total. The surface roughness and color change values of composite resins, after the process of accelerated aging, showed significant changes. Also, the values of E after accelerated aging were much higher than the values considered clinically acceptable (E 3.3). In general, the protocols curing effects showed varied influence over different composite resins and a positive correlation between average change in surface roughness and color change after accelerated aging process.
Mokhtari, Morgane. "FeCr composites : from metal/metal to metal/polymer via micro/nano metallic foam, exploitation of liquid metal dealloying process." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI088/document.
Full textNanoporous metals have attracted considerable attention for their excellent functional properties. The first developed technique used to prepare such nanoporous noble metals is dealloying in aqueous solution. Porous structures with less noble metals such as Ti or Fe are highly desired for various applications including energy-harvesting devices. The less noble metals, unstable in aqueous solution, are oxidized immediately when they contact water at a given potential so aqueous dealloying is only possible for noble metals. To overcome this limitation, a new dealloying method using a metallic melt instead of aqueous solution was developed. Liquid metal dealloying is a selective dissolution phenomenon of a mono-phase alloy solid precursor: one component (referred as soluble component) being soluble in the metallic melt while the other (referred as targeted component) is not. When the solid precursor contacts the metallic melt, only atoms of the soluble component dissolve into the melt inducing a spontaneously organized bi-continuous structure (targeted+sacrificial phases), at a microstructure level. This sacrificial phase can finally be removed by chemical etching to obtain the final nanoporous materials. Because this is a water-free process, it has enabled the preparation of nanoporous structures in less noble metals such as Ti, Si, Fe, Nb, Co and Cr. The objectives of this study are the fabrication and the microstructure and mechanical characterization of 3 different types of materials by dealloying process : (i) metal/metal composites (FeCr-Mg), (ii) porous metal (FeCr) (iii) metal/polymer composites (FeCr-epoxy resin). The last objective is the evaluation of the possibilities to apply liquid metal dealloying in an industrial context. The microstructure study was based on 3D observation by X-ray tomography and 2D analysis with electron microscopy (SEM, SEM-EDX, SEM-EBSD). To have a better understanding of the dealloying, the process was followed in situ by X-ray tomography and X-ray diffraction. Finally the mechanical properties were evaluated by nanoindentation and compression
Zhang, Yan. "Relationship between morphology, crystallization behavior and mechanical properties of polypropylene micro- and nanocomposites /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CENG%202004%20ZHANG.
Full textMohd, Zawawi Fazila. "Analyse aéroélastique d'une pale flexible composite : application au microdrone." Thesis, Toulouse, ISAE, 2014. http://www.theses.fr/2014ESAE0027/document.
Full textL’idée principale du travail rapporté ici est d’étudier les effets de l’intéraction fluide-structure (FSI) de pales laminées flexibles pour les proprotors de micro véhicules aériens(MAV) de type tilt-body dans les configurations de vol stationnaire et en avant. Eneffet, le but est d’exploiter les possibilités offertes par les proprotors à pales flexiblespar rapport aux proprotors à pales rigides pour améliorer leur performance dans cesphases de vol. Le modèle FSI a été développé à cet effet. Ce modèle tient compte desproblèmes spécifiques liés aux proprotors de MAV faits de composite laminé. Il com-bine l’adaptation de modèle aérodynamique par la théorie d’élement de pale (BEM) etl’adaptation de modèle structurel par la théorie des éléments finis de poutre anisotropes(AFEM). Le modèle aérodynamique est développé pour être capable de s’adapter àl’analyse des proprotors à bas nombres de Reynolds. Dans le modèle structural, la paleest modélisée comme une poutre élastique subissant des déviations dans la flexion, latraction et la torsion afin de capturer les effets de couplage de matériaux anisotropes.Il adapte l’analyse structurale des pales du proprotor faites de composite laminé. Lafiabilité du modèle FSI développé est vérifiée à travers une validation par modèles aéro-dynamique et structural, séparément, sur plusieurs proprotors de MAV. Afin de se dirigervers une analyse de pales de proprotors à adaptation passive , une recherche de designoptimal a été effectuée pour des proprotor à adaptation active. Pour cela, un programmepour la conception de pales rigides optimales à un unique point de fonctionnement (soitle vol de croisière soit le vol stationnaire) et à plusieurs points (combinant croisière etvol stationnaire) ont été développés. Les procédures du programme de design optimalemploient les mèthodes de design inverse par itération numérique, sur la base de pertesde poussée induites minimales (MIL). Même si le travail dans cette thèse a été dirigéprincipalement vers le proprotor, la partie moteur du système de propulsion n’a pasété négligée puisque l’efficacité de la propulsion est un facteur crucial pour le succès desMAVs. Une méthode simple et rapide de sélection du meilleur moteur parmi les moteurscommerciaux choisis est élaborée sur la base de la méthode de Taguchi. La sensibilitéde la consommation d’énergie totale à la variation de la valeur de chaque variable deconception du moteur a été étudiée. Le bénéfice de l’utilisation de la charge à la pointe de la pale et l’effet de la flexion sur la torsion induite et sur la dégradation de la poussée respectivement ont aussi été analysés et identifiés. Enfin, les proprotors à pales flexibles conçues systématiquement ont été évalués dans des conditions de fonctionnement stables. Performances en vol stationnaire et performances croisière propulsive, caractérisées par la puissance totale Ptotal ont été comparées entre les proprotors à pales rigides et à pales flexibles. En tant que résultat de la comparaison, les proprotors à pales flexibles s’avère capable d’améliorer légèrement les performances par la réduction de la Ptotal surson optimal proprotors à pales rigides
Elagroudy, Hossam Aly. "BOND CHARACTERISTICS OF MICRO-COMPOSITE MULTI-STRUCTURAL FORMABLE STEEL USED IN REINFORCED CONCRETE STRUCTURES." NCSU, 2003. http://www.lib.ncsu.edu/theses/available/etd-07252003-213630/.
Full textAbughufa, Hajer. "Micro-hardness and depth of cure of dental bulk-fill composites." University of the Western Cape, 2015. http://hdl.handle.net/11394/5039.
Full textResin composite is one of the most commonly used materials in restorative dentistry. However, it has undergone continuous developments like changes in the fillers and initiators. One such improvement is the new bulk-fill composites which are materials intended for bulk placement up to 4mm. However, an optimum polymerization to the full depth of the restoration i.e. complete depth of cure is of utmost importance in order to obtain proper mechanical and physical properties of resin composites. Aim: The aim of this study was to measure the surface hardness of the top and bottom surfaces of the composites and to determine the depth of cure of bulk-fill composites using two different types of light curing units. Material and methods: A total of 160 specimens were used in this study: four bulk-fill composite were used of which two were conventional viscosity bulk-fill composites namely, Tetric N Ceram (Ivoclar Vivadent) and SureFil bulk-fill composite (Densply Caulk) and two were low viscosity flowable bulk-fill composites namely, SDR flowable (Densply Caulk) and Filtek bulk-fill flowable restorative (3M ESPE). Two different curing light were used namely, LED (Elipar Freelight, 3M ESPE) at 1500mW/cm2 and a Quartz Tungsten Halogen (QTH) curing unit (Megalux CS, Megadenta, Germany) at 600 mW/cm2. To evaluate micro-hardness, Vickers hardness at top and bottom of each sample was measured immediately after light curing and after 24 hours post curing using a Zwick micro-hardness machine load 300g/15 seconds. The mean hardness values obtained from the top and the bottom surface of each material were used to compare the micro-hardness of the various materials. The mean values obtained from the bottom surface were compared to the respective values of the top surface of each material (bottom/top ratio) and used to calculate the depth of cure. Results: The micro-hardness test showed a significant difference between the four materials (ANOVA, p<0.05) immediately after curing and after 24 hours post curing. The material with the greatest micro-hardness was SureFil followed by Tetric N Ceram, Filtek bulk-fill flowable and SDR flowable respectively. The material with the greatest depth of cure was Filtek bulk-fill flowable followed by SDR flowable, Tetric N Ceram and SureFil. When the curing lights were compared the Light Emitting Diode Curing Unit (LED) obtained significantly better depth of cure compared to Quartz Tungsten Halogen Light Curing Units. The LED curing light showed greater micro-hardness values than the QTH curing light except for Tetric N Ceram where the QTH curing showed more hardness values than the LED curing light. For all materials, the surface hardness and depth of cure values increased when tested 24hrs after light curing. Conclusion: There was a difference in the micro-hardness values between the four materials where the conventional viscosity materials showed greater surface hardness values than the low viscosity materials but the depth of cure compared to the bulk-fill flowable LED curing lights showed higher hardness values than QTH curing light except for Tetric N Ceram. Depth of cure ratios were found to be lower than 0.80 for all composite types, however the flowable bulk-fill materials showed higher depth of cure than the conventional viscosity bulk-fills. In general LED curing light produced better hardness and depth of cure values than QTH curing light. The low micro-hardness values for the bulk-fill flowable composites and the inadequate polymerization raises a concern regarding placing these materials in bulk. In such cases, the flowable bulk-fills should be protected with a conventional composite "covering or capping" especially in posterior teeth and in deeper cavities. Furthermore, bulk-fill composites should be used in layering incremental technique to ensure sufficient depth of cure.
Bilgen, Onur. "Macro Fiber Composite Actuated Unmanned Air Vehicles: Design, Development, and Testing." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/33117.
Full textMaster of Science
Lv, Peng. "Performance aérodynamique et structurelle du rotor flexible pour micro-drones." Thesis, Toulouse, ISAE, 2014. http://www.theses.fr/2014ESAE0058/document.
Full textThe wind tunnel tests were conducted to explore the performance difference caused by the potential twist deformation between baseline blades and flexible blades. The balance was built in SaBre wind tunnel for measuring the thrust and torque of blades. The BEMT predictions of blades with varied twist were also performed in hover and forward flight, respectively. In hover,flexible blades cannot help in improving the FM at light disk loading since the twist generated on flexible blades is probably beyond the ideal hover twist. In forward flight, the propulsive efficiency η of flexible blades is mostly higher than baseline blades due to the beneficial twist generated in rotation. A Particle Image Velocimetry (PIV) approach of loads determination was developed based on control volume method to obtain thrust and torque of small-scale proprotor,especially for off-optimum conditions. The pressure Poisson equation was implemented for the pressure estimation based on the PIV velocity data. The axial velocity of flexible blades is found to be lower than baseline blades on the same station at downstream. This corresponds to the lower inflow ratio distribution along flexible blade, which results from the negative twist deformation. For both baseline blades and flexible blades, the thrust differences between PIV test 2 and balance are larger when compared to the differences between PIV test 1 based on nearfield and balance. The Laser Displacement Sensor (LDS) technique was employed for measuring the stationary deformation of rotating flexible blades. By obtaining the LDS point cloud, the bending and torsion of the rotating blade were identified using the multiple regressions
Curto, Hugo. "Couplage de la stéréolithographie et du frittage par micro-ondes pour l'élaboration rapide de pièces céramiques en alumine et zircone." Thesis, Valenciennes, Université Polytechnique Hauts-de-France, 2020. http://www.theses.fr/2020UPHF0016.
Full textThis thesis work focuses on the rapid processing of complex-shaped ceramic parts. Alumina, zirconia, and alumina-zirconia composites have a wide range of applications from jewellery to biomedical and thermostructural applications. In order to process parts quickly, stereolithography (SLA) as a shaping method and single-mode microwave (MW) sintering for the densification of the parts are coupled. To improve the coupling, experimental parameters are set up and optimized after mechanical and microstructural characterizations. Within this framework, three main studies are conducted. The first study deals with alumina and highlights that a mix of two granulometry grades of alumina has to be used to achieve the coupling. In the second study, large-sized zirconia parts are shaped by SLA. An original device is used to realise the MW sintering of three samples simultaneously. Finally, alumina-zirconia composites are conventionally shaped (pressing) and exhibit higher mechanical properties when MW sintered, in comparison with conventional sintering. For all the investigated materials, this work shows that: (i) coupling SLA and MW sintering leads to similar properties than those obtained by conventional shaping and sintering. Moreover, this coupling permits to obtain pieces with complex geometry; (ii) MW sintering allows up to 94% timesaving process in comparison with conventional sintering; (iii) mechanical properties of SLA-shaped parts are close to those obtained after conventional shaping (pressing)
Hamilton, Bruce Howard. "Study of damage evolutions in composite plates subjected to bending loads using micro-macro analysis." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA288523.
Full textPaul, Ewart D. "Micro-mechanical predictive modelling as an aid to CAD based analysis of composite sporting equipment." The University of Waikato, 2008. http://hdl.handle.net/10289/2509.
Full textRamiÌrez, JimeÌnez Carlos Rafael. "Analysis of micro mechanical events in fiber reinforced composite materials by means of acoustic emissions." Thesis, University of Warwick, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441575.
Full textBai, ShuLin. "Caractérisation mécanique d'un composite unidirectionnel fibres de verre-E/matrice époxyde élaboré sous micro-ondes." Châtenay-Malabry, Ecole centrale de Paris, 1993. http://www.theses.fr/1993ECAP0317.
Full textGreco, Pier Paolo. "Development of novel polymeric and composite nano-structured micro-porous materials for impact resistance applications." Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/2517.
Full textCalard, Vincent. "APPROCHES STATISTIQUES - PROBABILISTES DU COMPORTEMENT MÉCANIQUE DES COMPOSITES À MATRICE CÉRAMIQUE." Phd thesis, Université Sciences et Technologies - Bordeaux I, 1998. http://tel.archives-ouvertes.fr/tel-00003071.
Full textMallikarachchi, H. M. Yasitha Chinthaka. "Thin-walled composite deployable booms with tape-spring hinges." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/239395.
Full textSANTOS, THAIS da S. "Micro-nanocompósitos de Al2O3/ NbC/ WC e Al2O3/ NbC/ TaC." reponame:Repositório Institucional do IPEN, 2014. http://repositorio.ipen.br:8080/xmlui/handle/123456789/23599.
Full textMade available in DSpace on 2015-03-17T11:04:02Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Joesbury, Adam Michael. "New approaches to composite metal joining." Thesis, Cranfield University, 2015. http://dspace.lib.cranfield.ac.uk/handle/1826/10009.
Full textThayer, Patrick Scott. "Strategies for the Fabrication of Cellularized Micro-Fiber/Hydrogel Composites for Ligament Tissue Engineering." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/78209.
Full textPh. D.
Imbaby, Mohamed. "Fabrication of 316-L stainless steel and composite micro machine components using softlithography and powder metallurgy process." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/1212/.
Full textElbishari, Haitham Idris. "Characterisation of the effect of filler size on handling, mechanical and surface properties of resin composites." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/characterisation-of-the-effect-of-filler-size-on-handling-mechanical-and-surface-properties-of-resin-composites(64a8b96f-1cd0-459c-9865-1c5f35567982).html.
Full textBeguinel, Johanna. "Interfacial adhesion in continuous fiber reinforced thermoplastic composites : from micro-scale to macro-scale." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI051.
Full textThe present study was initiated by the development of a new processing route, i.e. latex-dip impregnation, for thermoplastic (TP) acrylic semi-finished materials. The composites resulting from thermocompression of TPREG I plies were studied by focusing of interfacial adhesion. Indeed the fiber/matrix interface governs the stress transfer from matrix to fibers. Thus, a multi-scale analysis of acrylic matrix/fiber interfaces was conducted by considering microcomposites, as models for fiber-based composites, and unidirectional (UD)macro-composites. The study displayed various types of sized glass and carbon fibers. On one hand, the correlation between thermodynamic adhesion and practical adhesion, resulting from micromechanical testing, is discussed by highlighting the role of the physico-chemistry of the created interphase. Wetting and thermodynamical adhesion are driven by the polarity of the film former of the sizing. On the other hand, in-plane shear modulus values from off-axis tensile test results on UD composites are consistent with the quantitative analyses of the interfacial shear strength obtained from microcomposites. More specifically, both tests have enabled a differentiation of interface properties based on the fiber sizing nature for glass and carbon fiber-reinforced (micro-)composites. The study of overall mechanical and interface properties of glass and carbon fiber/acrylic composites revealed the need for tailoring interfacial adhesion. Modifications of the matrix led to successful increases of interfacial adhesion in glass fiber/acrylic composites. An additional hygrothermal ageing study evidenced a significant loss of interfacial shear strength at micro-scale which was not observed for UD composites. The results of this study are a first step towards a database of relevant interface properties of structural TP composites. Finally, the analyses of interfaces/phases at different scales demonstrate the importance of a multi-scale approach to tailor the final properties of composite parts
Ali, Mohamed. "Calcul statique et dynamique par elements finis sur micro-ordinateurs de structures composites et metalliques." Paris 6, 1986. http://www.theses.fr/1986PA066443.
Full textLadj, Rachid. "Elaboration de nanoparticule composite à propriétés optiques non-linéaires pour applications biomédicales." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENA032.
Full textExogenous biomarkers based on hybrid nanoparticles with nonlinear optical properties were prepared as a contrast agent for second harmonic imaging and diagnosis of pathogenic cells. Iron iodate is one of the selected materials for this specific field due to its good second harmonic properties and its low toxicity. Iron iodate nanoparticles were synthesized by inverse microemulsion and inverse miniemulsion. In both cases, a good control of size and morphology was achieved. For biomedical applications, nanoparticles encapsulation was carried out in situ by reverse miniemulsion polymerization. Finally, encapsulation of potassium niobate nanoparticles with a biocompatible polymer was conducted. Their interest was demonstrated in vitro by second harmonic imaging studies
Ulhôa, Michele Paoline de Marins [UNESP]. "Desgaste abrasivo e dureza de seis resinas compostas expostas a diferentes tempos de fotopolimerização com aparelhos de LED e lâmpada incandescente." Universidade Estadual Paulista (UNESP), 2006. http://hdl.handle.net/11449/88482.
Full textSecretaria de Educação do Estado de São Paulo
A Humanidade, ao buscar as melhoras nas suas condições de vida, vem desenvolvendo materiais capazes de reparar e melhorar imperfeições naturais e acidentais. Encontra nas resinas compostas, constantemente utilizadas por dentistas, uma maneira de reparar imperfeições e perdas de materiais dentários no ser humano. A escolha de resinas compostas em substituição aos antigos materiais de restauração, como o amálgama, se dá pelo fato de serem fáceis de preparar, apresentarem menor desgaste, serem praticamente imperceptíveis após sua aplicação devido à grande quantidade de cores fornecidas pelos fabricantes. Porém não apresentam desgaste semelhante ao do esmalte dentário, sendo necessária substituição com o passar do tempo, devido ao desgaste abrasivo. Dentre os vários fatores determinantes do processo de desgaste abrasivo, encontram-se, genericamente, as características da própria resina e do preparo cavitário, assim como da restauração confeccionada e das condições das agressões a que ela for submetida. Para fazer a medição da resistência ao desgaste abrasivo, utilizou-se o método do disco retificado aperfeiçoado para Odontologia (COELHO, 1991; BIANCHI et al., 2002). É utilizado um banco de ensaios onde um disco dinâmico revestido com porcelana desgasta um disco estático revetido com a resina polimerizada em um tempo pré-estabelecido...
Humanity, when searching for a better life conditions, is developing materials capable to repair and to improve natural and accidental imperfections. It finds in composite resins, constantly used for dentists, a way to repair imperfections and losses of human dental material. The composed resin choice in substituion to the old restoration materials, as the amalgamates, it is for the fact of being easy to prepare, to present less wear, to be practically invisible after its application due to great amount of colors supplied for the manufacturers. However they do not show similar wear as the dental enamel, being necessary the substitution after a while, due to the abrasive wear. Among some determinative factors of the process of abrasive wear, there are, generically, the characteristics of the resin and the cavitary preparation, as well as the confectioned restoration and the conditions of the aggressions that it is submitted. To make the measurement of the resistance to the abrasive wear, the method of the rectified circular surface improved for odontology was used (COELHO, 1991; BIANCHI et al., 2002). A Test bench is used where a dynamic circular surface covered with porcelain consumes a static circular surface covered with the polymerized resin in a pre-established time... (Complete abstract, click electronic address below)
Siron, Olivier. "Approche micro-macro du comportement mécanique et de la rupture d'un composite carbone-carbone à architecture fibreuse multidirectionnelle." Bordeaux 1, 1996. http://www.theses.fr/1996BOR10609.
Full textRecman, Lukáš. "Deformační chování nano/mikro vyztuženého PMMA." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2010. http://www.nusl.cz/ntk/nusl-233297.
Full textTchangoulian, Ardaches. "Utilisation de matériaux composites magnétiques à nanoparticules pour la réalisation de composants passifs non réciproques micro-ondes." Thesis, Saint-Etienne, 2014. http://www.theses.fr/2014STET4016/document.
Full textIn telecommunications systems, many studies have been undertaken to integrate non-reciprocal passive components. The proper functioning of circulators often requires large and heavy magnets that ensure a uniform orientation of the magnetic moments of the ferrite material. To work towards the integration and miniaturization of circulators, nanotechnology can offer interesting solutions. The aim of this thesis was to develop a self-biased coplanar circulator. The approach is based on the production of composite substrates "ferrimagnetic nanowire." It consists in a magnetophoresis or a dip-coating deposition of cobalt ferrite nanoparticles in porous alumina membranes and orienting them in a magnetic field uniformly. Magnetic composite substrates were made from CoFe2O4 nanoparticles dispersed in a matrix of silica sol-gel using the dip-coating technique with and without an applied magnetic field. Many studies have been made to study the magnetic and dielectric behavior of these substrates: VSM, spectral polarimetry, MFM and others. The hysteresis loops show a strong difference in the values of coercive fields (μ0Hc) and persistent (Mr / Ms) if, during the fabrication, a magnetic field is applied or not, therefore showing the orientation (or not) of nanoparticles. This nano-composite is an interesting candidate for the fabrication of circulators even if the concentration and the particle orientation are insufficient. Circulators were designed, modeled and simulated using the HFSS software. Following the interesting results of simulation; a first prototype was fabricated and characterized at high frequencies. The measurement results showed a circulation phenomenon, which is very low due to the small percentage of magnetic nanoparticles in the composite and their imperfect orientation. Technological barriers have been clearly identified and do not allow for the time to achieve an operational circulator
Ha, Hung M. "Micro- and Nano-Scale Corrosion in Iron-Based Bulk Metallic Glass Sam 1651 and Silver-cored MP35N Lt Composite." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1260391940.
Full textJordan, Jeff. "Composites at micro- and nano-scale and a new approach to the problem of a concentrated force on a half-plane." Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/16431.
Full textPinelli, Marília de Morais. "Evaluation of changes in surface roughness and chemical composition of the composite and bovine enamel submitted different surface treatments." Universidade de Taubaté, 2009. http://www.bdtd.unitau.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=444.
Full textObjetivos: Avaliar qualitativamente e quantitativamente as alterações na superfície e composição química do esmalte dental bovino e compósito nanoparticulado, utilizando peróxido de hidrogênio 38% quando submetidos a diferentes tratamentos superficiais. Método: Foram utilizados 120 fragmentos da superfície dental de incisivos bovinos, sendo que em uma das metades foi preparado uma cavidade padronizada e restaurada com compósito. Posteriormente, os espécimes foram submetidos a trinta mil ciclos de escovação, imersão em duas diferentes bebidas: Suco de laranja (Del Valle), Uísque (Johnnie Walker) e finalmente, sessão de clareamento com peróxido de hidrogênio 38%. As alterações superficiais e a composição mineral do esmalte e compósito foram determinadas com a utilização do rugosímetro e por meio de Micro-fluorescência de raios-x por energia dispersiva antes e após os tratamentos. Os dados obtidos foram tabulados e submetidos a análise estatística. Foram avaliados os teores de Cálcio e Fósforo no esmalte e de Zircônia e Sílica no compósito. Resultados: Os resultados mostraram diferença significativa quando comparado grupo controle e grupo tratamento. Conclusão: Concluiu-se que, o clareamento dental isoladamente não causa alterações superficiais e perda de componentes químicos tanto no esmalte quanto na resina composta; a escovação aumenta significativamente a rugosidade superficial do compósito e do esmalte, comparando-se tempos iniciais e finais; a associação da escovação com clareamento potencializa os efeitos de alterações superficiais e composição química tanto no esmalte quanto na resina; o uso de bebidas com baixo pH causa alterações superficiais e na composição do esmalte e do compósito.
Laisney, Jérôme. "Influence de l’environnement sur la commutation et la bistabilité thermique de micro- et de nanoparticules à transition de spin." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112002.
Full textSpin-transition compounds are a class of materials for which the spin-state switching of the metal center can be controlled by various stimuli (T, P, light irradiation,...) and produces dramatic changes of physical properties (magnetic, optical, structural or vibrational). With respect to the set of switchable materials, a number of spin-transition compounds exhibit at solid-state cooperative processes and thermal hysteresis loops (bistability), particularly suitable for information storage. One of the current technological challenges is to integrate in devices such potentially interesting materials without altering their properties. The goal of the research, recently developed by several teams, is to determine the smaller size of object in which an information can be stored, and thus to understand the effect of downsizing on cooperativity and bistability. Therefore, the objectives of the Ph-D thesis were (i) to synthesize spin-crossover nano- and microparticles from molecular materials that in the form of bulk undergo a first-order phase transition; (ii), to investigate the importance of particles size and matrix effects on the spin-transition process.After a first chapter in which the spin crossover materials are introduced, the second chapter describes the synthesis of particles of FeII(phen)2(NCX)2 (X = S, Se) and [FeIII(3-OMeSalRen)2]PF6 (R = Me, E) compounds. As the fast precipitation technique essentially suits for ionic compounds, its application to neutral ones like FeII(phen)2(NCX)2, has been made possible by an indirect syntheses based on the ligand extraction from soluble precursors and the control of nucleation and growth processes of neutral products via experimental parameters. New particles of [FeIII(3-OMeSalEen)2]PF6 and thin films containing them after their dispersion in a polymeric matrix (PVP) have been prepared. The study of these films with UV-vis and magnetic measurements has raised the issue of the impact of the polymeric matrix and processing on the spin transition properties of these particles.The second part of the manuscript focuses on the interaction between the spin-crossover particles and the dispersing medium. This interaction between microparticles of Fe(phen)2(NCS)2 and glassy matrices (Tg > T1/2, T1/2, being the transition temperature) may result in the observation of large hysteresis loops shifted towards lower temperatures. This bistability has been examined with the FORC (First-Order Reversal Curves) method, magnetic measurements and a theoretical model. This analysis has shown the existence of reversible components associated to the particles/matrix interactions and the change of volume of spin-crossover particles.In a third part, the study of matrix and size effect has been pursued with micro- and nanocrystals of [FeIII(3-OMeSalEen2]PF6 encapsulated in polymeric or molecular liquids which form glasses at sufficiently low temperature. The encapsulation in rigid glasses of high spin (T1/2 < Tg) or low spin (T1/2 > Tg) particles give rise to transitions shifted towards lower or higher temperature respectively, possibly with cooperativity and hysteresis. The reinforcement of cooperativity and the bistability observed in the second case have been accounted for by the effect of the mechanical stress exerted by the glassy matrix on the particle volume. In addition, it has been shown that a thermal treatment of matrices (quenching or annealing steps below or above the glass transition) results in the modulation of the matrix effects. Finally, in the last chapter, a few composites including compounds undergoing a spin transition close to room temperature have been shortly investigated in presence of dispersing matrices. The choice of the matrices characteristics (chemical nature, glass transition temperature) has allowed some of these effects to be observed
Dau, Anh Tuan. "Elaboration d’un outil numérique reliant les échelles micro/méso d’un composite thermoplastique sensible à l’humidité et à la température en quasi-statique." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0004/document.
Full textThe objective of this PhD thesis is to create a methodology to simulate the behavior of a 2x2 glass/PA66 twill composite using homogenization. To achieve this goal, we use two steps: first one is dedicated to represent the yarn behavior and the second one to represent the behavior of the composite RVE. An experimental characterization campaign about the PA66 has been done in order to quantify the influence of both hygrometry and temperature on the behavior of the matrix in quasi-static. Then, we formulated, implemented and validated an isotropic elasto-plastic damageable constitutive law. It was used to identify by homogenization the behavior of the yarns by assuming a perfect bonding of the fibers and the matrix as well as a water homogeneity inside the yarn. Thanks to the identified behavior of the yarns and by formulating a compatible constitutive law (anisotropic elasto-plastic damageable), we have determined for the woven composite on one hand the elastic properties and in the other hand the longitudinal/transversal and shear nonlinear behaviors. The comparisons of the numerical and experimental results offer satisfactory results. It provides good outlook in short-term in regard of structures design which include this type of woven composite materials. The main advantage of the methodology is to decrease the number of required experimental tests. Some outlook dedicated to crash studies are finally suggested
Gopinath, Gautam. "Progressive damage and failure of unidirectional fiber reinforced laminates under impact loading with composite properties derived from a micro-mechanics approach." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/37534.
Full textPh. D.
Ehrenhofer, Adrian, and Thomas Wallmersperger. "Active hydrogel composite membranes for the analysis of cell size distributions." SPIE, 2019. https://tud.qucosa.de/id/qucosa%3A74237.
Full textLopez-Pamies, Oscar. "Sur le comportement effective, l'évolution de microstructure et la stabilité macroscopique des composite élastomères." Phd thesis, Ecole Polytechnique X, 2006. http://pastel.archives-ouvertes.fr/pastel-00002978.
Full text