Academic literature on the topic 'Micro-devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Micro-devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Micro-devices"
Tien, Arun Majumdar Chang-Lin. "MICRO POWER DEVICES." Microscale Thermophysical Engineering 2, no. 2 (May 1998): 67–69. http://dx.doi.org/10.1080/108939598199982.
Full textBeckel, Daniel, Briand Danick, Jérôme Courbat, Anja Bieberle-Hütter, Nico F. de Rooij, and Ludwig J. Gauckler. "Micro-Hotplate Devices for Micro-SOFC." ECS Transactions 7, no. 1 (December 19, 2019): 421–27. http://dx.doi.org/10.1149/1.2729119.
Full textINOUE, MITSUTERU. "Optical Micro-Magnetic Devices." Journal of the Institute of Electrical Engineers of Japan 123, no. 11 (2003): 730–32. http://dx.doi.org/10.1541/ieejjournal.123.730.
Full textMalsch, Ineke. "Micro devices sense profit." Physics World 15, no. 6 (June 2002): 13. http://dx.doi.org/10.1088/2058-7058/15/6/21.
Full textHricko, J., Š. Havlík, and Y. L. Karavaev. "Verifying the Performance Characteristics of the (micro) Robotic Devices." Nelineinaya Dinamika 16, no. 1 (2020): 161–72. http://dx.doi.org/10.20537/nd200112.
Full textPihosh, Yuriy, Ivan Turkevych, Masahiro Goto, Akira Kasahara, Tadashi Takamasu, and Masahiro Tosa. "Micro-Patterned Organic Electroluminescent Devices." Japanese Journal of Applied Physics 47, no. 2 (February 15, 2008): 1263–65. http://dx.doi.org/10.1143/jjap.47.1263.
Full textIkegami, Kozo. "Strength Problems of Micro-devices." Journal of the Society of Mechanical Engineers 97, no. 905 (1994): 267. http://dx.doi.org/10.1299/jsmemag.97.905_267.
Full textUKITA, Hiroo. "Micromechanical Devices. Micro Octical Tweezers." Journal of the Japan Society for Precision Engineering 65, no. 5 (1999): 647–50. http://dx.doi.org/10.2493/jjspe.65.647.
Full textSAWADA, Renshi. "Micromechanical Devices. Integrated Micro-Encoder." Journal of the Japan Society for Precision Engineering 65, no. 5 (1999): 665–68. http://dx.doi.org/10.2493/jjspe.65.665.
Full textSato, T., T. Mizoguchi, and M. Sahashi. "Simulation of Micro Magnetic Devices." IEEE Translation Journal on Magnetics in Japan 9, no. 4 (July 1994): 68–75. http://dx.doi.org/10.1109/tjmj.1994.4565895.
Full textDissertations / Theses on the topic "Micro-devices"
Geerken, Maik Jörn. "Emulsification with micro-engineered devices." Enschede : University of Twente [Host], 2006. http://doc.utwente.nl/57603.
Full textDeshpande, Abhishek Girish. "Development of micro analytical devices." Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/245124.
Full textAlexander, Lois Meryl. "Micro-particles as cellular delivery devices." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4012.
Full textLin, Gungun. "Multifunctional Droplet-based Micro-magnetofluidic Devices." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-208797.
Full textLorenz, Norbert. "Laser-based packaging of micro-devices." Thesis, Heriot-Watt University, 2011. http://hdl.handle.net/10399/2491.
Full textRudé, Moreno Miquel. "Micro-nano structured optical devices using Ge2Sb2Te5." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/404742.
Full textEls dispositius fotònics són un dels principals candidats per implementar les futures tecnologies de la informació i de la comunicació. El seu èxit dependrà en gran mesura de la capacitat de controlar la llum en aquests dispositius, en particular en dispositius reprogramables. Degut a que la llum no interactua amb ella mateixa normalment es necessita usar un material actiu per assolir aquest control. Els materials de canvi de fase són un dels possibles candidats per implementar aquesta funcionalitat. Aquest conjunt de compostos químics es caracteritzen per tenir més d’una fase estable. Cada una d’aquestes fases presenta unes propietats òptiques I elèctriques molt diferents. A més a més els canvis de fase en aquests materials es poden realitzar molt ràpidament i de manera reversible mitjançant polsos elèctrics o òptics. Aquesta tesis descriu el disseny i la implementació de nous dispositius òptics micro i nanoestructurats usant el material de canvi de fase Ge2Sb2Te5 (GST). A la primera part de la tesis s’investiga com fabricar capes primes de diferents materials de canvi de fase de manera repetible i es caracteritzen les seves propietats principals, en especial les del GST. Això inclou una investigació de la seva composició, les condicions necessàries per induir reversiblement transicions de fase entre els estats amorf i cristal·lí, així com mesures de les propietats òptiques de cada una de les fases. Aquests resultats es faran servir per implementar després tres aplicacions, cada una de les quals té una funció diferent. La primera aplicació és un interruptor òptic que treballa a una longitud dona de 1550 nm. El dispositiu està implementat en un anell ressonador parcialment recobert amb una capa prima de GST. Les ressonàncies en iv transmissió d’aquest sistema són controlades amb un làser infraroig que indueix transicions de fase en la capa de GST, modificant la forma i posició de la ressonància entre dos estats. L’interruptor té una relació entre els estats “on” i “off” de 12 dB i un temps de resposta d’uns 5 s. En la segona aplicació es demostra el control de plasmons de superfície propagant-se a través d’una guia d’ona d’or. Això s’aconsegueix fent servir una capa de GST dipositada sobre el dispositiu. Usant grans àrees de GST i cristal·lització per temperatura es poden aconseguir modulacions del 100 %, mentre que usant petites àrees de GST i cristal·lització làser es demostren modulacions de fins el 30 %. La tercera aplicació explora la combinació d’estructures periòdiques de nanoforats amb capes de GST. En aquest experiment s’investiga l’efecte de les transicions de fase en les ressonàncies de transmissió usant tres geometries diferents. En dispositius amb ressonàncies amples es poden desplaçaments en la longitud d’ona d’aquestes ressonàncies de 385 nm. A més a més, excitant la capa de GST amb polsos curts es mesuren canvis d’aquestes ressonàncies en una escala de temps de ps sense la necessitat d’induir una transició de fase. Per últim també es demostren desplaçaments en la longitud d’ona de fins a 13 nm en dispositius amb ressonàncies estretes. Els estudis i aplicacions descrits en aquesta tesi demostren el potencial del GST i dels materials de canvi de fase en general per implementar dispositius òptics sintonitzables, que realitzaran una funció essencial en futures tecnologies basades en la llum.
Martín, Olmos Cristina. "Micro/Nano fabrication of polymer-based devices." Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/5358.
Full textEl treball ha estat elaborat al Centre Nacional de Microelectrònica (CNM), a l'Institut de Microelectrònica de Barcelona (IMB).
Les activitats del CNM-IMB estan dividides en 6 àrees d'investigació diferents, cobrint un ampli rang de dispositius microelectrònics: microsistemes i tecnologia de silici, transductors químics, dispositius i sistemes de potència, aplicacions biomèdiques, diseny de circuits electrònics i nanotecnologia. Aquest treball s'ha dut a terme dins d'aquesta última àrea.
La major part de la feina s'ha emmarcat en el projecte d'investigació europeu FP6 NOVOPOLY (Novel functional polymer materials for MEMS and NEMS applications) que té com a objectius desenvolupar nous materials per aplicacions en l'àrea de la tecnologia dels micro- i dels nano- sistemes (MEMS i NEMS). Una altra part de la Tesi es va realitzar en el marc del projecte d'investigació europeu FP6 NaPa (Emerging Nanopatterning Methods) que pretén desenvolupar noves tècniques d'estampació nanomètrica com poden ser el NIL, soft lithography, la litografia basada en MEMS, etc. Ambdós projectes han estat fonts de motivacions, capital per recursos y col·laboradors que han contribuït notòriament en la formació d'aquesta Tesi.
El primer objectiu d'aquest treball va ser el de establir les bases de la tecnologia de fabricació amb polímers en la Sala Blanca del CNM. El CNM sempre ha treballat amb tecnologia de silici però, donat que el polímers estan demostrant ser una alternativa de baix cost, era interessant (a nivell local) optimitzar aquests processos.
Per altra banda, existeix un gran interès en modificar els polímers fotoestructurables existents, com la SU-8, afegint-los diferents funcionalitats i superant així les actuals limitacions d'aquests materials pel que fa a les seves propietats mecàniques, a la seva conductivitat elèctrica, a millorar la seva estabilitat a altes temperatures, etc. Aquests nous polímers poden representar en un futur pròxim les bases de l'avanç de la tecnologia de polímers, tant per aplicacions acadèmiques com industrials. Gràcies a les col·laboracions establertes en els projectes europeus abans mencionats, s'ha pogut presentar en aquesta Tesi el processat d'alguns nous polímers per algunes aplicacions concretes.
Per tots aquests motius esmentats, aquesta Tesi és un compendi de diferents dispositius polimèrics, cadascun d'ells fabricat amb processos diferents, perquè o bé els materials o bé les tècniques no eren les mateixes. Per aquesta raó, la Tesi es divideix en 7 Capítols:
La introducció pretén repassar l'estat de l'art de les tècniques de fabricació amb polímers. Com aquesta Tesi està enfocada en l'ús de polímers fotoestructurables per a la fabricació de dispositius, el principal procés és la UV lithography tot i que altres mètodes han estat desenvolupats per assolir millor resolució i millors resultats. Les tècniques litogràfiques que es poder utilitzar amb polímers estan breument descrites i també s'introdueixen tres tipus diferents de polímers per donar un coneixement bàsic dels conceptes més fets servir al llarg d'aquesta memòria.
El Capítol 2 presenta la fabricació de sondes d'AFM polimèriques que podes ser utilitzades en qualsevol equip d'AFM comercial, demostrant així el seu camp d'aplicació, el seu baix cost de producció i la seva capacitat per a ser comercialitzades. Aquesta és la principal responsabilitat de què el CNM tenia dins del projecte Novopoly.
El Capítol 3 és una extensió del capítol anterior però usant un nou material compost per nanopartícules i polímer. El nou material millora algunes de les propietats del polímer original i també s'afegeixen propietats que abans no tenia com pot ser l'actuació magnètica.
En el Capítol 4 s'introdueix un nou polímer. En aquest cas, es demostra que el material és capaç de proporcionar actuació optotèrmica degut a que té un coeficient d'expansió tèrmic més elevat que la versió no dopada. A més, donat que el material és negre, l'actuació òptica en el espectre del visible és possible, el que obre noves possibilitats comparat amb el polímer estàndard. Un model teòric i un estudi complert del comportament d'aquesta actuació estan detallats.
El Capítol 5 descriu com definir estructures de polímer utilitzant l'ink-jet printing i la soft-lithography. Aquestes dues tècniques han estat emprades per evitar la contaminació creuada entre els dipòsits d'un, prèviament fabricat, xip de microfluídica. Aquest capítol és un clar exemple de la flexibilitat que ofereix la tecnologia de polímer.
Les tècniques d'Scanning Probe Lithography (SPL), Litografia per Feix d'Electrons (EBL) i la litografia UV es poden combinar per imprimir en fines capes de polímers tal i com es descriu en el Capítol 6. En aquest capítol s'inclouen els detalls del mecanisme de modificació local del polímers fent servir el Microscopi de Forces Atòmiques (AFM).
Finalment, aquesta Tesi acaba amb les conclusions que estan resumides en el Capítol 7. En ell es comenten els principals resultats de cada un dels processos de fabricació desenvolupats en aquesta memòria.
Este documento resume el trabajo de investigación realizado para la obtención del título de Doctora en Ingeniería Electrónica en la Universitat Autònoma de Barcelona (UAB).
El trabajo ha sido elaborado en el Centro Nacional de Microelectrónica (CNM), en el Instituto de Microelectrónica de Barcelona (IMB).
Las actividades del CNM-IMB están divididas en 6 áreas de investigación diferentes, cubriendo un amplio rango de dispositivos microelectrónicos: microsistemas y tecnología de silicio, transductores químicos, dispositivos y sistemas de potencia, aplicaciones biomédicas, diseño de circuitos electrónicos y nanotecnología. Este trabajo se ha ejecutado dentro de esta última área.
La mayor parte del trabajo se ha elaborado en el marco del proyecto de investigación europeo FP6 NOVOPOLY (Novel functional polymer materials for MEMS and NEMS applications) que tiene como objetivos desarrollar nuevos materiales para aplicaciones en el área de la tecnología de los micro- y de los nano- sistemas (MEMS y NEMS). Otra parte de la Tesis se realizó en el marco del proyecto de investigación europeo FP6 NaPa (Emerging Nanopatterning Methods) cuya meta es el desarrollo de nuevas técnicas de estampación nanométrica como puede ser el NIL, soft lithography, la litografía basada en MEMS, etc. Ambos proyectos han sido fuentes de motivaciones, capital para recursos y colaboradores que han contribuido notoriamente en la formación de esta Tesis.
El primer objetivo de este trabajo fue el de establecer las bases de la tecnología de fabricación con polímeros en la Sala Blanca del CNM. El CNM siempre ha trabajado con tecnología de silicio pero, dado que los polímeros están demostrando ser una alternativa de bajo coste, era interesante (a nivel local) optimizar estos procesos.
Por otra parte, existe un gran interés en modificar los polímeros fotoestructurables existentes, como la SU-8, añadiéndoles diferentes funcionalidades y superar así las actuales limitaciones de estos materiales con respecto a sus propiedades mecánicas, a su conductividad eléctrica, a mejorar su estabilidad en altas temperaturas, etc. Estos nuevos polímeros pueden representar en un futuro próximo las bases del avance de la tecnología de polímeros, tanto para aplicaciones académicas como industriales. Gracias a las colaboraciones establecidas en los proyectos europeos antes mencionados, se ha podido presentar en esta Tesis el procesado de algunos nuevos polímeros para algunas aplicaciones concretas.
Por todos los motivos mencionados, esta Tesis es un compendio de diferentes dispositivos poliméricos, cada uno de ellos fabricado con procesos distintos, porque o bien los materiales o bien las técnicas no eran las mismas. Por esta razón, la Tesis se divide en 7 Capítulos:
La introducción pretende repasar el estado del arte de las técnicas de fabricación con polímeros. Como esta Tesis está enfocada en el uso de polímeros fotoestructurables para la fabricación de dispositivos, el principal proceso es la UV lithography aunque otros métodos han sido desarrollados para alcanzar mayor resolución y mejores resultados. Las técnicas litográficas que pueden ser usadas con polímeros están brevemente descritas y también se introducen tres tipos diferentes de polímeros para dar un conocimiento básico de los conceptos más usados a lo largo de esta memoria.
El Capítulo 2 presenta la fabricación de sondas de AFM poliméricas que pueden ser usadas en cualquier equipo de AFM comercial, demostrando así su campo de aplicación, su bajo coste de producción y su capacidad para ser comercializadas. Esta es la principal responsabilidad que el CNM tenía dentro del proyecto Novopoly.
El Capítulo 3 es una extensión del capítulo anterior pero usando un nuevo material compuesto por nanopartículas y polímero. El nuevo material mejora algunas de las propiedades del polímero original y también se añaden propiedades que antes no tenía como puede ser la actuación magnética.
En el Capítulo 4 se introduce otro nuevo polímero. En este caso, se demuestra que el material es capaz de proporcionar actuación optotérmica debido a que tiene un mayor coeficiente de expansión térmica que la versión no dopada. Además, dado que el material es negro, la actuación óptica en el visible es posible, lo que abre nuevas posibilidades comparado con el polímero estándar. Un modelo teórico y un estudio completo del comportamiento de esta actuación están detallados.
El Capítulo 5 describe cómo definir estructuras de polímero usando el ink-jet printing y la soft-lithography. Estas dos técnicas han sido usadas para evitar la contaminación cruzada entre los depósitos de un previamente fabricado chip de microfluídica. Este capítulo es un claro ejemplo de la flexibilidad que ofrece la tecnología de polímero.
Las técnicas de Scanning Probe Lithography (SPL), Litografía por Haz de Electrones (EBL) y la litografía UV se pueden combinar para imprimir en finas capas de polímeros tal y como se describe en el Capítulo 6. En este capítulo se incluyen los detalles del mecanismo de modificación local de polímeros usando en Microscopio de Fuerzas Atómicas (AFM).
Finalmente, esta Tesis termina con las conclusiones que están resumidas en el Capítulo 7. En él se comentan los principales resultados de cada uno de los procesos de fabricación desarrollados en esta memoria.
This document summarizes the research work performed in order to obtain the Ph.D. degree in Electronic Engineering at the Universitat Autònoma de Barcelona (UAB).
The work has been done at the National Centre for Microelectronics (Centro Nacional de Microelectrónica CNM), at the Institute of Microelectronics in Barcelona (IMB).
CNM-IMB activities are divided into 6 different research areas covering a wide range of microelectronic devices: microsystems and silicon technology, chemical transducers, power devices and systems, biomedical applications, electronic circuits design and nanotechnology. The present work has been performed in the latter area.
Most of the work has been performed in the frame of the FP6 European research project NOVOPOLY (Novel functional polymer materials for MEMS and NEMS applications) which aims to develop new functional materials for applications in the area of micro- and nano- systems technology (MEMS and NEMS). Also, a part of the thesis was performed within the frame of the FP6 European research project NaPa (Emerging Nanopatterning Methods) which aims the development of novel nanopatterning techniques as can be NIL, soft lithography, MEMS-based lithography, etc. Both projects have been source of funding, motivations and collaborators that have contributed notoriously to the development of this Thesis.
The first objective of the project was to establish the basis for polymer fabrication technology in the CNM Clean Room. CNM has always been working on silicon technology but, provided that polymer technology is showing itself as a low-cost alternative, it was interesting (at a local level)
to optimize these processes.
On the other hand, there is a large interest in adding functionality to existing photostructurable polymers, like SU-8, and overcome the current limitations of these systems with respect to mechanical, electrical conductivity and high temperature stability properties. These novel polymers can represent in the near future a cornerstone in the development of polymer technology, with both academic and industrial applications. Taking profit of some collaborations established in the projects mentioned above, the processing of some novel polymers is also presented in this Thesis for a few targeted applications.
Therefore, the Thesis is a compendium of different polymeric devices, each of them fabricated with a different process, because either the materials or the techniques were different; and the memory is divided in seven different chapters:
The introduction, aims to review the state of the art of polymer fabrication techniques. As this Thesis is focused in the use of photostructurable polymers for the fabrication of devices, the main process is the UV lithography although others methods have been developed in order to achieve higher resolution and better performance. Lithographic techniques usable for polymers are briefly described and the three kinds of polymers used are introduced in order to give the basic knowledge and main concepts used through all the work.
Chapter 2 presents the fabrication of usable polymeric AFM probes, demonstrating their field of application and low cost production and its feasibility to commercialization. This is the main activity that CNM had in Novopoly project.
Chapter 3 is an extension of the previous chapter but using a new composite material. The new material overcomes some of the drawbacks properties of the original epoxy based resist and also adds functional properties as it can be magnetic actuation.
In Chapter 4 another new composite is shown. In this case, optothermal actuation is demonstrated because this material has a higher thermal expansion coefficient than the undoped version. In addition, given the fact that the material is black, which means that optical actuation in the visible is possible, opening new possibilities compared with the standard polymer. A theoretical model and a fully study of the actuation behaviour is reported.
Chapter 5 describes polymer structures definition by ink-jet printing and soft-lithography. These two techniques were used to avoid the cross contamination between dispensing holes of a previously fabricated microfluidic chip. This chapter is itself an example of how flexible polymer technology is.
Scanning Probe Lithography (SPL), Electron-Beam Lithography (EBL) and UV lithography techniques have been combined to pattern thin layers of polymers as it is depicted in Chapter 6. This chapter includes details mechanism and operation of the local modification of polymers using an Atomic Force Microscope (AFM).
Finally, this Thesis ends with the conclusions that are summarized in Chapter 7. The main results of each fabrication process developed are commented.
Mukasa, Said Mutaka. "Frequency tuning of micro-electro-mechanical devices." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433145.
Full textHajji, Maryam. "Micro-fabricated devices for manipulating terahertz radiation." Thesis, Durham University, 2018. http://etheses.dur.ac.uk/12914/.
Full textZhang, Han. "Micro-Biosensor Devices for Biochemical Analysis Applications." DigitalCommons@USU, 2020. https://digitalcommons.usu.edu/etd/7712.
Full textBooks on the topic "Micro-devices"
Vinoy, K. J., G. K. Ananthasuresh, Rudra Pratap, and S. B. Krupanidhi, eds. Micro and Smart Devices and Systems. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1913-2.
Full textRodengen, Jeffrey L. The spirit of AMD: Advanced micro devices. Ft. Lauderdale, FL: Write Stuff Enterprises, 1997.
Find full textLenka, Trupti Ranjan, Durgamadhab Misra, and Arindam Biswas, eds. Micro and Nanoelectronics Devices, Circuits and Systems. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3767-4.
Full textBerube, R. H. Electronic devices and circuits using MICRO-CAP III. New York: Merrill, 1992.
Find full textBerube, R. H. Electronic devices and circuits using MICRO-CAP III. New York: Merrill, 1992.
Find full textSchouten, J. Micro systems and devices for (bio)chemical processes. Edited by ScienceDirect (Online service). London: Academic, 2010.
Find full textKirby, Brian. Micro- and nanoscale fluid mechanics: Transport in microfluidic devices. New York: Cambridge University Press, 2010.
Find full textMicro- and nanoscale fluid mechanics: Transport in microfluidic devices. New York: Cambridge University Press, 2010.
Find full textBook chapters on the topic "Micro-devices"
Juarez-Martinez, Gabriela, Alessandro Chiolerio, Paolo Allia, Martino Poggio, Christian L. Degen, Li Zhang, Bradley J. Nelson, et al. "Micro/Nanofluidic Devices." In Encyclopedia of Nanotechnology, 1391. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100416.
Full textFréchette, Luc G. "Micro Energy Conversion Devices." In Encyclopedia of Microfluidics and Nanofluidics, 1802–12. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_911.
Full textDeyhle, Hans, Georg Schulz, Bert Müller, Roger H. French, Roger H. French, Meghan E. Samberg, Nancy A. Monteiro-Riviere, et al. "Integrated Micro-acoustic Devices." In Encyclopedia of Nanotechnology, 1138–44. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_199.
Full textRen, Tian-Ling, Yu-Feng Wang, and Yi Yang. "Integrated Micro-acoustic Devices." In Encyclopedia of Nanotechnology, 1665–71. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_199.
Full textFréchette, Luc G. "Micro Energy Conversion Devices." In Encyclopedia of Microfluidics and Nanofluidics, 1–13. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_911-2.
Full textShoji, Shuichi, Masanori Ishizuka, Hironobu Sato, Takahiro Arakawa, and Jun Mizuno. "Micro/Nano Fabrication Technologies and Micro Flow Devices for Future Energy Devices." In Nanostructure Science and Technology, 49–64. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1424-8_5.
Full textHunsperger, Robert G. "Micro-Optical-Electro-Mechanical Devices." In Integrated Optics, 403–22. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b98730_19.
Full textTan, Yung-Chieh, Shia-Yen Teh, and Abraham P. Lee. "Micro-/Nanodroplets in Microfluidic Devices." In Springer Handbook of Nanotechnology, 553–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02525-9_20.
Full textTan, Mike, and Abraham Lee. "Micro/Nanodroplets in Microfluidic Devices." In Springer Handbook of Nanotechnology, 571–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-29857-1_21.
Full textHunsperger, Robert G. "Micro-Optical-Electro-Mechanical Devices." In Advanced Texts in Physics, 349–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-38843-2_19.
Full textConference papers on the topic "Micro-devices"
Sumetsky, M. "Optical micro/nanofiber devices." In 2010 36th European Conference and Exhibition on Optical Communication - (ECOC 2010). IEEE, 2010. http://dx.doi.org/10.1109/ecoc.2010.5621582.
Full textMerced, Emmanuelle, Rafmag Cabrera, Noraica Da´vila, Nelson Sepu´lveda, and Fe´lix E. Ferna´ndez. "Multifunctional Micro-Mechanical Memory Devices." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-4965.
Full textSchreiber, Jrgen, Beatrice Bendjus, Bernd K÷hler, Valeri Melov, and Tilo Baumbach. "Materials characterization of micro-devices." In NDE for Health Monitoring and Diagnostics, edited by Norbert Meyendorf, George Y. Baaklini, and Bernd Michel. SPIE, 2004. http://dx.doi.org/10.1117/12.570272.
Full textShan, Xuechuan, S. H. Ling, H. P. Maw, C. W. Lu, and Y. C. Lam. "Micro embossing of ceramic green substrates for micro devices." In 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (MEMS/MOEMS). IEEE, 2008. http://dx.doi.org/10.1109/dtip.2008.4753017.
Full textPhi Nguyen Truong, Ryo Teshima, Tadahiro Hasegawa, and Hiroyuki Nishikawa. "Proton Beam Writing micro fabrication system for micro chemical devices." In 2010 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2010. http://dx.doi.org/10.1109/mhs.2010.5669508.
Full textKim, Joohan, and Xianfan Xu. "Laser fabrication of micro-fluidic devices." In ICALEO® 2001: Proceedings of the Laser Materials Processing Conference and Laser Microfabrication Conference. Laser Institute of America, 2001. http://dx.doi.org/10.2351/1.5059840.
Full textChen, Ray T., and Harish Subbaraman. "Silicon nano- and micro-photonic devices." In 2009 14th OptoElectronics and Communications Conference (OECC). IEEE, 2009. http://dx.doi.org/10.1109/oecc.2009.5213225.
Full textOhta, Jun. "Micro-optoelecronic devices for biomedical applications." In 2016 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2016. http://dx.doi.org/10.1109/omn.2016.7565848.
Full textHabli, Mohamad A. "Micro all-optical and optoelectronic devices." In Photonics Fabrication Europe, edited by Uwe F. W. Behringer, Bernard Courtois, Ali M. Khounsary, and Deepak G. Uttamchandani. SPIE, 2003. http://dx.doi.org/10.1117/12.471990.
Full textZhang, X. P., Z. Lu, and Y. Sun. "Disposable micro devices for clinical ICSI." In TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969369.
Full textReports on the topic "Micro-devices"
Clague, D. S. Lattice Boltzmann Modeling of Micro-fluidic Devices. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/15004302.
Full textJiang, Hongxing, and Jingyu Lin. UV/Blue III-Nitride Micro-Cavity Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada399578.
Full textJiang, Hongxing, and Jingyu Lin. UV/Blue III-Nitride Micro-Cavity Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada390015.
Full textJiang, Hongxing, and Jingyu Lin. UV/Blue III-Nitride Micro-Cavity Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada390174.
Full textRais-Zadeh, Mina. Micro-Devices Using Resistance Change Materials (MODERN Materials). Fort Belvoir, VA: Defense Technical Information Center, March 2014. http://dx.doi.org/10.21236/ada622083.
Full textMoll, Amy J., Judi Steciak, and Donald G. Plumlee. Micro-Propulsion Devices in Low Temperature Co-Fired Ceramics. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada495405.
Full textPainter, Oskar, Kerry Vahala, Jeff Kimble, and Tobias Kippenberg. Micro-and Nano-Optomechanical Devices for Sensors, Oscillators, and Photonics. Fort Belvoir, VA: Defense Technical Information Center, October 2015. http://dx.doi.org/10.21236/ada622998.
Full textRuby N. Ghosh, Reza Loloee, Roger G. Tobin, and Yung Ho Kahng. Silicon Carbide Micro-devices for Combustion Gas Sensing under Harsh Conditions. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/882583.
Full textRuby N. Ghosh, Peter Tobias, and Roger G. Tobin. SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/824012.
Full textRuby Ghosh, Reza Loloee, and Roger Tobin. Silicon Carbide Micro-devices for Combustion Gas Sensing under Harsh Conditions. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/961522.
Full text