Academic literature on the topic 'Micro-swimmer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Micro-swimmer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Micro-swimmer"

1

Avron, J. E., O. Kenneth, and D. H. Oaknin. "Pushmepullyou: an efficient micro-swimmer." New Journal of Physics 7 (November 18, 2005): 234. http://dx.doi.org/10.1088/1367-2630/7/1/234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ALOUGES, FRANÇOIS, ANTONIO DESIMONE, and LUCA HELTAI. "NUMERICAL STRATEGIES FOR STROKE OPTIMIZATION OF AXISYMMETRIC MICROSWIMMERS." Mathematical Models and Methods in Applied Sciences 21, no. 02 (2011): 361–87. http://dx.doi.org/10.1142/s0218202511005088.

Full text
Abstract:
We propose a computational method to solve optimal swimming problems, based on the boundary integral formulation of the hydrodynamic interaction between swimmer and surrounding fluid and direct constrained minimization of the energy consumed by the swimmer. We apply our method to axisymmetric model examples. We consider a classical model swimmer (the three-sphere swimmer of Golestanian et al.) as well as a novel axisymmetric swimmer inspired by the observation of biological micro-organisms.
APA, Harvard, Vancouver, ISO, and other styles
3

Ishikawa, Takuji. "Stability of a Dumbbell Micro-Swimmer." Micromachines 10, no. 1 (2019): 33. http://dx.doi.org/10.3390/mi10010033.

Full text
Abstract:
A squirmer model achieves propulsion by generating surface squirming velocities. This model has been used to analyze the movement of micro-swimmers, such as microorganisms and Janus particles. Although squirmer motion has been widely investigated, motions of two connected squirmers, i.e., a dumbbell squirmer, remain to be clarified. The stable assembly of multiple micro-swimmers could be a key technology for future micromachine applications. Therefore, in this study, we investigated the swimming behavior and stability of a dumbbell squirmer. We first examined far-field stability through linear
APA, Harvard, Vancouver, ISO, and other styles
4

Ishikawa, Takuji, Tomoyuki Tanaka, Yohsuke Imai, Toshihiro Omori, and Daiki Matsunaga. "Deformation of a micro-torque swimmer." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2185 (2016): 20150604. http://dx.doi.org/10.1098/rspa.2015.0604.

Full text
Abstract:
The membrane tension of some kinds of ciliates has been suggested to regulate upward and downward swimming velocities under gravity. Despite its biological importance, deformation and membrane tension of a ciliate have not been clarified fully. In this study, we numerically investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modelled as a capsule with a hyperelastic membrane enclosing a Newtonian fluid. Thrust forces due to the ciliary beat were modelled as torques distributed above the cell body. The effects of membrane elasticity, the asp
APA, Harvard, Vancouver, ISO, and other styles
5

Roper, Marcus, Rémi Dreyfus, Jean Baudry, Marc Fermigier, Jérôme Bibette, and Howard A. Stone. "Do magnetic micro-swimmers move like eukaryotic cells?" Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, no. 2092 (2008): 877–904. http://dx.doi.org/10.1098/rspa.2007.0285.

Full text
Abstract:
Recent advances in micro-machining allow very small cargos, such as single red blood cells, to be moved by outfitting them with tails made of micrometre-sized paramagnetic particles yoked together by polymer bridges. When a time-varying magnetic field is applied to such a filament, it bends from side to side and propels itself through the fluid, dragging the load behind it. Here, experimental data and a mathematical model are presented showing the dependence of the swimming speed and direction of the magnetic micro-swimmer upon tunable parameters, such as the field strength and frequency and t
APA, Harvard, Vancouver, ISO, and other styles
6

Pimponi, D., M. Chinappi, P. Gualtieri, and C. M. Casciola. "Hydrodynamics of flagellated microswimmers near free-slip interfaces." Journal of Fluid Mechanics 789 (January 22, 2016): 514–33. http://dx.doi.org/10.1017/jfm.2015.738.

Full text
Abstract:
The hydrodynamics of a flagellated micro-organism is investigated when swimming close to a planar free-slip surface by means of numerical solutions of the Stokes equations obtained via a boundary element method. Depending on the initial conditions, the swimmer can either escape from the free-slip surface or collide with the boundary. Interestingly, the micro-organism does not exhibit a stable orbit. Independently of escape or attraction to the interface, close to a free-slip surface, the swimmer follows a counter-clockwise trajectory, in agreement with experimental findings (Di Leonardo et al.
APA, Harvard, Vancouver, ISO, and other styles
7

Mathijssen, A. J. T. M., A. Doostmohammadi, J. M. Yeomans, and T. N. Shendruk. "Hydrodynamics of micro-swimmers in films." Journal of Fluid Mechanics 806 (September 29, 2016): 35–70. http://dx.doi.org/10.1017/jfm.2016.479.

Full text
Abstract:
One of the principal mechanisms by which surfaces and interfaces affect microbial life is by perturbing the hydrodynamic flows generated by swimming. By summing a recursive series of image systems, we derive a numerically tractable approximation to the three-dimensional flow fields of a stokeslet (point force) within a viscous film between a parallel no-slip surface and a no-shear interface and, from this Green’s function, we compute the flows produced by a force- and torque-free micro-swimmer. We also extend the exact solution of Liron & Mochon (J. Engng Maths, vol. 10 (4), 1976, pp. 287–
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, Shimin, Ningze Ma, Hao Yu, et al. "Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field." Nanomaterials 9, no. 12 (2019): 1672. http://dx.doi.org/10.3390/nano9121672.

Full text
Abstract:
Recent strides in micro- and nanofabrication technology have enabled researchers to design and develop new micro- and nanorobots for biomedicine and environmental monitoring. Due to its non-invasive remote actuation and convenient navigation abilities, magnetic propulsion has been widely used in micro- and nanoscale robotic systems. In this article, a highly efficient Janus microdimer swimmer propelled by a rotating uniform magnetic field was investigated experimentally and numerically. The velocity of the Janus microdimer swimmer can be modulated by adjusting the magnetic field frequency with
APA, Harvard, Vancouver, ISO, and other styles
9

Iima, M., and A. S. Mikhailov. "Propulsion hydrodynamics of a butterfly micro-swimmer." EPL (Europhysics Letters) 85, no. 4 (2009): 44001. http://dx.doi.org/10.1209/0295-5075/85/44001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KEAVENY, ERIC E., and MARTIN R. MAXEY. "Spiral swimming of an artificial micro-swimmer." Journal of Fluid Mechanics 598 (February 25, 2008): 293–319. http://dx.doi.org/10.1017/s0022112007009949.

Full text
Abstract:
A device constructed from a filament of paramagnetic beads connected to a human red blood cell will swim when subject to an oscillating magnetic field. Bending waves propagate from the tip of the tail toward the red blood cell in a fashion analogous to flagellum beating, making the artificial swimmer a candidate for studying what has been referred to as ‘flexible oar’ micro-swimming. In this study, we demonstrate that under the influence of a rotating field the artificial swimmer will perform ‘corkscrew’-type swimming. We conduct numerical simulations of the swimmer where the paramagnetic tail
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!