Academic literature on the topic 'Microalgues – Biotechnologie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microalgues – Biotechnologie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Microalgues – Biotechnologie"

1

Ramírez, M. E., Y. H. Vélez, L. Rendón, and E. Alzate. "Potential of microalgae in the bioremediation of water with chloride content." Brazilian Journal of Biology 78, no. 3 (October 23, 2017): 472–76. http://dx.doi.org/10.1590/1519-6984.169372.

Full text
Abstract:
Abstract In this work it was carried out the bioremediation of water containing chlorides with native microalgae (MCA) provided by the Centre for study and research in biotechnology (CIBIOT) at Universidad Pontificia Bolivariana. Microalgae presented an adaptation to the water and so the conditions evaluated reaching a production of CO2 in mg L-1 of 53.0, 26.6, 56.0, 16.0 and 30.0 and chloride removal efficiencies of 16.37, 26.03, 40.04, 25.96 and 20.25% for microalgae1, microalgae2, microalgae3, microalgae4 and microalgae5 respectively. Water bioremediation process was carried out with content of chlorides in fed batch system with an initial concentration of chlorides of 20585 mg L-1 every 2 days. The Manipulated variables were: the flow of MCA3 (10% inoculum) for test one; NPK flow for test two, and flow of flow of MCA3+0.5 g L-1 NPK. Chloride removal efficiencies were 66.88%, 63.41% and 66.98% for test one, two and three respectively, for a total bioprocess time of 55 days.
APA, Harvard, Vancouver, ISO, and other styles
2

Bosso, Alessandra, Naiale Fernanda Da Silva Veloso, Camila Fernanda Alba, Josemeyre Bonifácio Da Silva, Luiz Rodrigo Ito Morioka, and Helio Hiroshi Suguimoto. "Microalgae Grown in Cheese Whey and β-galactosidase Production." Ensaios e Ciência C Biológicas Agrárias e da Saúde 24, no. 3 (October 26, 2020): 268–72. http://dx.doi.org/10.17921/1415-6938.2020v24n3p268-272.

Full text
Abstract:
O soro de queijo é o principal subproduto da indústria de laticínios e a alta demanda biológica e química de oxigênio (DBO e DQO) pode causar vários problemas ambientais. Estudos recentes apontam os potenciais usos biotecnológicos do soro de queijo, como o meio de fermentação, para a produção de β-galactosidase. A enzima é muito importante para hidrólise da lactose em galactose e glicose, monossacarídeos mais digeríveis pelo organismo humano. As microalgas podem produzir a β-galactosidase através de processos fermentativos. O objetivo da presente revisão é descrever sucintamente o progresso recente sobre o uso de microalgas na produção de β-galactosidase. No geral, o artigo resume o estado atual do conhecimento sobre microalgas, beta-galactosidase e soro de queijo como fonte de carbono para o crescimento de microalgas e dentro do conceito de economia circular. No entanto, ainda são necessários estudos adicionais sobre as melhores condições de cultivo de microalgas com o objetivo de produzir a enzima em questão. Palavras-chave: Indústria de lacticínio. Biotecnologia. Economia Circular. Valor Agregado. Abstract Cheese whey is the main by-product of dairy industry and due to high biological and chemical oxygen demands (BOD and COD) can cause several environmental problems. Recent studies have pointed the biotechnological potential uses of cheese whey such as fermentation medium to the β-galactosidase production. The enzyme is very important to breakdown the lactose into galactose and glucose, monosaccharide sugars more digestible than lactose. Microalgae can produce β-galactosidase through fermentative processes. The purpose of the current mini-review is to succinctly describe recent progress about the use of microalgae to β-galactosidase production. Overall, the paper summarizes the current state of knowledge about microalgae, beta-galactosidase and cheese whey as carbon source to growing of microalgae and within circular economy concept. However, there is still a need for further studies regarding the best microalgae cultivation conditions with the objective of producing the enzyme in question. Keywords: Dairy industry. Biotechnology. Circular Economy. Added Value.
APA, Harvard, Vancouver, ISO, and other styles
3

Benemann, John R., David M. Tillett, and Joseph C. Weissman. "Microalgae biotechnology." Trends in Biotechnology 5, no. 2 (February 1987): 47–53. http://dx.doi.org/10.1016/0167-7799(87)90037-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ching, Wong Y., and Nur A. Shukri. "Investigations of Light Intensities, Nutrient, and Carbon Sources Towards Microalgae Oil Production via Soxhlet Extraction Techniques." Current Biotechnology 10, no. 1 (May 20, 2021): 46–54. http://dx.doi.org/10.2174/2211550110666210204151145.

Full text
Abstract:
Aims: This study was carried out to study the optimized condition for microalgae cultivation in terms of light intensity, and nutrient supply. Also, use of a carbon source was studied to optimize the microalgae growth to produce microalgae with a high biomass productivity and a high lipid content. Background: Algae can be categorized into macroalgae and microalgae. Commonly, microalgae are used to produce biodiesel since microalgae can yield 5000-15000 of oil gallons compared to plant-based biomass as feedstock produced 50-500 oil gallon. Furthermore, microalgae do not face any food crisis and can be cultivated in any wasteland that is not suitable for agriculture throughout the year, compared to crops. Microalgae can also be cultivated in freshwater, saline water and wastewater. Methods: Microalgae cultivation was carried out with microalgae culture labelled as MX1, MX2, MX3, MX4 and were cultivated under high light intensities, whereas MY1, MY2, MY3, MY4 were cultivated under medium light intensity and MZ1, MZ2, MZ3 MZ4 became control culture that was cultivated under high light intensities and no light condition. Results: The effect of light intensity, NPK fertilizer, and glucose on microalgae’s biomass production will be observed simultaneously. At the end of cultivation, MX2 obtained the highest biomass of 97.186 g. The oil extraction yield is 9.66%. GC-MS analysis showed the presence of UFA and PUFA in the oil. Conclusion: Thus, future research is needed to improve the technique to increase the microalgae biomass and lipid to become the potential feedstock for the production of biodiesel.
APA, Harvard, Vancouver, ISO, and other styles
5

Vasilieva, S. G., E. S. Lobakova, A. A. Lukyanov, and A. E. Solovchenko. "Immobilized microalgae in biotechnology." Moscow University Biological Sciences Bulletin 71, no. 3 (July 2016): 170–76. http://dx.doi.org/10.3103/s0096392516030135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Turner, Michael. "Microalgae — biotechnology and microbiology." Journal of Experimental Marine Biology and Ecology 183, no. 2 (November 1994): 300–301. http://dx.doi.org/10.1016/0022-0981(94)90095-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Valverde, Federico, Francisco J. Romero-Campero, Rosa León, Miguel G. Guerrero, and Aurelio Serrano. "New challenges in microalgae biotechnology." European Journal of Protistology 55 (August 2016): 95–101. http://dx.doi.org/10.1016/j.ejop.2016.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abu-Ghosh, Said, Dror Fixler, Zvy Dubinsky, and David Iluz. "Flashing light in microalgae biotechnology." Bioresource Technology 203 (March 2016): 357–63. http://dx.doi.org/10.1016/j.biortech.2015.12.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pritchard, Hayden N. "Microalgae: Biotechnology and Microbiology.E. W. Becker." Quarterly Review of Biology 70, no. 3 (September 1995): 350–51. http://dx.doi.org/10.1086/419123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pulz, Otto, and Wolfgang Gross. "Valuable products from biotechnology of microalgae." Applied Microbiology and Biotechnology 65, no. 6 (August 6, 2004): 635–48. http://dx.doi.org/10.1007/s00253-004-1647-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Microalgues – Biotechnologie"

1

Bélair, Viviane. "Développement de nouvelles techniques d’extraction des lipides à partir des microalgues en vue de leur valorisation en biocarburant." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28924/28924.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Colin, Sébastien. "Développement d'enzymes recombinants issus des bactéries marines P. Carrageenovora et SW5 pour la production d'oligo-fucoïdanes et d'oligo-ë-carraghenane." Compiègne, 2005. http://hal.upmc.fr/tel-01115060.

Full text
Abstract:
Ce travail visait à caractériser et produire deux enzymes originaux hydrolysant d'une part un polysaccharide pariétal d'algue rouge (le γ-carraghénane), et d'autre part un polysaccharide d'algue brune (le fucoïdane). Ces deux endo-hydrolases extracellulaires sont produites par deux bactéries marines saprophytes, P. Carrageenovora, et SW5. Suite à la purification des deux enzymes sauvages, leur[s] gène[s] ont été clonés puis séquencés. L'activité recombinante obtenue par surexpression dans E. Coli a validé les séquences obtenues. L'analyse de ces dernières montre l'architecture modulaire des deux protéines. Cependant, le domaine catalytique de la γ-carraghénase n'a pas pu être identifié. Il s'agit donc d'un membre orphelin des glycoside hydrolases, distinct des carraghénases préalablement caractérisées. A l'inverse, les similitudes partagées par la séquence de la fucoïdanase avec deux autres fucoïdanases, a permis de définir une nouvelle famille de glycoside hydrolases
This work aimed to characterize and produce two new biocatalysts which hydrolyze two polysaccharides extracted from the cell wall of red algae (γ-carrageenan) and brown algae (fucoidan). These extracellular endo-hydrolases are produced by two saprophytic marine bacteria, Pseudoalteromonas carrageenovora, (y-Proteobacteria), and SW5 (Bacteroidetes). Following the purification ofwild-type proteins, their genes were cloned and sequenced. The recombinant activity obtained by overexpression in E. Coli confirmed that the cloned sequences coded for corresponding enzymes. Sequence analysis showed that the enzymes have a modular structure. The catalytic domain of the γ-carrageenase was net identified. This enzyme is therefore different from previously described glycoside hydrolases, and aise distinct from previously known carrageenases. The fucoidanase sequence shares similarity with two other bacterial putative fucoïdanase and these three enzymes define a new glycosidase family
APA, Harvard, Vancouver, ISO, and other styles
3

Ruiz-Sanchez, Patricia. "Optimisation de la culture de microalgues en milieu vibré : application à Arthrospira platensis." Compiègne, 2008. http://www.theses.fr/2008COMP1761.

Full text
Abstract:
Nous avons optimisé la culture d'A. Platensis en bioréacteur. Nous avons caractérisé et mis au point un système de culture qui comporte un bioréacteur en sac plastique fixé à une table vibrante. Une étude comparative entre un système de référence de culture et le système vibré a démontré que la croissance d'A. Platensis est réalisable en milieu vibré. L'optimisation de la culture en milieu vibré a été initialement effectuée à 15000 Lux qui a permis d'obtenir une concentration cellulaire X de 1,0 g/L et une productivité (P) de 0,2 g/Lj. Ensuite, d'autres cultures ont été réalisées à 15000 Lux, puis exposées directement à 31700 Lux. Nous avons démontré qu'à cette dernière intensité, la croissance cellulaire est limitée en carbone. Les valeurs de X et P sont de 1,4 g/L et de 0,3 g/Lj respectivement. Dans ces conditions, la mort cellulaire apparaît à des valeurs de pH supérieures à 11. Pour satisfaire le besoin en carbone, nous avons effectué la culture en photoautotrophie et en mixotrophie avec un contrôle de pH par injection de CO2. Cela a permis de maximiser X et P. En photoautotrophie, X = 3,4 g/L et P = 0,49 g/Lj et en mixotrophie, X = 3,9 g/L et P = 0,57 g/Lj
In this work, we aim to develop and characterize a new adapted culture system for A. Platensis. It is based on surface aeration of a flexible pouch bioreactor fixed on a vibrating table. A comparative study between a culture reference system and the vibrated system shows that the growth of A. Platensis is suitable in vibrated culture. The vibrated culture has been firstly optimized by increasing the light at an intensity of 15000 Lux. In these conditions, X reached 1. 0 g/L and P was 0. 2 g/Ld. Furthermore, other cultures were placed at 15000 Lux and then exposed directly to 31700 Lux. It has been showed that at 31700 Lux, the cellular growth is limited by the carbon. The values X and P are respectively 1. 4 g/L and 0. 3 g/Ld. In these conditions, the cellular death appears at pH values higher than 11. To feed microalgae in carbon, we submitted the cellular growth to phototrophic and mixotrophic conditions under pH control using CO2 injection. It allowed to optimize X and P. In phototrophic conditions, X = 3. 4 g/L and P = 0. 49 g/Ld and in mixotrophic conditions, X = 3. 9 g/L and P = 0. 57 g/Ld
APA, Harvard, Vancouver, ISO, and other styles
4

Gachelin, Manon. "Réponse du phytoplancton à différentes pressions de sélection continues." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS049.

Full text
Abstract:
Le phytoplancton, qui regroupe un ensemble de microorganismes aquatiques photosynthétiques unicellulaires, est consommé depuis des millénaires par des civilisations d’Asie et d’Amérique du Sud. En effet, leur teneur parfois très importante en protéines ou en lipides en font une source intéressante d’acides gras essentiels, polyinsaturés (AGPI) notamment. Mes travaux ont été menés sur Tisochrysis lutea, une haptophyte déjà exploitée pour l’aquaculture, qui pourrait à terme se substituer aux huiles de poissons surexploités. En me basant sur le principe d’évolution de Darwin, j’ai soumis cette espèce à une pression de sélection d’intensité croissante, dans le but de faire émerger des individus ayant une teneur accrue en AGPI. La sélection a été réalisée dans des cultures en continue maintenues pendant 6 mois dans des photobioréacteurs automatisés (sélectiostats). Un consortium de douze souches a été soumis à des variations de température ou à des variations conjointes de lumière et de température en opposition de phase, d’amplitudes croissantes au cours du temps. Les résultats montrent que cette pression de sélection a permis un doublement de la teneur en lipides totaux (voire une multiplication par 5 pour certaines souches), sans perte de croissance ni de qualité nutritionnelle, les profils d’acides gras des lipides polaires (naturellement riches en AGPI), n’ayant pas été significativement modifiés. L’augmentation des lipides totaux se répercute donc directement sur celle de chaque acide gras. Une analyse génétique a mis en avant des mutations du génome de ces souches, signe que la population finale résulte d’un processus d’adaptation et non uniquement d’acclimatation
Phytoplankton gatherunicellular aquatic photosynthetic microorganisms. It has been used for millennia as a food source by civilisations from Asia and South America. On top of the high protein or lipid content they are also a promising polyunsaturated fatty acids (PUFAs) source. My work was carried out with Tisochrysis lutea, anhaptophyte cultivated for aquaculture which could in fine replace fish oils. Using Darwinian evolution principle, I imposed to this species an increasing selection pressure, with the objective to favour the individuals with an enhanced PUFAs content. Selection took place in continuous cultures maintained for 6 months in automated photobioreactors (sélectiostats). A consortium of twelve strains was exposed either to temperature oscillations, or to combined opposite light and temperature oscillations, with increasing amplitude. Results show that this selection pressure lead to a two-fold increase in total lipid content (five-fold increase for some strains), without any decrease in growth rate or nutritional quality, as the fatty acid profiles in polar lipids (naturally rich in PUFAs) were not significantly modified. The increase in total lipids is therefore associated to an increase in the cell content of each fatty acid. Genomic analyses revealed mutations in the genome, demonstrating that the final population results from an evolutionary process, and not simply from acclimation
APA, Harvard, Vancouver, ISO, and other styles
5

Moulin, Solène. "Synthesis of hydrocarbons in algae : from biodiversity to biotechnology." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0429.

Full text
Abstract:
Les hydrocarbures (HCs) sont prédominants dans notre économie actuelle (carburants, cosmétiques, chimie, etc.) mais sont quasi-exclusivement issus des ressources fossiles. Les problématiques de changement climatique et d’épuisement des ressources poussent les recherches vers l’étude et la domestication des voies de synthèse naturelles d’HCs. Lorsque j’ai commencé ma thèse, une enzyme de biosynthèse d’HC, l’acide gras photodécarboxylase (FAP) venait d’être découverte chez la microalgue Chlorella. J’ai d’abord caractérisé son homologue chez la microalgue modèle Chlamydomonas. Une étude phylogénétique de la famille des GMC oxidoréductases à laquelle appartient la FAP a permis d’identifier un large réservoir de de 200 FAPs putatives. La caractérisation biochimique de plusieurs d’entre elles a permis de montrer qu’une FAP fonctionnelle a été conservée lors des endosymbioses secondaires. Cela suggère que la FAP joue un rôle important chez les algues. Ce rôle a été étudié par une approche de génétique inverse chez Chlamydomonas. La caractérisation physiologique de mutants knockout a permis de démontrer le rôle de la FAP dans la synthèse d’HCs dans le chloroplaste et de mettre en évidence des modifications physiologiques transitoires. Des mécanismes de compensation à l’absence d’HCs restent donc à découvrir. Dans une dernière partie, j’ai développé une souche d’E. coli exprimant la FAP et une thioestérase. Cette souche produit en continu des HCs dans la phase gaz des cultures, ce qui permet une récolte facilitée du produit d’intérêt sous forme pure. Cette étude constitue une preuve de concept que la FAP pourrait être utilisée pour la production biosourcée d’HCs
Hydrocarbons (HCs) are predominant in our current economy (fuels, cosmetics, chemicals, etc.) but are almost exclusively derived from fossil resources. Climate change and resource depletion concerns are pushing research towards the study and domestication of natural HC synthesis pathways. When I started my thesis, a HC forming enzyme, the fatty acid photodecarboxylase (FAP) had just been discovered in the microalgae Chlorella. I first characterised its homolog in the model microalgae Chlamydomonas. A phylogenetic study of the GMC oxidoreductase family to which the FAP belongs has allowed identification of a large reservoir of 200 putative FAPs. Biochemical characterisation of several of them showed that a functional FAP was maintained during secondary endosymbiosis. This suggests that FAP plays an important role in algae. This role has been studied by a reverse genetic approach in Chlamydomonas. The physiological characterisation of knockout mutants demonstrated the role of FAP in the synthesis of HCs in chloroplasts as well as transient physiological changes. Mechanisms to compensate for the absence of HCs therefore remain to be discovered. In a last part, I developed a strain of E. coli expressing the FAP and a thioesterase. This strain continuously produces HCs in the gas phase of the cultures, which allows an easier harvesting of the product of interest in a pure form. This study is a proof of concept that FAP could be used for the biobased production of HCs
APA, Harvard, Vancouver, ISO, and other styles
6

Hejsek, Michal. "Využití odpadu ze zpracování fosforu za účelem produkce látek se zvýšenou přidanou hodnotou." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2015. http://www.nusl.cz/ntk/nusl-217151.

Full text
Abstract:
This master thesis focuses on reuse of waste water from industrial plant processing yellow phosphorus. Theoretical part summarizes physical and chemical properties of phosphorus, its transport in biosphere and its role in living organisms. Also the production process of the industrial plant is described. Waste water that contains waste byproducts is considered to be useful source of essential nutrients for economical large scale microalgae cultivation and development of biotechnological processes. In practical part, optimization of growth conditions for microalgae Chlorella pyrenoidosa Chick (IPPAS C-2) cultivation in medium based on wastewater from yellow phosphorus warehouse is presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Beji, Olfa. "Traitement des eaux usées dans des bioréacteurs multitrophiques grâce à des flocs de microalguesbactéries valorisables en biogaz." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0289/document.

Full text
Abstract:
Le traitement biologique des eaux usées urbaines et industrielles reste une activité ayant un impact négatif sur l’environnement et sur le changement climatique par l’émission des gaz à effet de serre (GES), notamment le CO2. Les changements innovants au niveau des procédés de traitement des eaux usées par l’intégration des flocs de microalgues-bactéries ont abouti à des procédés multitrophiques sans apport d’O2 et sans dégagement du CO2. Il s'agit d'une étude de faisabilité de ces flocs-MaB pour la photobioremédiation des polluants (organiques et minéraux) et pour la production de biomasse valorisable en bioénergie dans le cadre de l'économie circulaire. En présence de la lumière, les flocs-MaB ont été intégrés dans des photobioréacteurs à biomasse fixe afin d'assurer un traitement durable des eaux usées grâce aux échanges symbiotiques entre les micro-oragnismes en terme de nutriments et de gaz. L'encapsulation des flocs-MaB dans des billes de PVA-alginate a montré l'effet des conditions physico-chimiques et hydrodynamiques sur l'élimination des polluants et l'évolution multicellulaire des flocs au sein des réacteurs à multi-échelles. Par ailleurs, la biomasse multitrophique immobilisée sur des supports biodégradables d'olive (OPP) et sur des disques en PVC a assuré une meilleure performance des bioréacteurs à lit fluidisé et à disques rotatifs, respectivement, pour la bioremédiation des eaux usées. Les propriétés des supports (porosité, rugosité et structure) et les comportements hydrodynamiques ont été contrôlés pour favoriser l'attachement des biofilms multitrophiques. Le développement de biofilm montre l'effet des interactions multitrophiques entre les microalgues et les bactéries sur l'élimination des composés organiques (DCO) et nutriments (ammonium et phosphore). La biomasse des flocs-MaB a été récupérée et réutilisée pour le traitement du digestat liquide à l'issu du digesteur et pour améliorer la production de biométhane par une co-digestion anaérobie. Ce procédé multitrophique et intégré permet d'obtenir Zéro déchet à la sortie du processus
The biological treatment of urban and industrial wastewaters represents a process with a negative impact on the environment and on climate change through the emission of greenhouse gases (GHG), particularly CO2. In the presence of light, microalgae-bacteria flocs (MaB-flocs) have been integrated into photobioreactors with fixed biomass to ensure a sustainable wastewater treatment without O2 supply and CO2 release. The entrapment of flocs in PVA-alginate beads has shown the effect of physicochemical and hydrodynamic conditions on the elimination of pollutants and the multicellularity evolution within multi-scale bioreactors. In addition, the immobilization of biomass on biodegradable olive carriers and on PVC disks provided a better performance of fluidized bed and rotating discs bioreactors, respectively, for the bioremediation of wastewater. The properties of the supports (porosity, roughness, and structure) and the hydrodynamic behaviors have favored the attachment of multitrophic biofilms. Biofilm development shows the effect of multitrophic interactions between microalgae and bacteria on the organic compounds (COD) and nutrients (ammonium and phosphorus) removals. The MaB-flocs biomass was recovered and reused for the treatment of the digestate and to improve the production of biomethane by anaerobic co-digestion. This integrated multitrophic technology makes it possible to obtain zero wastes at the end of the process
APA, Harvard, Vancouver, ISO, and other styles
8

Valencia, Suarez Julio Enrique. "Development of tools for biotechnology of microalgae." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/development-of-tools-for-biotechnology-of-microalgae(b94627d0-c6c0-4055-bbaf-06e9cb9c565e).html.

Full text
Abstract:
Green microalgae are an important source of natural products such as β-carotene, and have recently become objects of intense study for producing biodiesel and valuable recombinant proteins. Application of chloroplast engineering in microalgae is limited by the availability of tools for genetically engineering the chloroplast of commercially important species. The phytoene desaturase gene of a previously isolated norflurazon tolerant mutant of Chlamydomonas reinhardtii was isolated and sequenced. A thymine to guanine transversion in exon 2 changes codon 131 resulting in a F131V mutation that is located in the NADP binding site domain on the primary structure. This mutation clusters with three conserved amino acids, whose substitution confers norflurazon tolerance in other species, in a pocket on a 3-D structure of the protein. The pocket identifies the target site of norflurazon. The side pocket is at the opening of a tunnel leading to the enzyme's NADP binding site. The mutant gene was cloned and used as marker for glass-bead mediated nuclear transformation of C. reinhardtii using direct selection with 5 μM norflurazon. Integration was by illegitimate recombination and transformants were able to grow in media containing 150 μM norflurazon. Transformants exhibited cross tolerance to fluridone, flurtamone, and diflufenican but were more sensitive to beflubutamid than wildtype. This allows mutant pds gene to act as a dual negative/positive selectable marker that is conditional on the herbicide used. The F131V mutation was introduced into a synthetic gene encoding a Dunaliella salina phytoene desaturase that contained codons used frequently in C. reinhardtii chloroplast genes. The 1.8 kbp CpPDS1 gene was assembled from 74 oligonucleotides by overlap PCR. The coding sequence was inserted into a Dunaliella tertiolecta chloroplast targeting vector that integrated the CpPDS1 sequence into the ycf3-trnL-rbcL region of the plastome. The resulting vector was transformed into D. salina and D. tertiolecta chloroplasts using particle bombardment with plasmid coated gold microprojectiles. Norflurazon tolerant colonies were isolated and the D. salina and D. tertiolecta clones were shown to contain a pds gene integrated in the plastome using PCR analyses. Transformation of the CpPDS1 gene into C. reinhardtii chloroplasts by rescue of an atpB mutation only gave rise to herbicide tolerant colonies if the presequence was removed. Industrial production of algae in large volumes is limited by the availability of light to drive algal growth. This problem was addressed by expressing fluorescent protein Katushka in the chloroplast of C. reinhardtii which converts yellow light to red light. The Katushka gene was transformed into chloroplasts using vector pB10, which was constructed to rescue a deletion in the chloroplast atpB gene in the mutant CC373 strain. The Katushka coding sequence was codon-optimised for expression in chloroplasts and expressed from three different promoter and 5' UTRs (atpA, atpB and psbD). C. reinhardtii wild type cells were able to grow under either blue or red LED lights but grew best when both were present. Wild type cell grew poorly in yellow LED lighting. Cells expressing Katushka in the chloroplast exhibited enhanced autotrophic growth in yellow light and under conditions where yellow light was present and red light was limiting. The improvement in growth was related to the levels of Katushka fluorescence detected in chloroplast transformants, which was highest for the atpA promoter and UTR.
APA, Harvard, Vancouver, ISO, and other styles
9

Zea, OBANDO Claudia Yamilet. "Caractérisation et valorisation de microalgues tropicales." Thesis, Lorient, 2015. http://www.theses.fr/2015LORIS385/document.

Full text
Abstract:
La biomasse des microalgues tropicales a des vertus naturelles qui peuvent être utilisées dans une large gamme de bioproduits. Leur valorisation peut permettre une production durable et commercialement viable. En effet, les microalgues tropicales représentent une grande biodiversité et bénéficient de conditions environnementales favorables à une production à grande échelle. Dans ce contexte, cette thèse vise à étudier de nouvelles souches tropicales afin de connaître leur potentiel de valorisation dans le domaine des biotechnologies, et plus particulièrement sur trois aspects : énergie, nutraceutique et antifouling. Ce dernier domaine a été étudié dans le cadre du projet ANR-CD2I « BIOPAINTROP » dont l’objectif est la lutte écoresponsable contre le biofouling. Ces travaux s’orientent vers des applications biotechnologiques, mais aussi vers le développement des nouvelles méthodes de caractérisation de l’activité antifouling. Sur les 50 souches étudiées, certaines ont montré la production de métabolites d'intérêt tels que le glycosylglycerol, des lipides de qualité pour la nutraceutique et la production de biodiesel. La souche Amphidinium sp. (P-43) a conduit à un extrait méthanolique possédant une activité biologique significative. Son efficacité dans la lutte contre le biofilm a été démontrée. De plus, l'étude d'écotoxicologie réalisée laisse présager d'un faible impact environnemental
Biomass of tropical microalgae have natural virtues that can be used in a wide range of bioproducts. Their valuation can enable sustainable and commercially viable production. Indeed, tropical microalgae represent a large biodiversity and benefit from favourable environmental conditions for large scale production. In this context, this thesis aims to explore new tropical strains to determine their potential development in the field of biotechnology, particularly in three areas: energy, nutraceutical and antifouling. This field is studied in the project ANR-CD2I "BIOPAINTROP" whose objective is the eco-responsible fight against biofouling. These works target biotechnological applications, but also development of new methods to characterize antifouling activity.Of the 50 strains studied, some have shown interest in the production of metabolites such as glycosyl glycerol, quality nutraceutical and lipids for biodiesel production. The Amphidinium sp. (P-43) stain led to a methanol extract having biological activity of interest. Its efficiency against biofilm was demonstrated. Moreover, the ecotoxicology study has suggested a low environmental impact
APA, Harvard, Vancouver, ISO, and other styles
10

Pan, Jie. "Droplet-based microfluidics for the development of microalgal biotechnology." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Microalgues – Biotechnologie"

1

Posten, Clemens, and Steven Feng Chen, eds. Microalgae Biotechnology. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23808-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Microalgae: Biotechnology and microbiology. Cambridge: Cambridge University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Muller-Feuga, A. Microalgues marines: Les enjeux de la recherche. Plouzané, France: IFREMER, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Johansen, Melanie N. Microalgae: Biotechnology, microbiology, and energy. Hauppauge, N.Y: Nova Science Publisher's, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Handbook of marine microalgae: Biotechnology and applied phycology. Hoboken, NJ: John Wiley & Sons Inc., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alam, Md Asraful, and Zhongming Wang, eds. Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2264-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alam, Md Asraful, Jing-Liang Xu, and Zhongming Wang, eds. Microalgae Biotechnology for Food, Health and High Value Products. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0169-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ōyō bisai sōruigaku: Shokuryō kara enerugī made. Tōkyō-to Shinjuku-ku: Seizandō Shoten, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Posten, Clemens, and Steven Feng Chen. Microalgae Biotechnology. Springer, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Posten, Clemens, and Steven Feng Chen. Microalgae Biotechnology. Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Microalgues – Biotechnologie"

1

Cadoret, Jean-Paul, Gaël Bougaran, Jean-Baptiste Bérard, Grégory Carrier, Aurélie Charrier, Noémie Coulombier, Matthieu Garnier, et al. "Microalgae and Biotechnology." In Development of Marine Resources, 57–115. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119007760.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Jin, and Feng Chen. "Biology and Industrial Applications of Chlorella: Advances and Prospects." In Microalgae Biotechnology, 1–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/10_2014_286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bernard, Olivier, Francis Mairet, and Benoît Chachuat. "Modelling of Microalgae Culture Systems with Applications to Control and Optimization." In Microalgae Biotechnology, 59–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/10_2014_287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wagner, Ines, Markus Braun, Klaus Slenzka, and Clemens Posten. "Photobioreactors in Life Support Systems." In Microalgae Biotechnology, 143–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/10_2015_327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Havlik, Ivo, Thomas Scheper, and Kenneth F. Reardon. "Monitoring of Microalgal Processes." In Microalgae Biotechnology, 89–142. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/10_2015_328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Zheng, Tao Li, Zhi-gang Zhou, and Yue Jiang. "Microalgae as a Source of Lutein: Chemistry, Biosynthesis, and Carotenogenesis." In Microalgae Biotechnology, 37–58. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/10_2015_331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Yuan Kun. "Microalgae Cultivation Fundamentals." In Algae Biotechnology, 1–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12334-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dubini, Alexandra, and David Gonzalez-Ballester. "Biohydrogen from Microalgae." In Algae Biotechnology, 165–93. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12334-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pulz, Otto, Karl Scheibenbogen, and Wolfgang Groß. "Biotechnology with Cyanobacteria and Microalgae." In Biotechnology, 105–36. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620937.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Syed Isa Syed Alwi, Dato’ Paduka. "Microalgae for Aviation Fuels." In Algae Biotechnology, 155–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12334-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Microalgues – Biotechnologie"

1

Abdul Quadir, Mohammed, Probir Das, Shoyeb khan, Mahmoud Thaher, and Hareb Al Jabri. "Production of Phycocyanin from Marine Cyanobacteria in Open Raceway Pond." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0029.

Full text
Abstract:
Phycocyanin is one of the major light harvesting accessory pigment present in microalgae and cyanobacteria. This water-soluble pigment protein exhibits antioxidant, anti-inflammatory, and neuroprotective effects. Application of this pigment has also been used in dietary nutritional supplements in many food, nutraceutical, cosmetic, and biotechnology industries. In the present study phycocyanin was extracted from locally isolated marine cyanobacteria Geitlerinema sp. Geitlerinema sp. showed a higher growth during the summer perioed of 0.75 g/L and 0.54 g/L. Similarly, the maximum Phycocyanin obtained was up to 7.1% during summer period.
APA, Harvard, Vancouver, ISO, and other styles
2

Danièle, Pro, Vial Jérôme, and Rivasseau Corinne. "Biotechnologies for Metal Extraction: Assessment of Microalgae for Rare Earths Recycling and Environmental Remediation." In The 2nd World Congress on New Technologies. Avestia Publishing, 2016. http://dx.doi.org/10.11159/icbb16.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zaytsev, P. A., A. A. Ustimenko, A. A. Kublanovskaya, S. G. Vasilieva, O. I. Baulina, and A. E. Solovchenko. "The components selection for the bioinspired microalgae-cyanobacterial communities." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sarwa, Prakash, and Sanjay Kumar Verma. "Toxicity assessment of Zn (II) solution treated with microalgae Scenedesmus sp. MCC 26 using Swiss albino mice." In Annual International Conference on Advances in Biotechnology. Global Science & Technology Forum (GSTF), 2014. http://dx.doi.org/10.5176/2251-2489_biotech14.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Putri, Dina Soes, Sri Puji Astuti, and Siti Alaa. "The growth of microalgae Chlorococcum sp. isolated from Ampenan estuary of Lombok Island in Walne’s medium." In PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON BIOSCIENCE, BIOTECHNOLOGY, AND BIOMETRICS 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5141301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ermavitalini, Dini, Ika Puspita Sari, Endry Nugroho Prasetyo, Nurlita Abdulgani, and Triono Bagus Saputro. "Effect of gamma 60Co irradiation on the lipid content and fatty acid composition of Nannochloropsis sp. microalgae." In PROCEEDING OF INTERNATIONAL BIOLOGY CONFERENCE 2016: Biodiversity and Biotechnology for Human Welfare. Author(s), 2017. http://dx.doi.org/10.1063/1.4985400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography