Dissertations / Theses on the topic 'MicroARN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'MicroARN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Shcheholeva, Iryna. "Synthèse orientée vers la diversité pour l'inhibition de microARN oncogènes." Electronic Thesis or Diss., Université Côte d'Azur, 2024. https://intranet-theses.unice.fr/2024COAZ5006.
Full textConstituting a major part of the transcriptional output and given their function in modulation of epigenetics, noncoding RNAs (ncRNAs) carry an important role in disease development, but remain under-exploited biological targets. MicroRNAs (miRs) are 19 - 25 nucleotide long single-stranded RNAs and represent a major ncRNA family that is primarily known for their role in the control of gene expression. Each microRNA indeed inhibits translation of multiple messenger RNAs, and dysregulation of microRNAs is critical to pathogenesis and oncogenesis in particular. Specifically, microRNA-21 has been in the spotlight after its consistent overexpression in cancers as reported in a study that profiled 540 clinical samples from cancer patients. Thus, inhibition of miR-21 function holds the promise for both an efficient therapy alone and as an adjuvant to the existing treatments.The goal of this PhD work was to develop a small-molecule inhibitor of this oncogenic microRNA, tackling the last step of its biogenesis, an enzymatic cleavage by Dicer. We focused on the latter to mitigate a challenge associated with ssRNA as a biological target, such as the undefined secondary structure. In this thesis, the precursor of miR-21, a longer and structured preceding transcript, was used as a target and small-molecule ligands were designed to bind to its structured regions and impede its recognition via Dicer. The library of the drug-like RNA-focused ligands was designed de novo and synthesised using efficient catalytic methodologies and their activity was assessed in vitro using fluorescence-based biochemical assays with human recombinant Dicer. The study revealed several novel small molecule binders and inhibitors of oncogenic microRNA-21 in the low micromolar range. The binding mechanism of the best compounds was studied with biophysical and in silico methods to establish structure-activity relationships and improve the observed activity. This thesis discloses new promising scaffolds that inhibit miR-21 maturation of miR-21 in vitro and provide a blueprint for targeting this noncoding RNA with small molecules
Migault, Mélodie. "La séquestration de microARN dans le mélanome métastatique : du mécanisme moléculaire au candidat thérapeutique." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1B014/document.
Full textMicroRNAs (miRNAs) are small non-coding RNAs. They fine tune gene-expression through specific complementary interaction with their RNA targets. The miRNA repressive function towards a given RNA is highly regulated and in part dependent on the abundance of its other targets competing for miRNA’s binding. Some of these competing endogenous RNAs (ceRNAs) can resist to miRNA-mediated RNA decay thereby sequestering miRNAs. They are named miRNA sponges. Deregulation of ceRNAs and miRNA sponges networks are implicated in many pathologic processes including cancer. My PhD work focused on miRNA sequestration in cutaneous melanoma. Melanomas arise from the malignant transformation of melanocytes; the skin-cell specialized in pigment production. Most melanoma undergoes metastatic evolution, with metastatic cells spreading rapidly in the entire organism (lymph node, liver, lungs, brain, etc.). Early and complete resection of primary in situ melanoma is thus determinant for patient outcome. Since 2010, potent therapeutic options have been developed. Unfortunately, patients ultimately develop resistance while some are non-responders. There is thus an urgent need to develop new therapeutic strategies to treat metastatic melanoma. We have identified that the Tyrosinase Related Protein 1 (TYRP1) mRNA function as a miRNA sponge. TYRP1 is specifically expressed in the melanocytic lineage. TYRP1 mRNA governs melanoma growth endorsing thereby a non-coding function. We demonstrated that TYRP1 mRNA sequesters the tumor suppressor miR-16 via non-canonical miRNA binding sites (MREs-16). Non-canonical miR-16 binding lacks mRNA decay function favoring TYRP1 mRNA stability and miRNA sequestration. Sequestered miR-16 can no more repress its canonical targets involved in cell proliferation and tumor growth. To reset miR-16’s activity and block melanoma growth, we used “Target Site Blocker” (TSB). TSBs are modified antisense oligonucleotides with enhanced stability and affinity to its target. We designed a TSB, named TSB-T3, overlapping specially TYRP1 non-canonical MRE-16. We first showed that TSB-T3 binds to TYRP1 mRNA and competes with miR-16. Freed miR-16 binds to its canonical targets inducing their decay. TSB-T3 blocks melanoma cell growth in vitro and in vivo, using patient-derived tumor xenograft. We thus showed for the first time that TSB’s strategy redirecting a tumor suppressor miRNA is a potent tool to monitor metastatic melanoma growth. Together my PhD work brings out a new oncogenic mechanism based on miRNA sequestration and proposes an original strategy of targeted therapy against metastatic melanoma
Massiere, Jessica. "La transition épithélio-mésenchymateuse dans les cellules épithéliales gastriques : rôle des microARN régulés par Helicobacter pylori." Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21835/document.
Full textMicroRNA are small noncoding RNA that post-transcriptionally regulate gene expression. Due to their high regulator potential, a change in their expression may lead to the emergence of diseases such as cancer or inhibition of defense mechanisms against pathogens. Our aim is to characterize the role of miRNA in the response of gastric eptithelial cells to Helicobacter pylori (H. pylori). Indeed, H. pylori promote gastric adenocarcinoma and MALT lymphoma. Its virulence is essentially mediated by CagA, injected into cells of the gastric mucosa. Thanks to high throughput sequencing of miRNA content of a gastric epithelial cell line, infected or not with H. pylori: miR-200b and -200c appeared up-regulated upon infection. These miRNA are potent inhibitors of the “epithelial-to-mesenchymal transition” (EMT), a process that drastically alters cell morphology and promotes cell invasion. MiR-200b/c target the transcription factors ZEB1 and ZEB2, with which they are involved in a mutually repressive feedback loop. In basal conditions, the high levels miR-200b/c in gastric epithelial cells totally silence ZEB1 mRNA whereas H. pylori promotes EMT via ZEB1 expression, on the dependence of CagA translocation into host cells. But, paradoxically, miR-200b/c levels were also up-regulated upon infection. The increased miR-200b/c levels in infected cells moderate ZEB1 induction thanks to NF-kB activation and constitute a self-defense mechanism to thwart the loss of their epithelial phenotype upon infection
Guérit, David. "Rôle des miR-29a et miR-574-3p au cours de la différenciation chondrocytaire de la cellule souche mésenchymateuse." Thesis, Montpellier 1, 2012. http://www.theses.fr/2012MON1T013/document.
Full textRoles of miR-29a and miR-574-3p during the chondrogenic differentiation of mesenchymal stem cells. With the constant increase of the lifespan, osteoarticular pathologies such as osteoarthritis or rheumatoid arthritis, characterized by articular cartilage degradation, are important public health problems. In absence of spontaneous regeneration, cartilage engineering approaches are being considered. Current techniques rely on autologous chondrocyte transplantation but in the majority of cases, this approach gives similar results as current surgeries. Due to their capacity of differentiation toward chondrocytes, mesenchymal stem cells (MSC) represent a new source of cells with therapeutic potential. However, production of a functional cartilage in vivo after implantation of expanded MSC is hampered by the difficulty to reproduce the complexity of the differentiation process to get mature chondrocytes from MSC. The objective of my Ph.D thesis aimed to identify micro-RNAs (miRNAs) modulated during chondrogenic differentiation of primary human MSCs and to study their role as well as their regulation in this process. We identified two miRNAs: miR-29a whose expression decreases progressively during the differentiation and miR-574-3p whose expression rapidly increases and stays constant until the end of the differentiation. Both miRNAs are regulated by the transcription factor Sox9 but in an opposite manner: Sox9 inhibits miR-29a and induces miR-574-3p. We show that YY1 directly interact with Sox9 to regulate miR-29a but not miR-574-3p; this interaction likely explaining the opposite effects of Sox9 on miR-29a and miR-574-3p expression. Moreover we showed that miR-29a and miR-574-3p are both inhibitors of chondrogenesis and we identified FOXO3A and RXRα as their respective targets. In conclusion, we identified two new miRNAs which are regulated by Sox9 and inhibitors of chondrogenesis. They act through the modulation of two target genes, whose role during chondrogenic differentiation of adult MSC was previously not characterized
Lemaire, Julie. "MicroARN : biomarqueurs et cibles thérapeutiques en oncogenèse." Thesis, Lille 2, 2021. http://www.theses.fr/2021LIL2S006.
Full textMicroRNAs (miRNAs) represent a class of small non-coding RNAs that regulate geneexpression. They are involved in many essential cellular and molecular processes such as celldeath or differentiation. In addition, their deregulation plays an important role in thetumorigenesis. Indeed, many miRNAs have been described as oncogenes or tumor suppressorgenes. In this context, this thesis work focused on the potential role played by miRNAs inkidney and lung cancers. Indeed, a first part consisted in identifying miRNAs differentially expressed in proximal renal tubular cells in response to cadmium exposure, an environmental compound with carcinogenic properties. This data suggests that some of these miRNAs could be of interest as biomarkers of cadmium exposure.In the second part of this thesis, we evaluated the tumorigenic properties of miR-92a-3p innon-small cell lung cancers. Our in vitro data suggests that targeting miR-92a-3p by antisense oligonucleotides could represent a relevant anticancer therapeutic strategy. Furthermore, amouse model of pulmonary adenocarcinoma (CCSP-Cre-LSL-KrasG12D model) has been developed to test the pharmacological effect of this therapeutic strategy.Overall, this work highlights the importance of miRNAs as biomarkers and therapeutic targets in the field of cancer
Pers, Yves-Marie. "Effet thérapeutique des cellules souches mésenchymateuses dans l'arthrose : mécanismes et translation clinique." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT045.
Full textMesenchymal Stem Cells (MSCs) are stromal cells present in a number of different tissue types. In addition to their ability to differentiate into multiple lineages (chondrocytes, adipocytes and osteoblasts), MSCs also display immunosuppressive properties. Whilst these mechanisms are far from fully understood, their immunosuppressive capacity has recently been shown to be modulated by miRNAs. OA is the most common form of joint diseases without curative treatment and mainly characterized by the degradation of articular cartilage, with subchondral bone alterations and synovial inflammation. MSC might provide therapeutic potential for treatment of OA.Here, we showed that an autologous injection of adipose-derived MSC (ASC) into an osteoarthritic joint improved pain and function levels in patients. We underscored the systemic immune tolerance induced following intra-articular injections of ASCs. Finally, we investigated the miRNA expression profile of human MSCs upon their stimulation by peripheral blood mononuclear cells. We identified miR-29a and PSAT1 as new candidates to regulate immunosuppressive activity mediated by MSCs
Elramah, Sara. "Towards a Better Understanding of miRNA Function in Neuronal Plasticity : implications in Synaptic Homeostasis and Maladaptive Plasticity in Bone Cancer Pain Condition." Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22073/document.
Full textMicroRNAs (miRNAs) are a type of small RNA molecules (21-25nt), with a central role in RNA silencing and interference. MiRNAs function as negative regulators of gene expression at the post-transcriptional level, by binding to specific sites on their targeted mRNAs. A process results in mRNA degradation or repression of productive translation. Because partial binding to target mRNA is enough to induce silencing, each miRNA has up to hundreds of targets. miRNAs have been shown to be involved in most, if not all, fundamental biological processes. Some of the most interesting examples of miRNA activity regulation are coming from neurons. Almost 50% of all identified miRNAs are expressed in the mammalian brain. Furthermore, miRNAs appear to be differentially distributed in distinct brain regions and neuron types. Importantly, miRNAs are reported to be differentially distributed at the sub-cellular level. Recently, miRNAs have been suggested to be involved in the local translation of neuronal compartments. This has been derived from the observations reporting the presence of miRNAs and the protein complexes involved in miRNA biogenesis and function in neuronal soma, dendrites, and axons. Deregulation of miRNAs has been shown to be implicated in pathological conditions. The present thesis aimed at deciphering the role of miRNA regulation in neuronal plasticity. Here we investigated the involvement of miRNA in synaptic plasticity, specifically in homeostatic synaptic plasticity mode. In addition, we investigated the involvement of miRNAs in the maladaptive nervous system state, specifically, in bone cancer pain condition.We hypothesized that local regulation of AMPA receptor translation in dendrites upon homeostatic synaptic scaling may involve miRNAs. Using bioinformatics, qRT-PCR and luciferase reporter assays, we identified several brain-specific miRNAs including miR-92a, targeting the 3’UTR of GluA1 mRNA. Immunostaining of AMPA receptors and recordings of miniature AMPA currents in primary neurons showed that miR-92a selectively regulates the synaptic incorporation of new GluA1-containing AMPA receptors during activity blockade.Pain is a very common symptom associated with cancer and is still a challenge for clinicians due to the lack of specific and effective treatments. This reflects the crucial lack of knowledge regarding the molecular mechanisms responsible for cancer-related pain. Combining miRNA and mRNA screenings we were able to identify a regulatory pathway involving the nervous system-enriched miRNA, miR-124. Thus, miR-124 downregulation was associated with an upregulation of its predicted targets, Calpain 1, Synaptopodin and Tropomyosin 4 in a cancer-pain model in mice. All these targets have been previously identified as key proteins for the synapse function and plasticity. Clinical pertinence of this finding was assessed by the screening of cerebrospinal fluid from cancer patient suffering from pain who presented also a downregulation of miR-124, strongly suggesting miR-124 as a therapeutic target. In vitro experiments confirmed that miR-124 exerts a multi-target inhibition on Calpain 1, Synaptopodin and Tropomyosin 4. In addition, intrathecal injection of miR-124 was able to normalize the Synaptopodin expression and to alleviate the initial phase of cancer pain in mice
Bouchareb, Mohamed Amine. "Identification de nouveaux miARNs ovariens et analyse fonctionnelle de mir202 chez le médaka (Oryzias latipes)." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1B027.
Full textMicroRNAs (miRNAs) are small non-codant RNAs that emerged as key regulators of gene expression. MiRNAs play important roles in both normal physiological and pathological pathways in many organisms. The involvement of miRNAs in vertebrate oogenesis remains however poorly documented. Based on the assumption that ovarian-specific or ovarian-predominant genes usually play important roles in oogenesis or early development in vertebrates, we searched for ovarian-predominant miRNAs in the medaka (Oryzias latipes) ovary, in one hand. In another hand, we studied the function of MiR202, a gonadal predominant miRNA in vertebrates. Using genome-wide expression analysis, we identify 66 miRNAs predominantly expressed in the ovary, most of them have never been described neither in fish nor in ovaries. Nine were validated by QPCR. Among them, 3 miRNAs exhibit a strict ovarian expression (MiR4785, MiR6352 and MiR729). Further, we identify a novel miR202 isomiR that exhibits an ovarian predominant expression. MiR202 expression analyses during oogenesis and early embryonic development revealed an expression in all oogenesis stages. However, it was only detected in early developmental stages before onset of zygotic genome activation (ZGA), suggesting that this MiR202 is maternally inherited in medaka. To decipher MiR202 function, CRISPR/Cas9 system was used to functionally inactivate this miRNA in medaka. Mir202 depletion causes a reduced fecundity and an early embryonic developmental arrest. Global gene expression profiling of mir202-/- ovaries revealed that many genes are regulated by MiR202. Among them, six3, that could be a putative target of MiR202, seems to be involved in the regulation pathway of many genes that are essential in oogenesis and embryonic development. During my PhD, we identify many ovarian-predominant miRNAs. Among them, we showed that MiR202 plays an essential role during oogenesis and plays a key role during early embryonic development as a maternal effect gene
Corduan, Aurélie. "Caractéristiques et fonctions des microARN plaquettaires." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/25994.
Full textPlatelets play an important role in hemostasis, as well as in thrombosis and coagulation processes. Lacking genomic DNA, they nevertheless harbor a complex transcriptome. Although platelet messenger RNAs (mRNAs) can be used for de novo protein synthesis, especially in response to physiological stimuli, mechanisms controlling this synthesis remain unclear. Our team demonstrated that human platelets contain an abundant and diverse array of microRNAs, suggesting their involvement in the control of platelet mRNA translation. Following stimulation, platelets release microparticles (MPs) that convey biological signals and genetic material to recipient cells. The involvement of platelet microRNAs in the intercellular communication via MPs remained incompletely understood. The study of microRNA-containing ribonucleoprotein complexes inside platelets revealed the involvement of microRNAs and of the protein T-cell-restricted intracellular antigen-1 (TIA-1) in the recognition and regulation of platelets mRNAs, thereby improving our understanding of the molecular mechanisms regulating de novo protein synthesis upon platelet activation. Moreover, the study of intercellular communication between platelets and macrophages demonstrated that platelet MPs could (i) deliver functional microRNAs capable to regulate endogenous mRNA expression in recipient cells, and (ii) reprogram primary functions of macrophages, suggesting numerous physiological effects. My thesis results suggest that platelet microRNAs contribute to maintain the hemostatic balance, in regulating the synthesis of essential proteins and by modulating gene expression of surrounding cells. The study of platelet microRNA functions underscores the complexity of the regulatory processes of hemostasis and of the circulatory system.
Cetin, Semih. "Caractérisation moléculaire du mécanisme de dégradation des microARN par un transcrit cible." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ105/document.
Full textSeveral regulatory mechanisms have been uncovered at every level of the biogenesis and the activity of miRNAs. However, there is less information about the regulation of the stability of miRNAs. The PhD project entailed the study of a process, which specifically enables the degradation of a cellular miRNA (miR-27) induced by a viral transcript (m169) during an infection by the mouse cytomegalovirus (MCMV). This miRNA is destabilized by a process called ‘target-RNA directed miRNA degradation’ (TDMD). I first undertook the study and the characterization of the molecular determinants and the cellular factors implicated in TDMD. Moreover, I started to set up a protocol in order to identify AGO2 partners of viral or host origin during MCMV infection, which would potentially be implicated in TDMD
Katz, Shauna. "Rôle de microARN-9 dans la régulation de l'état cellule souche neural chez l'adulte." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS086.
Full textSince the seminal discovery of multipotent neural stem cells (NSCs) in the adult mammalian brain, multiple studies have unravelled the importance of these cells for maintaining brain homeostasis. Notably, disturbances in NSC equilibrium have been linked to physiological aging and various neurological pathologies thus sparkling interest in harnessing them for use in regenerative medicine. NSCs reside in distinct germinal zones; in the adult rodent brain NSCs are found mainly in two well-established neurogenic niches in the telencephalon which contrasts with the situation in the adult zebrafish where NSC niches are widespread throughout the brain, including in the dorsal telencephalon or pallium. In both the rodent and zebrafish brains, adult NSCs display fundamental stem cell properties: they are multipotent, e.g. capable of generating new neurons and glia throughout adult life, and have the capacity for long-term self-renewal. Similar to stem cells in other adult tissues, and in contrast to embryonic neural progenitors, a hallmark of these adult NSCs is their relative proliferative quiescence. Quiescence is an actively maintained, reversible state of cell-cycle arrest and generally thought to protect against exhaustion of the stem cell pool. In line with this, disrupting the balance between quiescent and activated NSCs leads to a premature depletion or permanent cell-cycle exit of these cells highlighting the importance of fully deciphering the mechanisms regulating this equilibrium. microRNAs, a major class of small pleiotropic regulatory RNAs, play crucial roles in reinforcing developmental and transitional states. They are capable of reacting to environmental cues, both cell-intrinsic and -extrinsic, with varying outputs such as changing their regulatory functions and expression levels, thus enabling them to coordinating diverse cues to induce cell-state transitions. One microRNA in particular, miR-9, is a highly conserved master regulator of embryonic neurogenesis and in the embryonic zebrafish brain, it establishes a primed neural progenitor state enabling them to quickly respond to cues to differentiate or proliferate. The primary goal of this study was to investigate, for the first time, a potential role for miR-9 in influencing NSC state in a physiological context in which the majority of NSCs are quiescent – the adult zebrafish pallium. We found that miR-9 is exclusively expressed in quiescent NSCs and highlights a “sub-state” within quiescence. In part by maintaining high levels of Notch signalling, a known quiescence promoting pathway, miR-9 anchors NSCs in the quiescent state. Strikingly, we identified a conserved age-associated change in the subcellular localization of the mature miR-9 from the cytoplasm of all embryonic/juvenile neural progenitors to the nucleus of a subset of quiescent NSCs in the adult brain. Moreover, the nuclear expression of miR-9 in these quiescent NSCs is highly correlated with nuclear localization of the microRNAs effector proteins Argonaute (Agos), suggestive of a functional role for nuclear miR-9. Indeed, the elucidation of the nuclear-cytoplasmic transport mechanism of miR-9/Agos enabled us to manipulate their nuclear to cytoplasmic ratios which directly impacted NSC state. Altogether, these results identify miR-9 as a crucial regulator of NSC quiescence, provide for the first time a molecular marker for an age-associated sub-state of quiescence and suggest the involvement of a novel and unconventional microRNA-mediated mechanism to maintain homeostasis of NSC pools
Chien, Wei Wen. "p16INK4a, régulation du cycle cellulaire et microARN." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10183.
Full textThe inhibition of cell cycle progression by p16INK4a, have been considered to result from arrest in G1 phase due to inhibition of CDK4/6 activity. We show that ectopic expression of p16INK4a in three human malignant cell lines, p16-/- and pRb +/ +, derived from different tissues, led to an increase in the length of S phase and of the entire cell cycle. Our studies using wild-type p16INK4a and p16G101W mutant indicated that p16INK4a induces a lengthening of S phase i) independently of tissue origins and ii) partly linked to the inhibition of CDK4/6 activity and possibly MAP-kinases. In the nucleus, p16INK4a may intervene in regulating the cell cycle independently of binding to CDK4. The expression of CDK1 is inhibited by p16INK4a in three cell lines analyzed. In MCF7 and U87cells, this inhibition is post-transcriptional, mediated by the 3' non translated region of CDK1 mRNA, and is associated with changes in the balance of the expression of microRNAs, which regulate potentially CDK1. We demonstrate that CDK1 is a target of miR-410 and miR-650, both induced by p16INK4a and the role of the inhibition of pRb/E2F pathway by p16INK4a in the induction of miR-410. Thus, p16INK4a regulates gene expression at different levels by modifying the functional balance of transcription factors and, consequently, the microRNAs
Bassand, Kévin. "Modulation du processus d’angiogenèse induite par la chimiokine CXCL12 (SDF-1α) : Implication du miR-126 et des Glycosaminoglycannes." Thesis, Paris 13, 2019. http://www.theses.fr/2019PA131070.
Full textIschemic diseases are one of the leading causes of death in the world. In ischemic tissue, in order to avoid tissue necrosis, angiogenesis is stimulated through pro-angiogenic factors synthesis such as chemokines or microRNAs (miRs). CXCL12 (SDF-1α), is a pro-angiogenic chemokine expressed by endothelial cells in ischemic conditions. miR-126 (miR-126-3p and miR-126-5p) is involved in angiogenesis by accelerating endothelial progenitor’s recruitment induced by CXCL12, by stimulating the expression of its receptors on the endothelial cells surface. On the other hand, the role of CXCL12 in miR-126 regulation and their involvement in angiogenic processes induced by CXCL12 remains unknown. During my thesis, I was interested in the involvement of miR-126 and glycosaminoglycans (GAGs) in CXCL12-induced angiogenesis. Our results showed for the first time that CXCL12 induces miR-126-3p expression in vitro in HUVEC and ex vivo in rat aorta. In addition, miR-126-3p is necessary for the formation of vascular networks (in vitro and ex vivo) and for CXCL12-induced HUVEC migration process. In addition, we showed that CXCL12 induces a decrease of SPRED-1 protein expression (aknown target of miR-126-3p) and this inhibition have stimulated the formation of vascular networks induced by CXCL12 more significantly. Finally, we showed that GAGs are necessary for the formation of vascular networks (in vitro and ex vivo) induced by CXCL12
Espadinha, Anne-Sophie. "Identification de microARN impliqués dans la leucémogenèse." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0437/document.
Full textIn chronic myeloid leukemia (CML), the activity of the constitutively active tyrosine kinase BCR-ABL1 drives the activation of the PI3K/AKT, JAK/STAT, and RAS/RAF/MEK/ERK pathways. Among other consequences, activated or inhibited transcription factors induce important modifications of the CML cells gene expression pattern that could impact cell cycle control, apoptosis and genetic instability, leading to the expansion of the oncogene-transformed cells and to the acquisition of potentially harmful de novo mutations. However, indirect BCR-ABL1-dependant regulations might also occur, for instance through the action of microRNAs (miRNAs). Among the ~2000 miRNAs reported in humans, numerous species are up- or down-regulated in various cancer models. In the context of CML however, there is no clear consensus regarding the role of specific miRNAs, despite several studies. The first aim of this thesis was to study the effects of a clinically relevant concentration of imatinib, a tyrosine-kinase inhibitor (TKI) that blocks BCR-ABL1, on the CML cell line K562: both the microRNA expression profile and the cells proteome were analyzed. Using microarray hybridization, RT-qPCR experiments and a functional assay, we identified miR-21 as one of the most significantly down-regulated microRNA in cells that were treated with imatinib. In parallel, a semi-quantitative proteomic approach identified the tumor suppressor programmed cell death protein 4 (PDCD4) as the most over-expressed protein in imatinib-treated cells. We showed that miR-21 can bind to PDCD4 3'UTR and decrease its expression. The STAT5 - miR-21 - PDCD4 pathway was conserved in CML primary CD34+ cells, and to some extent in acute myeloid leukemia (AML) models as well; the known functions of miR-21 and PDCD4 suggest that their regulation by BCR-ABL1 could participate in the antileukemic response triggered by tyrosine kinase inhibitors. In the second part of this manuscript, we was interested in the immature stem cells population that cannot be eliminated by TKI. The underlying mechanisms of this resistance are not fully understood. The TKI-resistant CML stem cells reside in the CD34+/CD38low subpopulation, that can be sorted from the mononuclear cells fraction using FACS. In this project, we propose to describe the microRNA repertoire of the CML CD34+/CD38low cells to highlight the potential role of microRNA in the resistance mechanisms by identifying some of their targets, using bioinformatic and experimental approaches. This combination of miRNome and functional analysis would allow to increase the knowledge of the biology of the TKI-resistant CML stem cells. Our results have shown that the cellular fraction enriched in stem cells (CD34+CD38low) expressed specifically four microRNA: miR-10a, miR-146, miR-150 and miR-155. It is also interested to notice that only two of them, miR-150 and miR-155, are highly expressed in CML-patient CD34+CD38low cells compared to normal cells
Lannes, Jérôme. "Les microARN et la fonction gonadotrope hypophysaire." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC236/document.
Full textGnRH is a hypothalamic neurohormone that stimulates synthesis and release of the pituitary gonadotropins, LH and FSH. Mammalian GnRH receptor lacks a C-terminal tail and is thus not submitted to homologous desensitization. Desensitization of gonadotrope cells to sustained exposure to GnRH relies on post-receptor mechanisms operating at different levels of the Gαq/11-mediated signalling pathway. GnRH was shown to modulate the expression of microRNAs (miRNAs), a new class of signalling regulators composed of small single-stranded RNAs that regulate gene expression at a post-transcriptional level. The purpose of my PhD thesis was to investigate the role of miRNAs in contributing to the regulation of gonadotrope cells by GnRH and notably to its desensitization effect. I first demonstrated that a GnRH-induced rise in miR-132 and miR-212 in rat primary pituitary culture cells and in the LβT2 murine gonadotrope cell line was necessary for efficient stimulation of FSH production. We then showed that the miR-132/212-mediated action of GnRH involved a posttranscriptional decrease of SIRT1, a lysine deacetylase. The lower level of SIRT1 allowed an increase in the acetylated form of FOXO1, a transcriptional repressor of Fshb, leading to its exit from the nucleus and to an increase in FSH expression (Lannes et al, 2015). Then, I focussed on the involvement of miR-125b, a miRNA that was strongly inhibited in response to GnRH. We showed that miR-125b blocked the Gαq/11 signalling pathway, through the repression of several effectors of this pathway, without affecting the Gαs signalling pathway. Upon exposure to GnRH, miR-125b was inactivated by methylation on adenosine by the NSun2 RNA methyltransferase. This later enzyme was activated by a Gαs/PKA-dependent phosphorylation. We observed that the induction of miR-132 and PP1α phosphatase in response to GnRH depends on a Gαq/11 activation allowed by the inactivation of miR-125b. We demonstrated that NSun2 is a target of miR-132 and that phosphorylation of NSun2 is suppressed by PP1α. Kinetic analyses enabled us to decipher the desensitization mechanism to GnRH stimulation. During the induction phase, the Gαs/PKA activation led to lower miR-125b levels, allowing Gαq/11 signalling and hence, transcriptional activation of gonadotropins genes. Co-activation of miR-132 and PP1α contributed to the inactivation of NSun2 and a return of miR-125b back to its equilibrium state leading to Gαq/11 signalling inhibition and therefore, to the arrest of gonadotropins expression (Lannes et al, 2016). Our study shows for the first time the crucial role of a miRNAs regulatory loop in the GnRH-induced mechanism of desensitization. The ubiquitous nature of the actors of this regulatory loop suggests that it may play a more general role. Additional works carried out showed that GnRH induces the secretion of several miRNAs. In vitro, we demonstrated that the GnRH causes a calcium-dependent release of miR-125b and miR-132 in the extracellular medium by the gonadotrope cells. In vivo, we highlighted a miRNA-125b and -132 increase in serum at the time of the ovulating LH surge induced by GnRH in rats and women. These results suggest that the pituitary gonadotropic cell is capable of transmitting an original message in the form of miRNA, into the bloodstream. My PhD work unravels the key role played by miRNAs in the gonadotrope cells response to GnRH-sustained stimulation. They highlight the blocking effect of a single miRNA, miR-125b on the Gαq/11 signalling, a pathway activated by many other membrane receptors. They indicate the existence of a regulation loop responsible for the desensitization to GnRH but which could be more widespread. Finally, the secretion of miRNAs in blood flow induced by the GnRH that we show for the first time opens up particularly interesting perspectives on the nature of the signal generated by the gonadotrope cells and allows to consider the existence of new target tissues
Boukrout, Nihad. "Rôle de la boucle de régulation négative MUC4-miR-210-3p dans la cancérogenèse pancréatique et la chimio-résistance." Thesis, Université de Lille (2022-....), 2022. https://pepite-depot.univ-lille.fr/LIBRE/EDBSL/2022/2022ULILS003.pdf.
Full textBackground: Pancreatic adenocarcinoma (PDAC) is a deadly cancer with anextremely poor prognosis. MUC4 membrane-bound mucin is neoexpressed in earlypancreatic neoplastic lesions and is associated with PDAC progression andchemoresistance. In cancers, miRNA (small noncoding RNAs) are crucial regulatorsof carcinogenesis, chemotherapy response and even metastatic processes. In thisstudy, we aimed at identifying and characterizing miRNAs activated downstream ofMUC4-associated signaling in pancreatic adenocarcinoma. MiRnome analysiscomparing MUC4-KD versus Mock cancer cells showed that MUC4 inhibitionimpaired miR-210-3p expression. Therefore, we aimed to better understand themiR-210-3p biological roles.Methods: miR-210-3p expression level was analyzed by RT-qPCR in PDACderivedcell lines (PANC89 Mock and MUC4-KD, PANC-1 and MiaPACA-2), as wellas in mice’s and patients’ tissues. The MUC4-miR-210-3p regulation wasinvestigated using luciferase reporter construct and chromatin immunoprecipitationexperiments. Stable cell lines expressing miR-210-3p or anti-miR-210-3p wereestablished using Crispr/Cas9 technology or lentiviral transduction. We evaluated thebiological activity of miR-210-3p in vitro by measuring cell proliferation and migrationand in vivo using a model of subcutaneous xenograft.Results: miR-210-3p expression is correlated with MUC4 expression inPDAC-derived cells and human samples, and in pancreatic PanIN lesions of Pdx1-Cre; LstopL-KrasG12D mice. MUC4 enhances miR-210-3p expression levels viaalteration of the NF-κB signaling pathway. Chromatin immunoprecipitationexperiments showed p50 NF-κB subunit binding on miR-210-3p promoter regions.We established a reciprocal regulation since miR-210-3p repressed MUC4expression via its 3′-UTR. MiR-210-3p transient transfection of PANC89, PANC-1and MiaPACA-2 cells led to a decrease in cell proliferation and migration. Thesebiological effects were validated in cells overexpressing or knocked-down for miR-210-3p. Finally, we showed that miR-210-3p inhibits pancreatic tumor growth andproliferation in vivo.Conclusion: We identified a MUC4-miR-210-3p negative feedback loop inearly-onset PDAC, but also revealed new functions of miR-210-3p in both in vitro andin vivo proliferation and migration of pancreatic cancer cells, suggesting a complexbalance between MUC4 pro-oncogenic roles and miR-210-3p anti-tumoral effects
Hervé, Mylène. "Mécanismes moléculaires à l'origine de la dysautonomie familiale." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5033.
Full textFamilial dysautonomia (FD) is a neuropathy caused by a mutation in the IKBKAP gene inducing an alternative pre-mRNA splicing and a deficiency of the protein IKAP/hELP1. The understanding of molecular mechanisms underlying tissue specificity and the development of curative therapies led us to identify a particular microRNA signature in FD associated to the neuron-spécific splicing factor NOVA1, from human olfactory ecto-mesenchymal stem cells of control individuals and FD patients. Moreover, we identified the 26S proteasome as being overactived in patients and whose inhibition corrects aberrant IKBKAP pre-mRNA splicing concomitantly to an increase of IKAP/hELP1 expression level. Taken together, these results bring innovative research perspectives for many neurodegenerative diseases.We conducted a secondary project concerning the identification of blood biomarker for a very prevalent disease, major depression. We conducted a translational study using animal model of chronic stress (UCMS) and identified common transcriptional signatures between blood and two brain regions, cingulate gyrus and dentate gyrus. Several candidate biomarkers were validated as similarly dysregulated in blood of mice and men, with correlation of expression variation of ACSL1, RALGPS1 and MPP1 in relation to clinical score evolution. In conclusion, this work identifies new potential biomarkers for depression and reinforces the legitimacy to analyze peripheral tissues in the context of mental disorders
Courboulin, Audrey. "Un microarn au coeur de l'hypertension artérielle pulmonaire." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30417/30417.pdf.
Full textPulmonary arterial hypertension (PAH) is characterized by the obstruction of the pulmonary arteries, mainly due to the pro-proliferative and anti-apoptotic phenotype of the pulmonary artery smooth muscle cells (PASMC). The progressive increase of pulmonary vascular resistance first leads to an increase of pulmonary pressure and then leads to a right heart failure, which generates patient’s death within few years. Many studies demonstrated the implication of the transcription factor NFAT (nuclear factor of activated T cell), which maintains the pro-proliferative and anti-apoptotic phenotype in PAH-PASMC. However, pathways that lead to the constitutive NFAT activation remain unclear. During my doctorate, I studied mechanisms responsible for the activiation of NFAT in HTAP. We study the role of the microRNA and more exactly to miR-204. Thus, the circulating factors, which are increased in PAH and which decreased miR-204 expression in PAH, via the transcription factor STAT3 activation. Through a positive regulation loop mechanism, the decrease of miR-204 induces an overactivation sustain of STAT3 leading to the pathologique phenotype. Thus, the exogenous increase of miR-204 could treat PAH in vitro as well as in vivo. We demonstrated that miR-204 is able to modulate the expression of the transcription factor Runx2 known to be implicated in calcification. In PAH-PASMC, the decrease of miR-204 is associated to an increase of Runx2 expression, known as positive regulator of the HIF-1 activation implicated in PAH. Thus miR-204 modulations affected the proliferation and apoptosis of PAH-PASMC through many molecular axes. Finaly we reveal the implication of the transcription factor Kruppel Like Factor 5 (KLF5) in PAH. The KLF5 overexpressed in PAH is associated to the STAT3 activation, wherease its inhibition decreased the proliferation and promoted apoptosis in PAH-PASMC. In vivo, si KLF5 reversed PAH by decreasing pulmonary pressures, right ventricular hypertrophy, proliferation and increasing apoptosis in PASMC from distal PA. Finally, I studied many aspects implicated in PAH development and especially the STAT3/NFAT axis activation. We showed that targeting this pathway using many technics (mimic miR-204, siRunx2, siSTAT3, siKLF5) seem to be an interesting strategy to treat PAH. Key words: Pulmonary arterial hypertension, therapeutic, proliferation, apoptosis, microRNA, and transcription factor.
Nonne, Nora. "Etude de l'action des microARN : Mécanismes et cibles." Paris 11, 2009. http://www.theses.fr/2009PA11T087.
Full textBouhallier, Frantz. "Rôle potentiel du microARN miR-34c au cours de la spermatogenèse." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10219.
Full textSpermatogenesis is a cyclic process in which diploid spermatogonia differentiate into haploid spermatozoa. This process is highly regulated, notably at the post-transcriptional level. MicroRNAs (miRNAs), single stranded non coding RNA molecules of about 20-25 nucleotides, are implicated in the regulation of many important biological pathways such as proliferation, apoptosis and differentiation. We wondered whether miRNAs could play a role during spermatogenesis. First, miRNA expression repertory was tested in germ cells and we present data showing that miR-34c was highly expressed only in these cells. Moreover, in male gonads, miR-34c expression is largely P53-independent, in contrast to somatic cells. The exploration of the expression profile of HeLa cells over-expressing miR-34c showed a shift towards testis lineage and the presence of preferentially expressed in testis genes. Furthermore, we identified miR-34c direct target genes (TGIF2 and NOTCH2) that are involved in germ lineage differentiation control (TGFβ and Notch pathway respectively). These results established a link between a miRNA miR-34c and spermatogenesis. Moreover, in ES cells over-expressing DDX4 gene (VASA-ES cells), already primed and engaged in the germ cell lineage, ectopic expression of miR-34c has a more drastic effect. We could detect an up-regulation of germ specific genes. These data suggest that miR-34c could play a role by enhancing the germinal phenotype of cells already committed in this lineage
Benoit, Matthieu. "Etudes biophysiques de l'interaction entre la protéine humaine TRBP et un précurseur de microARN oncogène." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-01038628.
Full textPinkele, Cyrielle. "Régulation épigénétique de la lipolyse intravasculaire des triglycérides." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10216/document.
Full textThe lipoprotein lipase (LPL) is a key enzyme which regulates plasma triglycerides (TG) intravascular lipolysis involving a complex regulation. The microRNAs (miR) are implicated in gene post-transcriptional regulation through their interaction with the 3’untranslated region (3’UTR). Their discovery provides new insights in the understanding of the LPL regulation and its regulator genes. We present two works regarding the implication of miRs in the regulation of the LPL and one of its activator APOA5. First, we identified a functional miR-485-5p binding site creation induced by the minor C allele of the c.*158C>T (rs22667882) located in APOA5 3’UTR.We therefore provide an explanation of the mechanism potentially involved in this polymorphism association with both mild and severe hypertriglyceridemia in general population. In a second work, we identified a LPL haplotype harboring p.Ser474Ter (rs328) polymorphism and seven single nucleotide polymorphisms (SNPs) located in the 3’UTR. This haplotype is significantly associated with lower plasma triglycerides (TG) concentration in general population. We demonstrated that the SNPs located in the 3’UTR induce several functional miRs binding-site suppressions that could lead to an increase of LPL expression. Finally, p.Ser474Ter association with triglyceridemia could be at least partially explained by its strong linkage disequilibrium with these functional 3’UTR SNPs. These works are amongst the first studies to bright to light the miRs implication in the regulation of LPL or its regulator genes in human. They provide a better knowledge of the mechanisms involved in intravascular lipolysis. Finally, they also explain the functional mechanisms of two polymorphisms, significantly associated with the plasma TG concentration
Tran, Thi Phuong Anh. "Conception, synthèse et évaluation biologique de nouveaux ligands d'ARN en tant qu'inhibiteurs de la production de microARN oncogènes." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4076/document.
Full textMicroRNAs (miRs) are a class of small non-coding RNAs that act as regulators of gene expression at the post-transcriptional level. Increasing evidence has indicated that the deregulation of miR expression is linked to various human cancers and therefore, miRs represent a new class of potential drug targets. In this context, my PhD project focused on the discovery of new inhibitors of oncogenic miRs production. Toward this aim, two different but complementary approaches were followed: (i) the screening of small libraries of compounds and (ii) the design and synthesis of new classes of conjugates as binders of miRNA precursors (pre-miRs). In particular, we focused our attention on miR-372 and miR-373, two oncogenic miRs overexpressed in various cancers, such as gastric cancer. We showed that some of the screened or of the newly synthesized compounds are able to efficiently bind to stem-loop structured precursors of the targeted miRs with high affinity, thus inhibiting the production of their corresponding mature miRs at the level of Dicer cleavage. Moreover, we found compounds bearing a specific anti-proliferative activity in gastric cancer cells overexpressing targeted miRs and this activity is directly linked to a decrease in the production of oncogenic miR-372 and -373 and to the restoration of normal mRNA translation
Huang, Lue. "Analyse de l'efficacité de la régulation par les microARN." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00783064.
Full textIpas, Hélène. "Contingent microARN des exosomes, diagnostic et physiopathologie des gliomes." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00986111.
Full textGoretti, Emeline. "Les microARN : biomarqueurs et cibles thérapeuthiques des maladies cardiovasculaires." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0130/document.
Full textCardiovascular diseases are the leading cause of death in the world. Major issues in the management of these patients lie on the diagnosis and the prediction of the prognosis. MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that inhibit gene expression. Circulating miRNAs appeared as potentials biomarkers of cardiovascular diseases. MicroRNAs could be also useful to stimulate cardiac repair. We hypothesized that miRNAs could be used as biomarkers of cardiovascular diseases, and also as therapeutic tools to improve cardiac repair after myocardial infarction. We evaluated the diagnostic capacity of miRNAs in patients with chest pain. MicroRNA-208b and miR-499 were potential diagnostic biomarkers in patients with myocardial infarction, without improving the diagnostic accuracy of traditional biomarkers. MicroRNA-423-5p predicted the rehospitalization of patients with acute heart failure and miR-21 and miR-122 are associated with neurological damage after cardiac arrest. Overall, our results indicate that circulating miRNAs could be useful diagnostic and prognostic biomarkers of cardiovascular diseases. We also showed that inhibiting miR-16 could stimulate the proliferation, differentiation and pro-angiogenic capacities of endothelial progenitor cells and that miR-150 is involved in the effect of adenosine on the recruitment of these cells after myocardial infarction. These results suggest that miRNAs could be used to improve the revascularization after myocardial infarction. In conclusion, our studies contributed to the characterization of several miRNAs, which clinical utility in the cardiovascular field remains to be confirmed
Bellemer, Clément. "Visualisation des étapes précoces de la biogénèse des microARN." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1656/.
Full textNuclear primary microRNA (pri-miRNA) processing catalyzed by the DGCR8-Drosha (Microprocessor) complex is highly regulated. Little is known, however, about how microRNA biogenesis is spatially organized within the mammalian nucleus. Here, we image for the first time, in living cells and at the single-gene level, the intra-nuclear trafficking of endogenously-expressed pri-miRNAs generated at the human imprinted Chromosome 19 MicroRNA Cluster (C19MC), from transcription sites to single molecules of DGCR8-bound pri-miRNA in the nucleoplasm. We report that Microprocessor and, to lesser extent, RHA, ILF3, hnRNP C1/C2, and EWS proteins, concentrate onto unspliced C19MC pri-miRNA retained in close proximity to their genes. A combination of Fluorescence Recovery After Photobleaching (FRAP), Fluorescence Cross-Correlation Spectroscopy (FCCS) and RNAi experiments provides direct visual evidence that DGCR8 and Drosha are targeted to C19MC pri-miRNAs as a preformed complex but dissociate separately. Our live-cell imaging study supports the view that, upon pri-miRNA loading and most likely concomitantly with Drosha-mediated cleavages, Microprocessor undergoes conformational changes that trigger the release of Drosha while DGCR8 remains stably bound to pri-miRNA
Aime, Ahissan. "Oligonucléotides amphiphiles et microARNs : mise en place de nanoplateformes à visée diagnostiques et therapeutiques." Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22028/document.
Full textExploitation of gene-silencing is a very promising strategy in human therapeutics. Several engineered small non coding RNAs (inhibitors or mimics) are already in preclinical and clinical trials. However a key impediment to the wider success of these approaches remains the specific delivery of RNA-derived molecules into cancerous cells. This work aimed at developing two innovative microRNA-based plateforms : the first one relying on quantum dots (QD) is dedicated to microRNA imaging and the second one based on human serum albumin (HSA) represents a new targeted delivery system. The implementation of both plateforms required the synthesis of a small library of microRNA derived lipidic bioconjugates (inhibitors or mimics), the aim being to exploit the hydrophobic effect for their loading on QD (hydrophobic anchoring in the hydrophobic QD surface) and on HSA (interaction with fatty acid binding sites). In both cases, different studies including physico-chemical caracterizations (TEM, DLS), in vitro (SPR) and in cellulo experiments (fluorescence microscopy, functional screening, RTqPCR) demonstrated the great promises held by these new plateforms
Abel, Yoann. "Caractérisation structurale et fonctionnelle d’une nouvelle interaction entre les protéines RPAP3 et TRBP." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0285/document.
Full textRecently, several studies have described a possible link between snoRNA and microRNA maturation, two ncRNA families involved in the maturation of other RNAs, such as rRNA, and in the regulation of gene expression, respectively. Indeed, these studies have shown that some microRNAs could be maturated from a snoRNA precursor, forming a new class of ncRNAs, the sdRNAs (snoRNA-derived RNAs). The mechanism of sdRNA maturation are still poorly understood. Therefore, we have performed a two-hybrid screen in the yeast S. cerevisiae between different proteins involved in microRNAs and snoRNAs biogenesis. Interestingly, we observed a novel interaction between TRBP, involved in the maturation of microRNAs, and RPAP3, a member of the hR2TP complex. The observation of this interaction raises several questions, such as its possible involvement in the maturation of microRNAs from snoARN precursors, or on the possible involvement of TRBP or RPAP3 in snoRNP or microRNA biogenesis, respectively. Using various molecular biology and biochemical approaches, we undertook the functional and structural characterization of the TRBP/RPAP3 interaction. First, we confirmed the interaction both in vitro and in vivo and we identified the TRBP and RPAP3 domains involved in the interaction, as well as several interesting mutations in the binding interface. Using these mutants should allow us to study the effects of this mutations on the maturation of differents ncRNAs. Additionally, we showed that the interaction between TRBP and RPAP3 and between TRBP and the RNase Dicer were mutually exclusive. Interestingly, it was shown that in the absence of TRBP, Dicer processig resulted, in some cases, in the generation of microRNAs with different ends, and thus, with altered specificity(iso-miRs). The interaction between TRBP and RPAP3 could therefore also constitute a possible way to regulate the availability of TRBP, and eventually the activity of Dicer
Michaud, Pascale. "Caractérisation de la localisation et de l'activité du complexe effecteur des microARN." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/67036.
Full textMicroRNAs are small RNA molecules that play an important role in post-transcriptional gene silencing. These molecules were first discovered in the nematode Caenorhabditis elegans but are now known as important regulators of gene expression in most animals and plants. To accomplish this function, microRNAs interact with a protein complex called the miRISC (microRNA-induced silencing complex) which is formed by an Argonaute protein and GW182 proteins. MicroRNAs interact directly with Argonaute and can guide them to the 3’ UTR region of a target mRNA by base pairing. The miRISC will then induce several repression mechanisms, ranging from translational repression to target decay. To this day, the mechanisms that modulate miRISC activity as well as the proteins that interact with the complex are poorly characterized. The main objective of my PhD was therefore to study the processes that regulate the activity of the effector complex of microRNAs, the miRISC. First, we evaluated the importance of a known component of the miRISC; the GW182 proteins. To accomplish this, we abolished the interaction between Argonaute and GW182 proteins and we studied the effect of this loss of interaction on miRISC function during C. elegans development. We have shown that the association of GW182 to the miRISC is dispensable for the animal’s embryonic development. We then confirmed that certain embryonic microRNA targets were not affected by the loss of GW182. These results allowed us to conclude that the miRISC can exist and function under different forms and that GW182 proteins are dispensable for the miRISC activity under certain conditions. Second, we wanted to identify new factors that contribute to miRISC silencing by performing a forward genetic screen. This allowed us to identify the RabGAP tbc-11 as a new factor contributing to microRNA function. We have shown that tbc-11 acts on the small GTPase rab-6 and that its regulation is important for proper intracellular localization of the Argonaute ALG-1. Our results have shown that an improper localization of ALG-1 leads to defects in microRNA target repression. We have therefore concluded that vesicular transport plays an important role in microRNA function. Our results have shown that the localization and composition of the miRISC contributes to the modulation of its activity. This study has deepened our knowledge on the mechanisms that modulate microRNA activity and opens the door for other research on microRNA function in different contexts.
Jacquier, Caroline. "Identification et caractérisation de mutations et de produits chimiques perturbant le répression par les microARN chez la drosophile." Paris 6, 2010. http://www.theses.fr/2010PA066188.
Full textMonnier, Paul. "Locus H19 et contrôle épigénétique du développement embryonnaire." Paris 6, 2013. http://www.theses.fr/2013PA066767.
Full textThe H19 locus produces a 2. 3kb non-coding RNA (ncRNA) as well as a micro RNA, the miR-675. It is located at the distal part of the chromosome 7 in mice close to the Igf2 gene. These genes were among the first genes described to be imprinted. Therefore, this locus served as a paradigm to understand molecular mechanisms that drive genomic imprinting, an epigenetic process that leads to monoallelic expression of genes in a parent-of-origin dependent manner. However, the precise function of the H19 locus still remains unclear. Our laboratory recently showed that H19 is a trans-repressor of nine genes, including Igf2, of an imprinted gene network (IGN) involved in growth control of the embryo. The main purpose of my PhD was to decipher mechanisms through which H19 exerts this control. In collaboration with the group of Wolf Reik, we participated to an in-depth analysis of the miR-675. We found that it was linked to the repression of placental growth through the direct targeting of the Igf1r mRNA that encodes for the receptor through which Igf2 exerts its growth promoting effect. Nevertheless, the miR-675 appears to have no effect on the expression of the IGN, thus leading to the conclusion that the H19 mediated downregulation of 9 genes of this network is achieved by the H19 full-length RNA. We showed that this RNA represses several of these targets through an interaction with the MBD1 protein. This protein is involved in the maintenance of the repressive H3K9me3 histone mark. We found that the H19 RNA is necessary to the recruitment of MBD1 to some of its targets, including the Igf2 gene
Legendre, Matthieu. "Recherche de motifs d'ARN non-codants : du messager au microARN." Aix-Marseille 2, 2005. http://theses.univ-amu.fr.lama.univ-amu.fr/2005AIX22066.pdf.
Full textDanger, Richard. "Expression des microARN dans le sang de patients transplantés rénaux." Nantes, 2011. http://archive.bu.univ-nantes.fr/pollux/show.action?id=1dfe9f8e-6d59-481b-ae89-ba622404d290.
Full textThe unresponsiveness of patients undergoing chronic antibody mediated rejection (CAMR) to classical treatment highlight the need for new clinical options. Furthermore, major side-effects of immunosuppression (IS) prompt the establishment of a tolerance to the allograft without the need for IS. In this context, a better understand of post-transplantation mechanisms is required as well as the need for biomarkers that could predict and/or diagnose graft outcome and distinguish among immunosuppressed patients, which ones could be weaned off IS, called “operational tolerants”. Here, we compared the characteristics of peripheral B cells from both patient groups, to that of others who had stable graft function but under IS, and to healthy volunteers. Thus, tolerants patients, have a particular blood B-cell phenotype and gene expression modifications that may contribute to the maintenance of their long-term drug free graft function. Among gene expression regulating molecules, microRNA, small non-coding RNA, are involved in biological mechanisms and diseases. We performed microRNA expression profiling from peripheral blood mononuclear cells from kidney transplanted recipients with operational tolerance, with CAMR or with stable graft function. Among them, we identified differentially microRNA associated either with tolerance or CAMR. The over-expression of miR-142-3p in B lymphocytes from tolerant patients lead us to analyze implicated pathways, including TGFβ signaling. Our investigations open new perspectives for the understood of post-transplantation mechanisms, particularly with the implications of B lymphocytes, and the use of new diagnostic/prognostic biomarkers
Abdel, Salam Ibrahim Mohamed Sherine. "A duo implication of miR-134 microRNA and LIM Kinase1 protein in neuropathic pain modulation of the rat spinal cord." Thesis, Bordeaux 2, 2012. http://www.theses.fr/2012BOR21932/document.
Full textPains having a neuropathic origin following CNS or PNS traumatic injury are particularly difficult to treat using the actually available therapeutic means. It is thus necessary to identify new therapeutic strategies. Hence, our aim was to define the mechanisms implicated in these neuropathic pains. Nervous lesions are characterised by an anatomical reorganization of the neuronal network of the dorsal horn. Neurochemical alterations are also involved. Some of the molecular mechanisms underlying the neuronal plasticity (a main feature of neuropathic pain) have been emphasized here by a variety of complementary technical approaches. LIMK1 is one of the possible actors of this reorganization. Among this protein’s known functions, and the most characterized is the phosphorylation of a family of proteins known as cofilins. Their phosphorylation induces the reorganization of actin cytoskeleton. Recently, it has been shown that a miR-134 miRNA regulates LIMK1 expression by binding to the LIMK1 messenger, inhibiting its translation into physiologically active protein. Our hypothesis is that LIMK1 regulation by miR-134 might play an essential role in pain sensitization by modulating neuron neurochemical reorganization and the associated functional neuronal plasticity. Firstly, by means of IHC and ISH, we studied miR-134/LIMK1 distribution within the dorsal horn of the spinal cord in sham animal (control group) and in neuropathic pain model (SNL model). Important to note here that ISH is a known detection method recently identified to visualize miRNA. Different protocols of ISH were discussed in a part of this thesis. ISH showed a decrease in miR-134 expression in SNL rats concomitantly with an increase in LIMK1 illustrated by IHC. This finding has been confirmed by qRT-PCR techniques. Afterward, in order to check for the possible behavioural-induced changes of miR-134 and LIMK1. We intrathecally injected an anti-LIMK1 siRNA to inhibit endogenous LIMK1 expression in SNL rats. Interestingly no significant changes in pain behaviour have been observed. Artificial overexpression of miR-134 using a PremiR-134, showed the same effect. Then we tried to perform the same injections on sham rats, and more interestingly, siRNA LIMK1 and premiR-134 evoked pain hypersensitivity in shams rats. This was illustrated by means of two behaviour tests; Von Frey (VF) and the Dynamic Weight bearing (DWB). To explore the reverse effect, we inhibited miR-134 using a specific KD probe in SNL rats; unexpectedly a significant decrease in pain withdrawal threshold was observed with VF and DWB. qRT-PCR in most cases confirmed the in vivo correlation between miR-134 and LIMK1. Finally, we searched for the possible mechanism of action that could regulate this modulation. Recent published data showed an involvement of ADF/cofilin on AMPAR trafficking. In line with the above mentioned findings, miR-134 KD transfection showed a decrease in AMPAR addressed to the plasma membrane. Altogether suggest that the antinociceptive effect of miR-134 KD and LIMK1 overexpression are mediated by AMPAR insertion at the plasma membrane. It seems that miR-134 exerts a different effect on neuropathic pain than miR-103 another miRNA discussed within the frame of this thesis. MiR-103 has been proved to regulate multiple targets, the three subunits forming Cav1.2 LTC. Pain sensitization involves Cav1.2 activation which consequently alters gene expression during this form of plasticity. MiR-103 was found downregulated also in the SNL model. Conversely to miR-134, overexpression of miR-103 partially alleviates pain. It decreases pain withdrawal threshold of the Von Frey test. Unlike miR-134, miR-103 exerts a pronociceptive role during neuropathic pain
Delpu, Yannick. "Méthylation de l'ADN et expression des microARNs dans la carcinogénèse pancréatique." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2128/.
Full textPancreatic cancer is the fourth leading cause of cancer death in Western countries. This cancer involves changes in DNA methylation patterns and overexpression of enzymes responsible for its implementation : the DNA methyltransferases. However, the exact role of these proteins in carcinogenesis remains to be proven. We first aimed to determine the changing in the DNA methylation pattern through the study of the expression of a specific microRNA : miR- 148a. We confirmed the repression of miR- 148a by DNA hypermethylation in several cell lines derived from pancreatic cancer as well as in human tumor samples, and we shown the usefulness of this mark in the differential diagnosis between pancreatic cancer and chronic pancreatitis. We also evaluated the therapeutic potential of miR- 148a gene transfer in vitro and in vivo. We observed no significant changes in the behavior of cells / tumors overexpressing miR- 148a. This indicates that its repression is a minor alteration accompanying carcinogenesis rather than a crucial phenomenon of tumor development. Finally, we extended our study to determine whether the single overexpression of DNA methyltransferases can transform normal pancreatic cells. We observed that the stable overexpression of these proteins significantly affects the behavior of cells in vitro, their methylation patterns and gene expression. These results strongly suggest that DNA methylation facilitates carcinogenesis, but is not sufficient to trigger the formation of tumors. This work contributes to a better understanding of pancreatic carcinogenesis, the role of DNA methylation and open new horizons for the potential oncogenic role of DNA methylation
Stankevicins, Luiza. "MicroRNAs in Breast Cancer Progression and DNA Damage Response." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA11T041.
Full textBreast tumors are characterized by their high heterogeneity. Breast cancer is a complex disease, which has its development strongly influenced by environmental factors, combined with a progressive accumulation of genetic mutations and epigenetic dysregulation of critical pathways. Changes in gene expression patterns may be a result of a deregulation in epigenetic events as well as in post-transcriptional regulation driven by RNA interference endogenously represented by microRNA (miRNA). These mechanisms are capable to promote the initiation, maintenance and progression of carcinogenesis and are also implicated on the development of therapy resistance. miRNAs form a class of non-coding RNAs, which have emerged in recent years as one of the major regulators of gene expression through its capacity to silence messenger RNAs (mRNAs) containing a partially complementary sequence. The importance of regulation mediated by miRNAs was observed on their ability to regulate a wide range of biological processes, including cell proliferation, differentiation and apoptosis.To gain insights into the mechanisms involved in breast cancer initiation and progression we conducted a miRNA global expression on 21T series that are an in vitro model of breast cancer progression, comprising cell lines derived from the same patient, which include a normal epithelia (16N), primary in situ ductal carcinoma (21PT and 21NT) and cells derived from pleural effusion of lung metastasis (21MT-1 and 21MT-2). Considering the importance of miRNAs in the regulation of apoptosis, and that irradiation in different spectra is commonly used in diagnostic procedures, as mammography and on radiotherapy, we evaluated the miRNA expression after cell low and high energy irradiation and doxorubicin treatment to determine whether miRNAs are useful biomarkers to detect cell response after DNA damage. The experiments were done on the non-tumoral cell lines MCF-10A and HB-2 and on the breast carcinoma derived cell lines MCF-7 and T-47D. We observed that low energy X-rays is able to promote DNA strand breaks and apoptosis and to slightly change the expression of miRNAs involved on this pathway, such as let-7a, miR-34a and miR-29b. Regarding DNA stress response pathways, an upregulation on miR-29b expression, that in normal conditions is downregulated in tumor cell lines could be observed after all treatments. The microRNAome of 21T series revealed a significant downregulation of miR-205, an enrichment of the pro-metastatic factor ZEB-1, potential target for miR-205 and the consequent reduction of e-cadherin levels in 21MT cells checked by western blot. Our results indicate that miR-29b is a possible biomarker of genotoxic stress and that miR-205 can participate on the metastatic potential of 21T cells
Mercey, Olivier. "Interactions des microARN de la famille miR-34/449 avec les voies de signalisation intracellulaire : rôle dans la différenciation des cellules multiciliées chez les vertébrés." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4119/document.
Full textVertebrate multiciliated cells (MCC) project hundreds of motile cilia at their apical surface which coordinately beat to generate a directional fluid flow necessary for many biological functions including airway cleansing. Biogenesis of multiple cilia (multiciliogenesis) follows different key cellular steps corresponding to a cell cycle arrest, a massive multiplication of centrioles which then migrate to the apical surface to form basal bodies, from which cilia elongate. In 2011, my host laboratory evidenced that the miR-34/449 family of microRNAs control vertebrate multiciliogenesis by inducing the cell cycle arrest and by repressing the Notch pathway. My thesis work has revealed a new role of miR-34/449 by demonstrating that they modulate expression and activity of small GTPases to drive the apical reorganization of the actin network, a prerequisite for basal body anchoring. Besides, I have identified and characterized variant sequences of canonical miR-34/449 family, named isomiRs. Whereas these isomiRs share common biological functions with canonical miR-34/449 miRNAs, they may also contribute to a complementary effect by targeting specific transcripts. Finally, the last part of my work has contributed to the identification of the conserved role of the BMP pathway in the control of multiciliogenesis. I have evidenced some molecular mechanisms by which the BMP signal controls this phenomenon. Importantly, I demonstrated that BMP inhibition promotes regeneration of tracheal MCC in vivo in an asthmatic mouse model. Overall, our findings offer an unprecedented opportunity to develop novel therapeutic strategies to treat diseases associated with ciliary disorders
Savary, Grégoire. "Rôles et mécanismes d’action des microARN dans la fibrogenèse : applications thérapeutiques et diagnostiques dans les fibroses pulmonaires et rénales." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4151.
Full textFibrotic diseases are characterized by the accumulation of extracellular matrix components in response to chronic aggression leading to the destruction of tissue architecture. Myofibroblasts, controlled by TGFβ, are central effectors in this process. MiRNAs, negative regulator of gene expression, are involved in many patho-physiological mechanisms, including tissue fibrosis but their mechanisms of action and the potential synergistic activity between co-regulated miRNAs within the same cluster remain poorly understood. Our work consisted in characterizing the involvement of the miR-199/214 cluster, generated from LncRNA DNM3os, in pulmonary fibrosis. We have shown that these miRNAs are involved in the activation and the differentiation of fibroblasts to myofibroblasts through the regulation of canonical and non-canonical TGF-β pathways. This cluster also acts as an inhibitor of epithelial repair. In vivo, the inhibition of one of this “FibromiR”, significantly decrease fibrosis, in a murine lung fibrosis model. In addition, because of their presence and their stability in biological fluids, miRNAs also represent a new class of non-invasive diagnostic or prognostic biomarker. We showed that serum levels of miR-21-5p were increased in patients with severe kidney fibrosis. These studies highlight the importance of miRNAs in pathogenesis of fibrotic disorders and show that they represent new therapeutic targets or non-invasive biomarkers
Fressigne, Lucile, and Lucile Fressigne. "Caractérisation du rôle de deux interacteurs moléculaires du complexe de dégradation des microARN dans la régulation des courts ARN non codants chez le nématode C. elegans." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/33960.
Full textLes courts ARN non codants tels que les microARN, les piARN et les siARN sont de petites molécules d’ARN de 20 à 30 nucléotides de long qui sont très bien conservées au cours de l’évolution. Elles s’associent à des protéines Argonautes afin de former un complexe effecteur appelé RISC (RNA induced silencing complex). Ces courtes séquences, ne codant pour aucune protéine, agissent comme de puissants régulateurs de l’expression des gènes. De nombreuses évidences supportent qu’une dérégulation du niveau d’expression de ces courts ARN non codants contribue au développement et au maintien de nombreuses pathologies telles que le cancer. De ce fait, il est essentiel pour la cellule de contrôler la stabilité des courts ARN non codants. Le contrôle de la maturation et de la stabilité de ces courts ARN non codants sont des mécanismes peu connus. L’objectif principal de mon doctorat a donc été de mieux comprendre comment le niveau des courts ARN non codants est contrôlé. Afin d’étudier plus en détail comment le niveau des microARN est régulé, nous avons identifié la phosphatase PPM-2 (PP2Cα chez l’humain) et l’E3 ubiquitine ligase HECD-1 (HectD1 chez l’humain) comme étant de nouveaux interacteurs du complexe de dégradation des microARN. Nous avons utilisé des approches de génétique et de biologie moléculaire chez le nématode C. elegans, pour étudier le rôle de la perte de fonction de ppm-2 et d’hecd1 dans la voie des courts ARN non codants. Nos travaux ont montré que la perte de fonction de ppm-2 induit des défauts développementaux qui sont associés à des défauts de la voie des microARN. De plus, l’absence de ppm-2 exacerbe les phénotypes développementaux observés dans des animaux où la voie des microARN est altérée. De manière intéressante, chez le mutant ppm-2, nous avons constaté que d’autres voies de courts ARN non codants, telles que la voie des piARN et celle de l’endosiARN nucléaire, sont affectées. Du point de vue moléculaire, nous avons observé une déstabilisation du niveau d’expression de plusieurs protéines Argonautes dans le mutant ppm-2. En effet, ces dernières sont envoyées à la dégradation par la voie du protéasome seulement chez des animaux mutés pour ppm-2. Concernant l’étude de HECD1, nous avons remarqué que la perte de fonction de cette ubiquitine ligase entrainait une diminution de la progéniture et une létalité embryonnaire attribuable à des défauts dans la gamétogénèse. De plus, nous avons observé une accumulation de miARN fonctionnels chez des animaux mutés pour hecd-1. L’ubiquitine ligase HECD-1 pourrait être impliquée dans la transcription ou la dégradation des miARN. En conclusion, nos résultats suggèrent que PPM-2 permet de contrôler la stabilité des protéines Argonautes en les dirigeant dans une voie alternative de dégradation et que l’ubiquitine ligase HECD-1 pourrait être impliquée dans la régulation des miARN en modulant leur transcription ou leur dégradation. Mes travaux de doctorat nous ont permis de mettre en lumière un nouveau modulateur des courts ARN non codants, PPM-2, qui agit via le contrôle de la régulation des Argonautes. Les avancées de la recherche dans le domaine des courts ARN non codants pourra permettre le développement de nouvelles thérapies.
Small non-coding RNAs, like microRNAs, piRNAs or siRNAs, are small RNA molecules, 20 to 30 nucleotides long that are conserved during evolution. They form an induced silencing complex (RISC) in association with Argonaute proteins to regulate gene expression. Small non-coding RNAs are involved in the regulation of genes implicated in cell proliferation, differentiation and development. Many evidences support that deregulation of the expression level of those small non-coding RNAs contribute to the development of pathologies such as cancer. It is therefore essential for cells to control small non-coding RNA stability. The control of maturation and stability of those small molecules are poorly understood. The main objective of my doctorate was to better understand how the stability of small non-coding RNAs is controlled. In order to study in more detail how miRNAs are regulated, we identified two factors involved in miRNA turnover in C. elegans. We found that the phosphatase PPM-2 (PP2Cα in human) and the E3 ubiquitin ligase HECD-1 (HectD1 in human) are new components of the miRNA degradation complex. Using the power of the nematode C. elegans and molecular biology, we characterized the role of the loss of function of PPM-2 and HECD-1 in small non-coding RNA pathways. Loss of this phosphatase induces developmental defects which are associated with a defect in the miRNA pathway. Genetically, the phosphatase mutant exacerbates the phenotypes that are observed in animals where the miRNA pathway is affected. Interestingly, we further observed that the loss of the phosphatase affects other small non-coding RNA pathways like the piRNA and the siRNA pathways. At the molecular level, we observed a decrease in the expression level of many Argonaute proteins in phosphatase mutant animals. Upon blocking proteasomal degradation with MG132, we noticed that Argonaute proteins are sent to proteasomal degradation in phosphatase mutant animals. Concerning HECD-1, we noticed that the loss of function of the E3 ubiquitin ligase leads to the decrease of progeny and embryonic lethality due to defects in gametogenesis. Moreover, we observed an accumulation of functional miRNAs. This protein can be implicated in transcription or turnover of miRNAs. VIIn conclusion, our data suggest that PPM-2 controls the stability of Argonaute proteins by sending them through an alternative degradation pathway and that HECD-1 could be implicated in miRNA regulation by modulating their transcription or degradation. My doctoral work helped to highlight a new modulator of small non-coding RNAs, PPM-2, which acts through the regulation of Argonaute protein. A better understanding of the mechanisms controlling the stability and the function of these strong regulators will be useful to develop new therapies.
Small non-coding RNAs, like microRNAs, piRNAs or siRNAs, are small RNA molecules, 20 to 30 nucleotides long that are conserved during evolution. They form an induced silencing complex (RISC) in association with Argonaute proteins to regulate gene expression. Small non-coding RNAs are involved in the regulation of genes implicated in cell proliferation, differentiation and development. Many evidences support that deregulation of the expression level of those small non-coding RNAs contribute to the development of pathologies such as cancer. It is therefore essential for cells to control small non-coding RNA stability. The control of maturation and stability of those small molecules are poorly understood. The main objective of my doctorate was to better understand how the stability of small non-coding RNAs is controlled. In order to study in more detail how miRNAs are regulated, we identified two factors involved in miRNA turnover in C. elegans. We found that the phosphatase PPM-2 (PP2Cα in human) and the E3 ubiquitin ligase HECD-1 (HectD1 in human) are new components of the miRNA degradation complex. Using the power of the nematode C. elegans and molecular biology, we characterized the role of the loss of function of PPM-2 and HECD-1 in small non-coding RNA pathways. Loss of this phosphatase induces developmental defects which are associated with a defect in the miRNA pathway. Genetically, the phosphatase mutant exacerbates the phenotypes that are observed in animals where the miRNA pathway is affected. Interestingly, we further observed that the loss of the phosphatase affects other small non-coding RNA pathways like the piRNA and the siRNA pathways. At the molecular level, we observed a decrease in the expression level of many Argonaute proteins in phosphatase mutant animals. Upon blocking proteasomal degradation with MG132, we noticed that Argonaute proteins are sent to proteasomal degradation in phosphatase mutant animals. Concerning HECD-1, we noticed that the loss of function of the E3 ubiquitin ligase leads to the decrease of progeny and embryonic lethality due to defects in gametogenesis. Moreover, we observed an accumulation of functional miRNAs. This protein can be implicated in transcription or turnover of miRNAs. VIIn conclusion, our data suggest that PPM-2 controls the stability of Argonaute proteins by sending them through an alternative degradation pathway and that HECD-1 could be implicated in miRNA regulation by modulating their transcription or degradation. My doctoral work helped to highlight a new modulator of small non-coding RNAs, PPM-2, which acts through the regulation of Argonaute protein. A better understanding of the mechanisms controlling the stability and the function of these strong regulators will be useful to develop new therapies.
Bélanger, Émile. "Le rôle régulateur des microARN des éosinophiles dans les maladies de la marche atopique." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69712.
Full textThe atopic dermatitis, an inflammatory disease affecting skin, is known to play an important role in allergen sensitization via the damaged skin barrier. This sensitization can lead to allergic diseases such as allergic rhinitis and allergic asthma. The inflammatory reactions leading to these diseases recruit a number of pro-inflammatory cells, including eosinophils, a cell type known for contributing to the damaging of epithelial cells. Few studies have focused on the impacts of the transcriptome on this cell type, and even fewer on the differential microRNA (miRNA) profiles that could regulate clinical manifestations and pathogenesis of diseases of the atopic march. Actually, the effect of miRNAs on these diseases is not entirely understood, but they could influence inflammatory pattens in these diseases and the proliferation of epithelial cells, thereby regulating these diseases in a post-transcriptional matter. The aim of this study was to find differential counts for primary miRNAS (pri-miRNAs) in eosinophil cells sampled isolated from blood of individuals affected with allergic diseases in order to better understand epigenetic mechanisms of these diseases. In order to do so, RNAs from individuals affected with atopic dermatitis, allergic rhinitis and asthma, as well as from non-affected individuals, were sequenced to evaluate differential pri-miRNA counts. These counts were also evaluated for respiratory function measures and immunology. 18 miRNAs from eosinophils were identified as differentially expresses between afflicted individuals and controls. These 18 miRNAs were then clustered using Ward's algorithm in order to find a phenotypic explanation to these miRNAs. Clusters were found to be explained by asthma diagnostic, familial history of respiratory diseases, familial history of allergic rhinitis and neutrophil cell count. These 18 miRNAs therefore allow to better understand epigenetic mechanisms underlying allergic diseases.
Musso-Lassalle, Sandra. "Biopathologie des tumeurs épithéliales de la thyroïde : place de la pathologie moléculaire et des signatures microRNAs." Nice, 2010. http://www.theses.fr/2010NICE4109.
Full textPapillary carcinomas and follicular carcinomas are the most frequent tumours of the thyroid gland. The term thyroid tumours of uncertain malignant potential (TT-UMP) has been proposed for a subgroup of tumours for which benignancy or malignancy cannot be assessed with certainty. We first describe how we set-up a biobank targeting diseases of a specific organ (thyroid gland), with the aim of developing translational research projects. We then evaluated formalin substitute fixatives on thyroid tumours and showed that some fixatives performed better for nucleic acid integrity than formalin fixative. We examined the impact on diagnosis of ancillary methods on TT-UMP, and showed that immunochemistry and molecular genetic profiling were not useful in detecting high-risk population. We then conducted an extensive expression profiling study at the microRNA level on thyroid tumours including TT-UMP in order to better characterize these entity. We demonstrated that TT-UMP microRNA profile differ slightly but specifically from carcinomas, but was not sufficient per se in distinguishing TT-UMP from the other thyroid tumour. We then characterize the antitumor activity of histone deacetylase inhibitors (HDACi) induced-microRNAs on thyroid cancer cells and showed that some microRNA might be used as biomarker for HDACi treatment efficacity
Ingallinesi, Manuela. "Selective inactivation of the orphan receptor Gpr88 in the Nucleus Accumbens by lentiviral-mediated microRNA transfer : molecular, cellular and behavioral studies in a murine model of Schizophrenia." Paris 6, 2013. http://www.theses.fr/2013PA066704.
Full textBased on genetic studies we have identified a new candidate gene (GPR88) for genetic predisposition to SZ. The Gpr88 gene encodes an orphan G protein-coupled receptor that is highly and almost exclusively expressed in the projecting medium spiny neurons of the striatum and, thus, may participate in motor functions and cognitive processes that are impaired in neuropsychiatric disorders such as schizophrenia (SZ). The aim of this thesis was to characterize the relevance of Gpr88 in SZ-related dysfunctions. In this perspective, we specifically inactivated the expression of Gpr88 in the Nucleus Accumbens by lentiviral-mediated microRNA transfer in a neurodevelopmental rat model of SZ. This model was obtained by a neonatal treatment with phencyclidine (PCP), a non-competitive N-methyl-D-aspartate receptor antagonist, which reproduces in rodents most symptoms of SZ. We compared the effects of the local inactivation of Gpr88 and of the dopamine receptor type 2 (Drd2) in the same structure. The results showed that neonatal PCP provoked in the adult rat a hyperlocomotion in response to amphetamine and social novelty discrimination deficits. The Drd2 inactivation was unable to modify the alterations in locomotor activity and the cognitive deficits induced by PCP. On the contrary, the silencing of Gpr88 resulted in the complete inhibition of the amphetamine-induced hyperlocomotion and in the improvement of the social novelty discrimination deficit elicited by the neonatal treatment with PCP. These results suggest that Gpr88 plays a role in SZ-associated behavior and may represent a novel potential target for the treatment of SZ
Briand, Josephine. "Glioblastome multiforme et épigénétique : de la prévention au développement de nouveaux traitements." Thesis, Nantes, 2019. http://www.theses.fr/2019NANT4041.
Full textSince many years, fight against cancer is a major public health issue. Glioblastoma multiforme is aparticularly aggressive primary brain tumor, with a 5 years survival inferior to 5%. During my thesis, I focused on struggling this pathology under several forms, concentrated on epigenetics. First, I tried to find a way to anticipate glioblastoma emergence, in order to improve its care. We brought to light diuron capacity, an herbicide often used until 2008, to induce gliomagenesis when its exposure is coupled to AKT overexpression in astrocytary progenitors. Diuron also has a negative impact on NK cells cytotoxicity. Secondly, we demonstrated that TET2, an enzyme implicated in DNA demethylation was not a prognosis factor at diagnosis time, but its increase is correlated to a shorter time between two resections. Third part of my work consisted in interesting in monitoring the evolution to patient response to treatment. To this end, we demonstrated that an exomiR overexpression was correlated to granzyme B decrease in patients' blood. Finally, we studied development of new treatments, based on microRNA, unaltered or under a methylated prodrug form. With this work, the idea was to be concerned by several phases which patients undergo, in order to try to answer to numerous therapeutic issue and to participate to a better care of patients to every level : before, during and after disease
Bossé, Gabriel. "Identification d'un complexe de dégradation des microARNs chez le nématode Caenorhabditis elegans." Doctoral thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/26515.
Full textIn all metazoans, microRNAs play a critical role in the regulation of genes implicated in cell proliferation and differentiation. These small non-coding RNAs form a silencing complex called miRISC and alter protein synthesis upon binding mRNA untranslated regions (UTRs). miRNAs are transcribed by RNA Pol II as a long transcript call the pri-miRNA. The pri-miRNA will go through two steps of cleavage to form the mature miRNA. This mature miRNA is then loaded onto an Argonaute protein to form the effector complex; the miRISC. Each step of miRNA biogenesis is tightly regulated. Recently, miRNA production and stability have been shown to be an important step in this pathway. Several proteins, such as p53, can modulate microRNA biogenesis and many other proteins are implicated in miRNA stabilization and degradation. A tight control of these regulatory RNA is essential since miRNA misregulation is associated with several diseases. Here we identified the ortholog of human decapping enzyme DcpS (DCS-1) as an important regulator of miRNA level in C. elegans by forming a degradation complex with XRN-1, idependantly of its catalytic activity. In C. elegans, the loss of dcs-1 affects the level of several microRNAs leading to a misregulation of their mRNA targets. Biochemical analysis, support that DCS-1 contributes to degradation of unbound microRNA, which is dependent on the 5' to 3' exonuclease XRN-1. In order to better understand the regulation of miRNAs, we sought to identify other members of this complex. An initial study of proteins identified by mass spectrometry revealed that the loss of ppm-2 induces several developmental defects associated with the loss of miRNAs. As PPM-2 is a phosphatase, our results suggest that it could affect the stability of the degradation complex by targeting one of its components or the miRNA loading on the Argonaute protein. In conclusion, our data support that DCS-1 is part of a degradation complex. Importantly, this study identified the first modulators of microRNA degradation in animals and proteins forming this complex are conserved in human suggesting that they could also be implicated in microRNA degradation in higher organisms. Since microRNA are misregulated in many human diseases, identification of factors modulating their stability could lead to new therapeutic approaches.
Mallat, Youssef. "La régulation du cytosquelette et du métabolisme énergétique par mir-378 et 378* dans les cardiomyocytes." Paris 6, 2013. http://www.theses.fr/2013PA066604.
Full textMicroRNAs are endogenous regulators of gene expression. MiR-378 and miR-378* are localized in the first intro of the Ppargc1b gene that codes the transcriptional co-activator PGC-1β, a regulator of energy expenditure and mitochondrial biogenesis. These miRs are highly expressed in cardiac cells. To better assess their role in cardiomyocytes, we identified miR-378 and 378* targets via a proteomic screen. We overexpressed these miRs in an H9c2 cell line and identified 87 down regulated proteins in their presence. Bioinformatic algorithms predicted 20 proteins as targets of the miRs. We validated 10 of them by Q-PCR and luciferase reporter assay. Our results show that these miRs target proteins involved in endoplasmic reticulum stress response such as chaperone and/or calcium buffering proteins GRP78, PPIA and calumenin. MiR-378 also targets lactate dehydrogenase A and impacts on cell proliferation whereas miR-378* targets cytoskeleton proteins actin, vimentin and desmin. MiR-378* disrupts the desmin network in the cardiomyocyte. Its overexpression decreases mitochondrial network area and the expression level of respiratory chain components. This decrease seems to be a direct effect of the damage to the desmin network since its rescue with a desmin-overexpressing-AAV blocks the deleterious effect of miR-378*. Our results show that the miR-378/378* hairpin establishes a connection between energy metabolism, cytoskeleton remodeling and endoplasmic reticulum function through post-transcriptional regulation of key proteins involved in theses pathways
Rau, Frédérique. "Étude de la dérégulation de miR-1 dans le coeur de patients atteints de dystrophies myotoniques." Strasbourg, 2011. http://www.theses.fr/2011STRA6043.
Full textMyotonic Dystrophy (DM) is the most common form of muscular dystrophy in adult and is characterized by several symptoms including cardiac conduction abnormalities and arrhythmia resulting in sudden death. DM is caused by expansions of CUG or CCUG repeats which interfere with pre-mRNAs processing through dysfunction of the MBNL1 and CUGBP1 RNA-binding proteins. Micro-RNAs (miRNA) play an important role in heart functions. Using microarray and qRT-PCR, we identified a downregulation of miR-1, in heart samples of Myotonic Dystrophic patients. In agreement with decreased level of miR-1 we found that targets of miR-1 are up-regulated at the protein level in DM1. Importantly, while we found a down-regulation of the mature miR-1, we observed no changes in the quantity of pre-miR-1 both in DM1 cell models and patient heart samples. We demonstrated that expanded CUG repeats and shRNA-mediated depletion of MBNL1 inhibit exogenous and endogenous pre-miR-1 processing. Furthermore, we found that MBNL1 binds UGC motifs located within the pre-miR-1 loop. Next, we observed that Lin28 binds pre-miR-1 loop and promotes uridylation of pre-miR-1 by TUT4. Finally, we demonstrated that MBNL1 and Lin28 compete for pre-miR-1 binding suggesting a model in which MBNL1 protects pre-miR-1 from uridylation by Lin28-TUT4. In conclusion, our results demonstrate for the first time that miRNA maturation is altered in Myotonic Dystrophic patients, and suggest a novel function to MBNL1 as a regulator of miRNA processing and a new target of Lin28-TUT4: miR-1. We propose that the down-regulation of miR-1 may be involved in the heart defects observed in DM patients
Tritsch, Eva. "Rôle du facteur de réponse au sérum dans l'expression des microARNs et des protéines cardiaques impliqués dans l'apoptose et les flux calciques." Paris 6, 2011. http://www.theses.fr/2011PA066416.
Full textDancer, Marine. "Étude de la régulation de la triglycéridémie chez l’homme par des variants codants de LMF1 et non codants d’APOC3 et LMF1." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1126/document.
Full textHyperchylomicronemia is a rare and complex disease involving several genes which are themselves highly regulated by several mechanisms and whose metabolic pathways are closely dependent on environmental factors. The occurrence of this disease due to the presence of variants or a combination of variants on these genes is not always clearly defined. This suggests the intervention of other ill-defined mechanisms in the development of hyperchylomicronemia and the regulation of triglyceride metabolism. We have tried to understand certain causal mechanisms in the occurrence of hyperchylomicronemia in relation to the presence of variants on the APOC3 and LMF1 known regulatory genes of triglyceride metabolism. APOC3 gene carries the SstI variant (rs5128) in the 3' untranslated region significantly associated with hypertriglyceridemia in our cohort. We sought to characterize its possible post-transcriptional regulation by hepatic or intestinal microRNA. Our results obtained in vitro do not support the hypothesis of a regulation of the SstI variant of the APOC3 gene by a hepatic or intestinal microRNA directly targeting the 3'UTR of APOC3 gene. LMF1 gene, a new candidate gene for studying the mechanisms of hyperchylomicronaemias, is still under investigation. We have established its genetic diagnosis in the laboratory and set up an in vitro method to evaluate the impact of LMF1 coding variants by measuring the release of post-heparin lipoprotein lipase (LPL) activity. We found decreased LPL activities suggesting a LMF1 dysfunction in the presence of variants p.Gly172Arg (rs201406396), p.Arg354Trp (rs143076454), p.Arg364Gln (rs35168378), and the two nonsense variants already described p.Tyr439Ter (rs121909397) and p.Trp464Ter (rs587777626). This study confirms the functional effect of LMF1 variants on the regulation of LPL secretion. In addition, we found 18 variants on the 3' untranslated region of LMF1 gene. For three variants : c*231C>A (rs75476513), c*512G>A (rs117039680), and c*530G>A (rs139657279), in vitro results suggest a post-transcriptional regulation by microRNA. These findings are an involvement of these untranslated variants in the occurrence of hypertriglyceridemia.Thus, complex interrelations of multiple genes involved in triglyceride metabolism and their simultaneous multi-level regulation modulate the phenotype of hyperchylomicronemic patients. It is necessary to study all the complex mechanisms involved in the regulation of triglyceridemia in order to better understand pathophysiology of hyperchylomicronemia and to develop new therapeutic targets
Beldiman, Cornelia. "Role of miR-205 in Breast Cancer Development." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA11T094.
Full textDuring the time I was working on my thesis, I aimed to understand the role of miR-205 in breast cancer development. MiR-205 was chosen from the comparative analysis of total micro-RNAs expression in non-Transformed and tumorigenic cell lines of the MCF10A breast epithelial cell model. I demonstrated the complexity of miR-205 functions during breast epithelial cell transformation by showing miR-205 overexpression in transformed non-Invasive cell lines and miR-205 down-Regulation in cell line with metastatic potential. Moreover, we demonstrated increased level of miR-205 expression in breast cancer stem cells in comparison with non-Stem cells. Using 3D cultures of breast epithelial cells, I succeeded to correlate the tumorigenic function of miR-205 with its role in modulation of acinar size, and to attribute it to the apoptosis repression but not increased proliferation. Further, I was able to show that miR-205 exercises its oncogenic functions via targeting ZEB1, an inhibitor of E-Cadherin. Indeed, E-Cadherin expression level depends on the amount of miR-205 in different MCF10A cell lines. Downregulating E-Cadherin restored normal acinar morphology in miR-205 expressing cells, consistent with E-Cadherin being involved in the miR-205-Dependent acini phenotype that correlates with tumorigenic breast epithelial cell transformation