Journal articles on the topic 'Microbial biotechnology. Trichlorophenol Bioremediation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microbial biotechnology. Trichlorophenol Bioremediation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sánchez, M. A., M. Vásquez, and B. González. "A Previously Unexposed Forest Soil Microbial Community Degrades High Levels of the Pollutant 2,4,6-Trichlorophenol." Applied and Environmental Microbiology 70, no. 12 (2004): 7567–70. http://dx.doi.org/10.1128/aem.70.12.7567-7570.2004.
Full textTiirola, Marja A., Minna K. Männistö, Jaakko A. Puhakka, and Markku S. Kulomaa. "Isolation and Characterization of Novosphingobium sp. Strain MT1, a Dominant Polychlorophenol-Degrading Strain in a Groundwater Bioremediation System." Applied and Environmental Microbiology 68, no. 1 (2002): 173–80. http://dx.doi.org/10.1128/aem.68.1.173-180.2002.
Full textJoshi, Sanket J. "Microbial Biotechnology and Environmental Bioremediation: Challenges and Prospects." Open Biotechnology Journal 10, no. 1 (2016): 287–88. http://dx.doi.org/10.2174/1874070701610010287.
Full textChauhan, S., E. Yankelevich, V. M. Bystritskii, and T. K. Wood. "Degradation of 2,4,5-trichlorophenol and 2,3,5,6-tetrachlorophenol by combining pulse electric discharge with bioremediation." Applied Microbiology and Biotechnology 52, no. 2 (1999): 261–66. http://dx.doi.org/10.1007/s002530051519.
Full textKhan, Nishat, Mohammad Danish Khan, Mohd Yusuf Ansari, Anees Ahmad, and Mohammad Zain Khan. "Bio-electrodegradation of 2,4,6-Trichlorophenol by mixed microbial culture in dual chambered microbial fuel cells." Journal of Bioscience and Bioengineering 127, no. 3 (2019): 353–59. http://dx.doi.org/10.1016/j.jbiosc.2018.08.012.
Full textSaleem, M., H. Brim, S. Hussain, M. Arshad, M. B. Leigh, and Zia-ul-hassan. "Perspectives on microbial cell surface display in bioremediation." Biotechnology Advances 26, no. 2 (2008): 151–61. http://dx.doi.org/10.1016/j.biotechadv.2007.10.002.
Full textPaul, Debarati, Gunjan Pandey, Janmejay Pandey, and Rakesh K. Jain. "Accessing microbial diversity for bioremediation and environmental restoration." Trends in Biotechnology 23, no. 3 (2005): 135–42. http://dx.doi.org/10.1016/j.tibtech.2005.01.001.
Full textLIU, S. "Ecology and evolution of microbial populations for bioremediation." Trends in Biotechnology 11, no. 8 (1993): 344–52. http://dx.doi.org/10.1016/0167-7799(93)90157-5.
Full textGracía-Chaves, M. C., Z. Arbeli, E. C. Plazas, and M. C. Díaz-Báez. "Reductive dehalogenation of trichlorophenol in sediment from Rio-Bogotá, Colombia: the potential for intrinsic bioremediation and biostimulation." World Journal of Microbiology and Biotechnology 23, no. 10 (2007): 1493–95. http://dx.doi.org/10.1007/s11274-007-9382-y.
Full textSharma, Babita, and Pratyoosh Shukla. "Designing synthetic microbial communities for effectual bioremediation: A review." Biocatalysis and Biotransformation 38, no. 6 (2020): 405–14. http://dx.doi.org/10.1080/10242422.2020.1813727.
Full textEswayah, Abdurrahman S., Thomas J. Smith, and Philip H. E. Gardiner. "Microbial Transformations of Selenium Species of Relevance to Bioremediation." Applied and Environmental Microbiology 82, no. 16 (2016): 4848–59. http://dx.doi.org/10.1128/aem.00877-16.
Full textArmenante, Piero M., Hung-Yee Shu, Ching R. Huang, Cheng-Ming Kung, and David Kafkewitz. "Kinetics of the sequential dechlorination of 2,4,6-trichlorophenol by an anaerobic microbial population." Biotechnology Letters 17, no. 6 (1995): 663–68. http://dx.doi.org/10.1007/bf00129397.
Full textRamos, Juan-Luis, Silvia Marqués, Pieter van Dillewijn, et al. "Laboratory research aimed at closing the gaps in microbial bioremediation." Trends in Biotechnology 29, no. 12 (2011): 641–47. http://dx.doi.org/10.1016/j.tibtech.2011.06.007.
Full textFuentes, Sebastián, Valentina Méndez, Patricia Aguila, and Michael Seeger. "Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications." Applied Microbiology and Biotechnology 98, no. 11 (2014): 4781–94. http://dx.doi.org/10.1007/s00253-014-5684-9.
Full textYun, Jiae, Toshiyuki Ueki, Marzia Miletto, and Derek R. Lovley. "Monitoring the Metabolic Status of Geobacter Species in Contaminated Groundwater by Quantifying Key Metabolic Proteins with Geobacter-Specific Antibodies." Applied and Environmental Microbiology 77, no. 13 (2011): 4597–602. http://dx.doi.org/10.1128/aem.00114-11.
Full textMacNaughton, Sarah J., John R. Stephen, Albert D. Venosa, Gregory A. Davis, Yun-Juan Chang, and David C. White. "Microbial Population Changes during Bioremediation of an Experimental Oil Spill." Applied and Environmental Microbiology 65, no. 8 (1999): 3566–74. http://dx.doi.org/10.1128/aem.65.8.3566-3574.1999.
Full textPak, Daewon. "Enhanced dechlorination of 2,4,6-trichlorophenol by anaerobic microbial populations in the presence of ethanol." Biotechnology Letters 18, no. 8 (1996): 981–84. http://dx.doi.org/10.1007/bf00154634.
Full textPenny, Christian, Stéphane Vuilleumier, and Françoise Bringel. "Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation." FEMS Microbiology Ecology 74, no. 2 (2010): 257–75. http://dx.doi.org/10.1111/j.1574-6941.2010.00935.x.
Full textBall, Andrew S., and Krishna K. Kadali. "The microbial removal of toxic waste." Microbiology Australia 33, no. 3 (2012): 97. http://dx.doi.org/10.1071/ma12097.
Full textGrant, R. J., L. M. Muckian, N. J. W. Clipson, and E. M. Doyle. "Microbial community changes during the bioremediation of creosote-contaminated soil." Letters in Applied Microbiology 44, no. 3 (2007): 293–300. http://dx.doi.org/10.1111/j.1472-765x.2006.02066.x.
Full textOrtiz-Bernad, Irene, Robert T. Anderson, Helen A. Vrionis, and Derek R. Lovley. "Resistance of Solid-Phase U(VI) to Microbial Reduction during In Situ Bioremediation of Uranium-Contaminated Groundwater." Applied and Environmental Microbiology 70, no. 12 (2004): 7558–60. http://dx.doi.org/10.1128/aem.70.12.7558-7560.2004.
Full textVyas, Charu, and Ashwini A. Waoo. "Prognostication of Bioremediation Requisite Around Industrially Contaminated Environment: A Review." Current Biotechnology 9, no. 1 (2020): 3–14. http://dx.doi.org/10.2174/2211550109666200305092457.
Full textAtlas, Ronald M. "Microbial hydrocarbon degradation-bioremediation of oil spills." Journal of Chemical Technology & Biotechnology 52, no. 2 (2007): 149–56. http://dx.doi.org/10.1002/jctb.280520202.
Full textLiang, Yuting, Joy D. Van Nostrand, Lucie A. N′Guessan, et al. "Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions duringIn SituUranium Reduction." Applied and Environmental Microbiology 78, no. 8 (2012): 2966–72. http://dx.doi.org/10.1128/aem.06528-11.
Full textMilliken, C. E., G. P. Meier, K. R. Sowers, and H. D. May. "Chlorophenol Production by Anaerobic Microorganisms: Transformation of a Biogenic Chlorinated Hydroquinone Metabolite." Applied and Environmental Microbiology 70, no. 4 (2004): 2494–96. http://dx.doi.org/10.1128/aem.70.4.2494-2496.2004.
Full textAuger, Christopher, Sungwon Han, Varun P. Appanna, Sean C. Thomas, Gerardo Ulibarri, and Vasu D. Appanna. "Metabolic reengineering invoked by microbial systems to decontaminate aluminum: Implications for bioremediation technologies." Biotechnology Advances 31, no. 2 (2013): 266–73. http://dx.doi.org/10.1016/j.biotechadv.2012.11.008.
Full textTront, J. M., J. D. Fortner, M. Plötze, J. B. Hughes, and A. M. Puzrin. "Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment." Biotechnology Letters 30, no. 8 (2008): 1385–90. http://dx.doi.org/10.1007/s10529-008-9707-4.
Full textKafkewitz, David, Piero M. Armenante, Gordon Lewandowski, and Cheng-Ming Kung. "Dehalogenation and mineralization of 2,4,6-trichlorophenol by the sequential activity of anaerobic and aerobic microbial populations." Biotechnology Letters 14, no. 2 (1992): 143–48. http://dx.doi.org/10.1007/bf01026242.
Full textTruskewycz, Adam, Taylor D. Gundry, Leadin S. Khudur, et al. "Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems—Fate and Microbial Responses." Molecules 24, no. 18 (2019): 3400. http://dx.doi.org/10.3390/molecules24183400.
Full textKumar, Govind, Kavita Arya, Amit Verma, et al. "Bioremediation of Petrol Engine Oil Polluted Soil Using Microbial Consortium and Wheat Crop." Journal of Pure and Applied Microbiology 11, no. 3 (2017): 1583–88. http://dx.doi.org/10.22207/jpam.11.3.45.
Full textPanno, MarÃa T., Irma S. Morelli, Bert Engelen, and Luise Berthe-Corti. "Effect of petrochemical sludge concentrations on microbial communities during soil bioremediation." FEMS Microbiology Ecology 53, no. 2 (2005): 305–16. http://dx.doi.org/10.1016/j.femsec.2005.01.014.
Full textWilkins, Michael J., Nathan C. VerBerkmoes, Kenneth H. Williams, et al. "Proteogenomic Monitoring of Geobacter Physiology during Stimulated Uranium Bioremediation." Applied and Environmental Microbiology 75, no. 20 (2009): 6591–99. http://dx.doi.org/10.1128/aem.01064-09.
Full textKarigar, Chandrakant S., and Shwetha S. Rao. "Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review." Enzyme Research 2011 (September 7, 2011): 1–11. http://dx.doi.org/10.4061/2011/805187.
Full textCardenas, Erick, Wei-Min Wu, Mary Beth Leigh, et al. "Microbial Communities in Contaminated Sediments, Associated with Bioremediation of Uranium to Submicromolar Levels." Applied and Environmental Microbiology 74, no. 12 (2008): 3718–29. http://dx.doi.org/10.1128/aem.02308-07.
Full textDojka, Michael A., Philip Hugenholtz, Sheridan K. Haack, and Norman R. Pace. "Microbial Diversity in a Hydrocarbon- and Chlorinated-Solvent-Contaminated Aquifer Undergoing Intrinsic Bioremediation." Applied and Environmental Microbiology 64, no. 10 (1998): 3869–77. http://dx.doi.org/10.1128/aem.64.10.3869-3877.1998.
Full textMishra, Anuja, Aditya Saxena, and Surya Pratap Singh. "Isolation and Characterization of Microbial Strains from Refinery Effluent to Screen their Bioremediation Potential." Journal of Pure and Applied Microbiology 13, no. 4 (2019): 2325–32. http://dx.doi.org/10.22207/jpam.13.4.48.
Full textShafiei, Farhad, Mathew P. Watts, Lukas Pajank, and John W. Moreau. "The effect of heavy metals on thiocyanate biodegradation by an autotrophic microbial consortium enriched from mine tailings." Applied Microbiology and Biotechnology 105, no. 1 (2020): 417–27. http://dx.doi.org/10.1007/s00253-020-10983-4.
Full textVrionis, Helen A., Robert T. Anderson, Irene Ortiz-Bernad, et al. "Microbiological and Geochemical Heterogeneity in an In Situ Uranium Bioremediation Field Site." Applied and Environmental Microbiology 71, no. 10 (2005): 6308–18. http://dx.doi.org/10.1128/aem.71.10.6308-6318.2005.
Full textYergeau, Etienne, Mélanie Arbour, Roland Brousseau, et al. "Microarray and Real-Time PCR Analyses of the Responses of High-Arctic Soil Bacteria to Hydrocarbon Pollution and Bioremediation Treatments." Applied and Environmental Microbiology 75, no. 19 (2009): 6258–67. http://dx.doi.org/10.1128/aem.01029-09.
Full textCappello, S., G. Caruso, D. Zampino, et al. "Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study." Journal of Applied Microbiology 102, no. 1 (2007): 184–94. http://dx.doi.org/10.1111/j.1365-2672.2006.03071.x.
Full textMeinel, Megan, James Wang, Evan Cox, Phil Dennis, César Torres, and Rosa Krajmalnik-Brown. "The influence of electrokinetic bioremediation on subsurface microbial communities at a perchloroethylene contaminated site." Applied Microbiology and Biotechnology 105, no. 16-17 (2021): 6489–97. http://dx.doi.org/10.1007/s00253-021-11458-w.
Full textAl-Battashi, Huda, Sanket J. Joshi, Bernhard Pracejus, and Aliya Al-Ansari. "The Geomicrobiology of Chromium (VI) Pollution: Microbial Diversity and its Bioremediation Potential." Open Biotechnology Journal 10, no. 1 (2016): 379–89. http://dx.doi.org/10.2174/1874070701610010379.
Full textWhite, Christopher, Ajay K. Shaman, and Geoffrey M. Gadd. "An integrated microbial process for the bioremediation of soil contaminated with toxic metals." Nature Biotechnology 16, no. 6 (1998): 572–75. http://dx.doi.org/10.1038/nbt0698-572.
Full textBachoon, D. S., R. Araujo, M. Molina, and R. E. Hodson. "Microbial community dynamics and evaluation of bioremediation strategies in oil-impacted salt marsh sediment microcosms." Journal of Industrial Microbiology and Biotechnology 27, no. 2 (2001): 72–79. http://dx.doi.org/10.1038/sj.jim.7000165.
Full textBender, Judith, Richard F. Lee, and Peter Phillips. "Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation." Journal of Industrial Microbiology 14, no. 2 (1995): 113–18. http://dx.doi.org/10.1007/bf01569892.
Full textChaurasia, Pankaj. "Recent Studies on Biotechnological Roles of Pleurotus spp." Biotechnology and Bioprocessing 1, no. 3 (2020): 01–03. http://dx.doi.org/10.31579/2766-2314/018.
Full textFuentes, Sebastián, Bárbara Barra, J. Gregory Caporaso, and Michael Seeger. "From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation." Applied and Environmental Microbiology 82, no. 3 (2015): 888–96. http://dx.doi.org/10.1128/aem.02625-15.
Full textZakaria, Nur Nadhirah, Peter Convey, Claudio Gomez-Fuentes, et al. "Oil Bioremediation in the Marine Environment of Antarctica: A Review and Bibliometric Keyword Cluster Analysis." Microorganisms 9, no. 2 (2021): 419. http://dx.doi.org/10.3390/microorganisms9020419.
Full textVan Nostrand, Joy D., Liyou Wu, Wei-Min Wu, et al. "Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer." Applied and Environmental Microbiology 77, no. 11 (2011): 3860–69. http://dx.doi.org/10.1128/aem.01981-10.
Full textDe Wildeman, Stefaan, Gabriele Diekert, Herman Van Langenhove, and Willy Verstraete. "Stereoselective Microbial Dehalorespiration with Vicinal Dichlorinated Alkanes." Applied and Environmental Microbiology 69, no. 9 (2003): 5643–47. http://dx.doi.org/10.1128/aem.69.9.5643-5647.2003.
Full text