Academic literature on the topic 'Microbial enzymes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microbial enzymes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microbial enzymes"
Liu, Chunhui, Jingyi Ma, Tingting Qu, Zhijing Xue, Xiaoyun Li, Qin Chen, Ning Wang, Zhengchao Zhou, and Shaoshan An. "Extracellular Enzyme Activity and Stoichiometry Reveal Nutrient Dynamics during Microbially-Mediated Plant Residue Transformation." Forests 14, no. 1 (December 24, 2022): 34. http://dx.doi.org/10.3390/f14010034.
Full textWackett, Lawrence P. "Microbial industrial enzymes." Microbial Biotechnology 12, no. 2 (February 25, 2019): 405–6. http://dx.doi.org/10.1111/1751-7915.13389.
Full textWackett, Lawrence P. "Microbial industrial enzymes." Microbial Biotechnology 12, no. 5 (August 5, 2019): 1090–91. http://dx.doi.org/10.1111/1751-7915.13469.
Full textWackett, Lawrence P. "Microbial commercial enzymes." Microbial Biotechnology 4, no. 4 (July 2011): 548–49. http://dx.doi.org/10.1111/j.1751-7915.2011.00274.x.
Full textSihi, Debjani, Stefan Gerber, Patrick W. Inglett, and Kanika Sharma Inglett. "Comparing models of microbial–substrate interactions and their response to warming." Biogeosciences 13, no. 6 (March 21, 2016): 1733–52. http://dx.doi.org/10.5194/bg-13-1733-2016.
Full textBaldrian, P. "Microbial enzyme-catalyzed processes in soils and their analysis." Plant, Soil and Environment 55, No. 9 (October 14, 2009): 370–78. http://dx.doi.org/10.17221/134/2009-pse.
Full textSingh, Ankita, PalakVarma .., Arpita Singh, Shuchi .., Anakshi .., Neha Sharma, Kajal Rawat, et al. "Applications of Microbial Enzymes: The Need of an Hour." Indian Journal of Genetics and Molecular Research 12, no. 2 (December 15, 2023): 19–32. http://dx.doi.org/10.21088/ijgmr.2319.4782.12223.3.
Full textDemain, Arnold L., and Sergio Sánchez. "Enzymes of industrial interest." Mexican journal of biotechnology 2, no. 2 (July 1, 2017): 74–97. http://dx.doi.org/10.29267/mxjb.2017.2.2.74.
Full textWackett, Lawrence P. "Broad specificity microbial enzymes." Microbial Biotechnology 8, no. 1 (January 2015): 188–89. http://dx.doi.org/10.1111/1751-7915.12270.
Full textWackett, Lawrence P. "Immobilization of microbial enzymes." Microbial Biotechnology 3, no. 6 (October 22, 2010): 729–30. http://dx.doi.org/10.1111/j.1751-7915.2010.00227.x.
Full textDissertations / Theses on the topic "Microbial enzymes"
Ghadge, G. D. "Microbial enzymes." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 1986. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/3251.
Full textGarrett, Mark Denis. "A study on selectivity in microbial biotransformations of substituted arenes." Thesis, Queen's University Belfast, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287620.
Full textNathan, Philip Bernard. "Genetic and biochemical studies of microbial peptidase enzymes." Thesis, Nottingham Trent University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258545.
Full textDe, Villiers Tania. "Fungal enzymes and microbial systems for industrial processing." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/21457.
Full textENGLISH ABSTRACT: This study strives to improve two current industrial processes by making them more cost effective through the use of hydrolytic enzymes or microbial systems. The first process targeted is the industrial conversion of starch to ethanol. In the second process, hydrolytic enzymes are applied to the manufacturing of instant coffee. The engineering of microbial systems to convert starch to bio-ethanol in a one-step process may result in large cost reductions in current industrial processes. These reductions will be due to decreased heating energy requirements, as well as a decrease in money spent on the purchase of commercial enzymes for liquefaction and saccharification. In this study, a recombinant Saccharomyces cerevisiae strain was engineered to express the wild-type Aspergillus awamori glucoamylase (GA I) and α-amylase (AMYL III) as well as the Aspergillus oryzae glucoamylase (GLAA) as separately secreted polypeptides. The recombinant strain that secreted functional GA I and AMYL III was able to utilise raw corn starch as carbon source, and converted raw corn starch into bio-ethanol at a specific production rate of 0.037 grams per gram dry weight cells per hour. The ethanol yield of 0.40 gram ethanol per gram available sugar from starch translated to 71% of the theoretical maximum from starch as substrate. A promising raw starch converter was therefore generated. In the second part of this study, soluble solid yields were increased by hydrolysing spent coffee ground, which is the waste generated by the existing coffee process, with hydrolytic enzymes. Recombinant enzymes secreted from engineered Aspergillus strains (β-mannanase, β-endoglucanase 1, β-endo-glucanase 2, and β-xylanase 2), enzymes secreted from wild-type organisms (β-mannanases) and commercial enzyme cocktails displaying the necessary activities (β-mannanase, cellulase, and pectinase) were applied to coffee spent ground to hydrolyse the residual 42% mannan and 51% cellulose in the substrate. Hydrolysis experiments indicated that an enzyme cocktail containing mainly β-mannanase increased soluble solids extracted substantially, and a soluble solid yield of 23% was determined using the optimised enzyme extraction process. Soluble solid yield increases during the manufacturing of instant coffee will result in; (i) an increase in overall yield of instant coffee product, (ii) a decrease in amount of coffee beans important for the production of the product, and (iii) a reduction in the amount of waste product generated by the process.
AFRIKAANSE OPSOMMING: Hierdie studie poog om twee huidige industriële prosesse te verbeter deur die prosesse meer kosteeffektief met behulp van hidroltiese ensieme en mikrobiese sisteme te maak. Die eerste industrie wat geteiken word, is die omskakeling van rou stysel na etanol, en die tweede om hidrolities ensieme in die vervaardiging van kitskoffie te gebruik. Die skep van mikrobiese sisteme om rou-stysel in ’n ’een-stap’ proses om te skakel na bio-etanol sal groot koste besparing tot gevolg hê. Hierdie besparings sal te wyte wees aan die afname in verhittingsenergie wat tydens die omskakelingsproses benodig word, asook ’n afname in die koste verbonde aan die aankoop van duur kommersiële ensieme om die stysel na fermenteerbare suikers af te breek. In hierdie studie is ’n rekombinante Saccharomyces cerevisiae-gis gegenereer wat die glukoamilase (GA I) and α-amilase (AMYL III) van Aspergillus awamori, asook die glukoamilase van Aspergillus oryzae (GLAA) as aparte polipeptide uit te druk. Die rekombinante gis wat die funksionele GA I en AMYL III uitgeskei het, was in staat om op die rou-stysel as koolstofbron te groei, en het roustysel na bio-etanol teen ’n spesifieke tempo van 0.037 gram per gram droë gewig biomassa per uur omgeskakel. Die etanolopbrengs van 0.40 gram per gram beskikbare suiker vanaf stysel was gelykstaande aan 71% van die teoretiese maksimum vanaf stysel as substraat. ’n Belowende gis wat roustysel kan omskakel na bio-etnaol was dus geskep. In die tweede deel van hierdie studie is die opbrengs in oplosbare vastestowwe vermeerder deur die koffie-afval wat tydens die huidige industrieële proses genereer word, met hidrolitiese ensieme te behandel. Rekombinante ensieme afkomstig vanaf Aspergillus-rasse (β-mannanase, β-endoglukanase 1, β-endo-glukanase 2 en β-xilanase 2), ensieme deur wilde-tipe organismes uitgeskei (β-mannanase), asook kommersiële ensiempreparate wat die nodige ensiemaktiwiteite getoon het (β-mannanase, sellulase en pektinase) is gebruik om die oorblywende 42% mannaan en 51% sellulose in koffie-afval te hidroliseer. Hidrolise eksperimente het getoon dat ’n ensiempreparaat wat hoofsaaklik mannanase bevat, die oplosbare vastestofopbrengs grootliks kan verbeter, met ’n verhoogde opbrengs van 23% tydens geöptimiseerde ensiembehandelings. ’n Verhoogde opbrengs in oplosbare vastestowwe tydens die vervaardiging van kitskoffie sal die volgende tot gevolg hê: (i) ’n toename in totale opbrengs van kitskoffie produk, (ii) ’n afname in die hoeveelheid koffiebone wat vir die produksie ingevoer moet word, en (iii) ’n afname in die hoeveelheid afval wat tydens die vervaardigingsproses produseer word.
Bohlin, Jan. "Enzymes and electron transport in microbial chlorate respiration." Doctoral thesis, Karlstad : Faculty of Technology and Science, Chemistry, Karlstads University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-2805.
Full textSeetaramarao, B. "Microbial enzymes : immobilized whole cell systems in fermentation." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 1987. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/3290.
Full textKhisti, U. V. "Microbial enzymes related to agro - waste material degradation." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2011. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/3808.
Full textBrearley, Graham Mark. "Microbial enzymes in the oxidative deamination of L-phenylalanine." Thesis, Open University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386680.
Full textAshida, Hisashi. "Studies on Microbial Enzymes Acting on Mucin-type Oligosaccharides." Kyoto University, 2000. http://hdl.handle.net/2433/78116.
Full textYasohara, Yoshihiko. "PRODUCTION OF USEFUL OPTICALLY ACTIVE COMPOUNDS BY MICROBIAL ENZYMES." Kyoto University, 2001. http://hdl.handle.net/2433/150356.
Full textBooks on the topic "Microbial enzymes"
Barredo, José Luis, ed. Microbial Enzymes and Biotransformations. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1592598463.
Full textShukla, Pratyoosh, ed. Microbial Enzymes and Biotechniques. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6895-4.
Full textFogarty, William M., and Catherine T. Kelly, eds. Microbial Enzymes and Biotechnology. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0765-2.
Full textJosé-Luis, Barredo, ed. Microbial enzymes and biotransformations. Totowa, N.J: Humana Press, 2005.
Find full textM, Fogarty William, and Kelly Catherine T, eds. Microbial enzymes and biotechnology. 2nd ed. London: Elsevier Applied Science, 1990.
Find full textBhatt, Pankaj. Industrial Applications of Microbial Enzymes. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003202998.
Full textChróst, Ryszard J., ed. Microbial Enzymes in Aquatic Environments. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3090-8.
Full textJ, Chróst Ryszard, Max-Planck-Gesellschaft zur Förderung der Wissenschaften., Deutsche Forschungsgemeinschaft, and Workshop on Enzymes in Aquatic Environments (1st : 1989 : Ringberg Castle, Germany), eds. Microbial enzymes in aquatic environments. New York: Springer-Verlag, 1991.
Find full textGupta, Vijai Kumar, ed. Microbial Enzymes in Bioconversions of Biomass. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43679-1.
Full textBook chapters on the topic "Microbial enzymes"
Sharma, Juhi, Divakar Sharma, Karan Sharma, Surabhi Sharma, Priya Choudhary, and Akshay Bharti. "Microbial Enzymes." In Bionanotechnology for Advanced Applications, 70–81. New York: CRC Press, 2024. http://dx.doi.org/10.1201/9781003362258-6.
Full textCohen, G. N. "Allosteric Enzymes." In Microbial Biochemistry, 51–62. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9437-7_5.
Full textCohen, G. N. "Allosteric Enzymes." In Microbial Biochemistry, 59–71. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8908-0_5.
Full textCohen, Georges N. "Allosteric Enzymes." In Microbial Biochemistry, 93–106. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7579-3_5.
Full textCohen, Georges N. "Allosteric Enzymes." In Microbial Biochemistry, 31–38. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2237-1_5.
Full textThakur, Abhijeet, Kedar Sharma, Kaustubh C. Khaire, Vijay S. Moholkar, and Arun Goyal. "Enzymes." In Microbial Fermentation and Enzyme Technology, 257–68. Boca Raton : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429061257-16.
Full textWhitaker, John R. "Microbial Pectolytic Enzymes." In Microbial Enzymes and Biotechnology, 133–76. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0765-2_4.
Full textGodtfredsen, Sven Erik. "Microbial Lipases." In Microbial Enzymes and Biotechnology, 255–74. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0765-2_7.
Full textSandhya, Chandran, K. Madhavan Nampoothiri, and Ashok Pandey. "Microbial Proteases." In Microbial Enzymes and Biotransformations, 165–79. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-846-3:165.
Full textTewari, Rupinder, Ram P. Tewari, and Gurinder S. Hoondal. "Microbial Pectinases." In Microbial Enzymes and Biotransformations, 191–208. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-846-3:191.
Full textConference papers on the topic "Microbial enzymes"
Moldovan, Cristina. "Study of the enzymatic properties of fungi in the "La Izvor" aquatic ecosystem." In 5th International Scientific Conference on Microbial Biotechnology. Institute of Microbiology and Biotechnology, 2022. http://dx.doi.org/10.52757/imb22.48.
Full text"Cytochrome P450 Enzymes and Microbial Drug Preparation." In 2017 International Conference on Materials Science and Biological Engineering. Francis Academic Press, 2017. http://dx.doi.org/10.25236/icmsbe.2017.14.
Full textToplaghaltsyan, Anna, Zhaneta Karapetyan, Susanna Keleshyan, G. Avetisova, L. Melkonyan, G. Tsarukyan, and V. Ghochikyan. "Enzymatic activity of nitrogen-fixing soil bacteria." In 5th International Scientific Conference on Microbial Biotechnology. Institute of Microbiology and Biotechnology, Republic of Moldova, 2022. http://dx.doi.org/10.52757/imb22.37.
Full textRuginescu, Robert, Ioana Gomoiu, Simona Neagu, Lucia Roxana Cojoc, Ionela Lucaci, Costin Batrinescu-Moteau, and Madalin Enache. "Bioprospecting for novel bacterial sources of salt-tolerant enzymes with biotechnological applications." In 5th International Scientific Conference on Microbial Biotechnology. Institute of Microbiology and Biotechnology, Republic of Moldova, 2022. http://dx.doi.org/10.52757/imb22.02.
Full textToplaghaltsyan, Anna, Zhaneta Karapetyan, Susanna Keleshyan, G. Avetisova, L. Melkonyan, G. Tsarukyan, and V. Ghochikyan. "Enzymatic activity of nitrogen-fixing bacteria isolated from Armenian saline soils." In 5th International Scientific Conference on Microbial Biotechnology. Institute of Microbiology and Biotechnology, Republic of Moldova, 2022. http://dx.doi.org/10.52757/imb22.38.
Full textYakubovskaya, A. I., I. A. Kameneva, S. V. Didovich, I. I. Smirnova, N. A. Kashirina, and M. V. Ermolaeva. "Influence of microbial preparations on the enzymatic activity of Thymus vulgaris L." In CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-119.
Full textSultana, Sharmin, Md Sad Salabi Sawrav, Md Bokhtiar Rahma, Md Shohorab Hossain, and Md Azizul Haque. "Isolation and Biochemical Characterization of Xylanase Enzyme Producing Bacteria from Goat Rumen." In International Conference on Emerging Trends in Engineering and Advanced Science. AIJR Publisher, 2022. http://dx.doi.org/10.21467/proceedings.123.1.
Full textChiselita, Oleg, Natalia Chiselitsa, Elena Tofan, Alina Beshliu, Nadejda Efremova, Marina Danilis, and Ana Rotaru. "Antocyanic extracts from yeast winewaste." In 5th International Scientific Conference on Microbial Biotechnology. Institute of Microbiology and Biotechnology, Republic of Moldova, 2022. http://dx.doi.org/10.52757/imb22.15.
Full textTirtom, Sena, and Aslı Akpınar. "The Plant-Based Enzymes Used in Coagulation of Milk for Cheese Production." In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.020.
Full textTirtom, Sena, and Aslı Akpınar. "The Plant-Based Enzymes Used in Coagulation of Milk for Cheese Production." In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.020.
Full textReports on the topic "Microbial enzymes"
Fennell, Pearlie M. A study of microbial enzymes and coal liquefaction: Quarterly report, December 1, 1988--February 28, 1989. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/6311228.
Full textSharon, Amir, and Maor Bar-Peled. Identification of new glycan metabolic pathways in the fungal pathogen Botrytis cinerea and their role in fungus-plant interactions. United States Department of Agriculture, 2012. http://dx.doi.org/10.32747/2012.7597916.bard.
Full textMcFarlane, Aaron, Nia Hurst, Carina Jung, and Charles Theiling. Evaluating soil conditions to inform Upper Mississippi River floodplain restoration projects. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48451.
Full textThomashow, Linda, Leonid Chernin, Ilan Chet, David M. Weller, and Dmitri Mavrodi. Genetically Engineered Microbial Agents for Biocontrol of Plant Fungal Diseases. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696521.bard.
Full textJander, Georg, and Daniel Chamovitz. Investigation of growth regulation by maize benzoxazinoid breakdown products. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600031.bard.
Full text