Academic literature on the topic 'Microbial insecticide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microbial insecticide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Microbial insecticide"

1

Mansfield, Sarah, Richard J. Chynoweth, Mark R. H. Hurst, Alasdair Noble, Sue M. Zydenbos, and Maureen O'Callaghan. "Novel bacterial seed treatment protects wheat seedlings from insect damage." Crop and Pasture Science 68, no. 6 (2017): 527. http://dx.doi.org/10.1071/cp17176.

Full text
Abstract:
Insecticidal seed treatments are used commonly worldwide to protect seedlings against root feeding insects. Organophosphate insecticides that have been used for seed treatments are being phased out and replaced with neonicotinoid insecticides. Concerns about the environmental impact of neonicotinoids have prompted a search for alternatives. Microbial insecticides are a biological alternative for seed treatments to target root feeding insects. Six field trials with organophosphate granules (diazinon, chlorpyrifos), neonicotinoid seed treatment (clothianidin) and microbial (Serratia entomophila) seed treatment targeting grass grub, a New Zealand scarab pest, were conducted in wheat crops at several sites over 4 years (2012–2015). Sites were selected each year that had potentially damaging populations of grass grub present during the trials. Untreated seeds led to significant losses of plants and wheat yield due to lower seedling establishment and ongoing plant losses from grass grub damage. Insecticide and microbial treatments increased plant survival in all trials compared with untreated seeds. Better plant survival was associated with higher yields from the insecticide treatments in four out of six trials. Neonicotinoid seed treatment alone gave similar yield increases to combined neonicotinoid seed treatment and organophosphate granules. Microbial seed treatment with S. entomophila gave similar yield increases to insecticide treatments in two out of six trials. Seed treatment with S. entomophila is an alternative for grass grub control; however, development of a commercial product requires effective scale-up of production, further research to improve efficacy, and viability of the live bacteria needs to be maintained on coated seed.
APA, Harvard, Vancouver, ISO, and other styles
2

Cloyd, Raymond A. "Compatibility of Insecticides with Natural Enemies to Control Pests of Greenhouses and Conservatories." Journal of Entomological Science 41, no. 3 (July 1, 2006): 189–97. http://dx.doi.org/10.18474/0749-8004-41.3.189.

Full text
Abstract:
Natural enemies used as biological control agents may not always provide adequate control of plant-feeding insects in greenhouses and conservatories. Research continues to assess the utilization of natural enemies in conjunction with biorational insecticides including insect growth regulators, insecticidal soaps, horticultural oils, feeding inhibitors, and microbial agents (entomogenous bacteria and fungi, and related microorganisms); and the potential compatibility of both strategies when implemented together. A variety of factors influence the ability of using natural enemies with insecticides. These include whether the natural enemy is a parasitoid or predator, the species of the natural enemy, life stage sensitivity, rate and timing of insecticide application, and mode of action of the insecticide. Insecticides may impact natural enemies by affecting longevity (survival), host acceptance, sex ratio, reproduction (fecundity), foraging behavior, emergence, and development. Despite the emphasis on evaluating the compatibility of natural enemies with insecticides, it is important to assess if this is a viable and acceptable pest management strategy in greenhouses and conservatories.
APA, Harvard, Vancouver, ISO, and other styles
3

Crisol-Martínez, Eduardo, Laura T. Moreno-Moyano, Ngare Wilkinson, Tanka Prasai, Philip H. Brown, Robert J. Moore, and Dragana Stanley. "A low dose of an organophosphate insecticide causes dysbiosis and sex-dependent responses in the intestinal microbiota of the Japanese quail (Coturnix japonica)." PeerJ 4 (May 5, 2016): e2002. http://dx.doi.org/10.7717/peerj.2002.

Full text
Abstract:
Organophosphate insecticides have been directly or indirectly implicated in avian populations declining worldwide. Birds in agricultural environments are commonly exposed to these insecticides, mainly through ingestion of invertebrates after insecticide application. Despite insecticide exposure in birds occurring mostly by ingestion, the impact of organophosphates on the avian digestive system has been poorly researched. In this work we used the Japanese quail (Coturnix japonica) as an avian model to study short-term microbial community responses to a single dose of trichlorfon at low concentration in three sample origins of the gastrointestinal tract (GIT): caecum, large intestine and faeces. Using next-generation sequencing of 16S rRNA gene amplicons as bacterial markers, the study showed that ingestion of insecticide caused significant changes in the GIT microbiome. Specifically, microbiota composition and diversity differed between treated and untreated quail. Insecticide-associated responses in the caecum showed differences between sexes which did not occur with the other sample types. In caecal microbiota, only treated females showed significant shifts in a number of genera within the Lachnospiraceae and the Enterobacteriaceae families. The major responses in the large intestine were a significant reduction in the genusLactobacillusand increases in abundance of a number of Proteobacteria genera. All microbial shifts in faeces occurred in phylotypes that were represented at low relative abundances. In general, changes in microbiota possibly resulted from contrasting responses towards the insecticide, either positive (e.g., biodegrading bacteria) or negative (e.g., insecticide-susceptible bacteria). This study demonstrates the significant impact that organophosphate insecticides have on the avian gut microbiota; showing that a single small dose of trichlorfon caused dysbiosis in the GIT of the Japanese quail. Further research is necessary to understand the implications on birds’ health, especially in females.
APA, Harvard, Vancouver, ISO, and other styles
4

Oliveira, Jean César de, Aline Barbosa Arruda, Ana Paula Cipriano Borges, Matheus Vinicius Abadia Ventura, Renato Cardoso Teixeira, and Ricardo Araújo Alves. "INFLUENCE OF INSECTICIDES AND FUNGICIDES IN THE RIZOSPHERE OF UNCONVENTIONAL FOOD PLANTS (UFP's)." Ipê Agronomic Journal 3, no. 2 (February 7, 2020): 64–69. http://dx.doi.org/10.37951/2595-6906.2019v3i2.5320.

Full text
Abstract:
The rhizosphere is the region of influence of the roots of the plants in the soil that provide environment favorable to the maximum microbial activity. As the maximum microbial activity occurs in the rhizosphere, several benefits are added to this environment, since it becomes a source of biodiversity of microorganisms capable of maintaining the ecological balance, and also provide significant improvements for plants the soil and for the environment. The objective of this work was to evaluate the influence of xenobiotics (fungicides and insecticides) in an isolated and combined way on the microbial diversity benefices of the rhizosphere under the cultivation of 4 unconventional food plants (UFP's) or exotic vegetables. This work was performed with a randomized complete block design in the 4 x 4 factorial scheme, the first factor being the cultures: Fragaria vesca L. (“morango”), Rumex acetosa L. (“azedinha”), Tropaeolum majus L. (capuchin - “capuchinha”) and Stachys Lanata L. (“peixinho”) and the second factor (application with insecticide, application with fungicide, insecticide / fungicide application and control) with 4 replicates. There was no statistical difference between the cultures in relation to the numbers of fungal and soil CFUs and that the application of xenobiotics (fungicides and insecticides, isolated and combined) did not affect the microbial diversity in the soil cultivated with the crops. The xenobiotics did not affect the microbial diversity present in the soils of the tested cultures, being similar statistically with the control. UFP's crops did not present statistical differences regarding CFU in cultivated soils.
APA, Harvard, Vancouver, ISO, and other styles
5

Reed, J. P., A. J. Keaster, R. J. Kremer, and H. D. Kerr. "Microbial degradation of some soil-applied insecticides, herbicides, and insecticide-herbicide combinations." Bulletin of Environmental Contamination and Toxicology 42, no. 5 (May 1989): 676–81. http://dx.doi.org/10.1007/bf01700387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Withers, T. M., M. C. Watson, M. S. Watt, T. L. Nelson, L. A. Harper, and M. R. H. Hurst. "Laboratory bioassays of new synthetic and microbial insecticides to control Eucalyptus tortoise beetle Paropsis charybdis." New Zealand Plant Protection 66 (January 8, 2013): 138–47. http://dx.doi.org/10.30843/nzpp.2013.66.5570.

Full text
Abstract:
Paropsis charybdis or eucalyptus tortoise beetle is (one of) the most significant pests of eucalypts in New Zealand It severely defoliates Eucalyptus nitens and Eucalyptus globulus plantations leaving heavilydamaged trees with reduced growth and poor form Laboratory bioassays of new synthetic and microbial insecticides were undertaken to identify management options compatible with biological control The current insecticide used for operational control alphacypermethrin was a positive control Of the products tested spinetoram (Sparta) gave the most promising results (100 mortality after 14 days) for control of adult P charybdis Spinetoram and spinosad (Success Naturalyte) the microbial control agents Beauveria bassiana (F305 ex Botanigard) and Bacillus thuringiensis var tenebrionis and the enterobacterium Yersinia entomophaga all resulted in high mortality of larval P charybdis after 4 days Targeting larvae alone may not be economically viable leaving spinetoram as the only possible additional insecticide for managing P charybdis Potential barriers of cost application and nontarget impacts are yet to be addressed
APA, Harvard, Vancouver, ISO, and other styles
7

Lopez-Carvajal, Arturo, R. Leonel Grijalva-Contreras, and Fabian Robles-Contreras. "Chemical Control of the European Asparagus Aphid (Brachycorynella asparagi Mordvilko) in Northwestern Mexico." HortScience 30, no. 4 (July 1995): 828E—828. http://dx.doi.org/10.21273/hortsci.30.4.828e.

Full text
Abstract:
Asparagus growers in the Caborca, Sonora, area consider disulfoton the only efficient insecticide for the control of the European asparagus aphid (EAA); therefore, this is the only insecticide used to control this pest. However, it is prohibited in Mexico. Therefore, during Fall 1991 in a commercial plantation of asparagus, six conventional and one microbial insecticides were evaluated. All the insecticides: chlorpirifos (480 g a.i./ha), dimethoate (400 g), malathion (2000 g), pirimicarb (375 g), oxamil (480 g), disulfoton (1000 g), and two doses of the fungus Verticillium lecanii (300 and 600 g) had a significant control (P ≤ 0.05) in relation to the untreated check. However, chlorpirifos, malathion, disulfoton, and Verticillium (600 g) were more consistent, fast-acting, and registered from 90% to 100% control of the EAA for at least 51 days after application; 73 days after the application, control ranged from 16% to 57%, except oxamil, which registered 71% control.
APA, Harvard, Vancouver, ISO, and other styles
8

Isah, U., and M. A. Ahmad. "Microorganisms as bioinsecticides; short review." Bayero Journal of Pure and Applied Sciences 12, no. 1 (April 15, 2020): 274–79. http://dx.doi.org/10.4314/bajopas.v12i1.42s.

Full text
Abstract:
Hundred thousand tons of chemical insecticides are used annually in Nigeria to combat insect disease vectors especially agricultural pests, but this sort of vector control method is gradually being substituted due to their environmental effects on non-target beneficial insects especially vertebrates through contamination of food and water. To counteract this contamination, attention, efforts and researches were directed to the use of biological control agents including insect pathogens. As a result, the use of bio insecticide, as a component of integrated pest management (IPM), has been gaining acceptance over the world. Microbial pathogens comprise of organisms which cause disease, these organisms are disseminated in the pest population in large quantity in a manner similar to application of chemical pesticides. Insects like other organisms are susceptible to a variety of diseases caused by different groups of microorganisms including virus, bacteria, fungi, protozoa and nematodes. Microbial pathogens of insects are intensively investigated to develop environment friendly pest management strategies in agriculture. Microbial insecticides represent today the best alternative to chemical insecticides in controlling insect pests, they are safe for non-target species and human health are believed to show low persistence in the environment. This short review indicates that microbial insecticides are the safe alternative way possessing all the requirements to replace chemical insecticides hence, they can be utilized in pest management and control. Keywords: Bio-insecticides, Microorganisms, biological control, pest, chemical insecticides
APA, Harvard, Vancouver, ISO, and other styles
9

Wahyuni, Sri, E. Sulaeman, and A. N. Ardiwinata. "PELAPISAN UREA DENGAN ARANG AKTIF YANG DIPERKAYA MIKROBA DAPAT MEMPERCEPAT PENURUNAN KONSENTRASI RESIDU INSEKTISIDA HEPTAKLOR DI LAHAN SAWAH." Informatika Pertanian 25, no. 2 (February 26, 2018): 155. http://dx.doi.org/10.21082/ip.v25n2.2016.p155-162.

Full text
Abstract:
Heptachlor insecticide is a toxic organochlorine insecticide, persistent and bio-cummulative in the environment. Remediation using actived carbon and microbial is a solution to pollution due to pesticide in the environment.The objective of this study was to obtain fertilizer technology using urea with activated carbon and enriched with microbes degrading heptachlor insecticide in order to reduce the insecticide residue in paddy fields. The research was conducted at the Jakenan Experimental Station between February to September 2012. The soil used as the planting medium was brought from the village Sukamenak, District Rawagempol Wetan, Karawang. The experiment was conducted in the field at micro-plot scale with lysimeter, and using a randomized block design (RBD) with 3 replications and 6 fertilizer treatments ( control , prill urea , urea with activated carbon maize cobs ( UAATJ ) , urea with activated carbon coconut shell ( UAATK ) , urea with activated carbon cob corn + microbes ( UAATJM ) , urea with activated carbon coconut shell + microbes ( UAATKM ). The plants used were from Inpari 13 variety. The insecticide residue analysis was performed in the Residu Bahan Agrikimia (RBA) laboratory of Balingtan. The results showed significant orthogonal countrast tests of different treatments. The highest reduction of residual insecticide was observed in urea coated with activated carbon cob corn and enriched with microbial consortia degrading POPs, which was 36.30 %. It is suspected that activated carbon coated cob corn with microbial enrichment was favored as its home and the microbes utilized carbon sources of heptachlor as the food.
APA, Harvard, Vancouver, ISO, and other styles
10

Wirth, Margaret C., Armelle Del�cluse, and William E. Walton. "Cyt1Ab1 and Cyt2Ba1 from Bacillus thuringiensis subsp. medellin and B. thuringiensis subsp. israelensis Synergize Bacillus sphaericus against Aedes aegypti and Resistant Culex quinquefasciatus (Diptera: Culicidae)." Applied and Environmental Microbiology 67, no. 7 (July 1, 2001): 3280–84. http://dx.doi.org/10.1128/aem.67.7.3280-3284.2001.

Full text
Abstract:
ABSTRACT The interaction of two cytolytic toxins, Cyt1Ab fromBacillus thuringiensis subsp. medellinand Cyt2Ba from Bacillus thuringiensis subsp.israelensis, with Bacillus sphaericus was evaluated against susceptible and resistant Culex quinquefasciatus and the nonsensitive species Aedes aegypti. Mixtures of B. sphaericus with either cytolytic toxin were synergistic, and B. sphaericusresistance in C. quinquefasciatus was suppressed from >17,000- to 2-fold with a 3:1 mixture of B. sphaericusand Cyt1Ab. This trait may prove useful for combating insecticide resistance and for improving the activity of microbial insecticides.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Microbial insecticide"

1

Nicolau, Manterola Felipe. "Hydrocarbon and insecticide induction of Beauveria bassiana catalysis of organosulfur compounds." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/3151.

Full text
Abstract:
Catalysts are utilized in 80% of all chemical synthesis operations. The industrial catalysts primarily used in oxidation reactions are highly polluting and expensive metal catalysts. Enzymes and whole cell biocatalysts are used to a lesser extent. Nowadays, several industrial sectors are developing bio-based technologies to reduce the high costs and environmental impact of traditional chemical processes. However, these applications are limited by the challenge of developing economically competitive biologically based systems. The key for adopting these sustainable advancements is the development of novel process designs, which assure robustness, simplicity, and sustainabile operations compatible with the current development of chemical reactions. In this regard, filamentous fungi may be considered good biocatalysts due to their natural biodiversity and their broad heterogeneous enzymatic pattern. The great selectivity of fungal catalysis is now well recognized for the production of commercially valuable steroids in the pharmaceutical industry. Although this inherent capacity is mainly used for functionalization of unactivated carbons, it can be further exploited for the oxidiation of heteroatoms, such as sulfur. Focusing on the oxidation of sulfur compounds, the widely used industrial processes are produced by an organometallic catalyst. This PhD project aims to overcome low substrate conversion and enzymatic expression by proving that exposure of cells to insecticides and hydrocarbons increases cell's oxidative capacity expressed as higher substrate conversion and CYP450 content. This study is focused in the application of pest management strategies, designed to enhance the biopesticide's efficacy, to induce and improve Beauveria bassiana oxidation. B. bassiana has a very flexible metabolism and is widely used as a biocontrol agent. It can metabolize hexadecane as a sole carbon source. In addition, it shows a synergistic effect over pest control efficacy when it is applied with low pesticides (carbaryl and/or imidacloprid) concentrations. A biocatalytic system was optimized to increase the conversion of organosulfur compounds under different fermentation conditions. Phenothiazine was used as our model substrate. Phenothiazine conversion was followed by GC-MS and HPLC. By NMR and MS fragmentation pattern product, phenothiazine metabolites were identified as (R)-hydroxyl metabolites (63% enatiomeric excess) and sulfoxide, the latter being the main metabolite. Phenothiazine conversions with growing cells resulted in 65±1.4% conversion with initial phenothiazine concentration of 500 ppm and final 325 ppm after 7 days. The highest conversion, 74±1 % was achieved with resting cells at the lowest cell concentration, 0.78 mg cell dry weight (cdw) /mL. Furthermore, the use of insecticides as inducers was an effective way to increase phenothiazine conversion from 47% to 64±3%. The major enzymes involved in catalysis of xenobiotic are heme-binding monooxygenases, in particular cytochrome P450. Heme positive proteins were identified by an SDS benzidine assay as well as the content of CYP450 by the CO difference spectrum. The P450 enzymes content was 12.3±1 pmol/µg protein for hexadecane adapted cells and 8.1± 1 pmol/µg protein for insecticides, respectively. The heme-positive proteins were characterized by MALDI-ToF and their peptide mass fingerprint compared to the available sequences on the SwissProt/Universal Protein Resource catalog of information on proteins (UniProtKB). Hemoproteins were found, including a cluster of catalase-peroxidase, alkane hydroxylase, and chloroperoxidase. The results from this project helped bridge the progress from agricultural biotechnology strain development into industrial biotechnology biocatalyst improvement. The success of this project helps us expand B. bassiana's catalysis and make it a better candidate for industrial biocatalysis.
APA, Harvard, Vancouver, ISO, and other styles
2

Kantachote, Duangporn. "The use of microbial inoculants to enhance DDT degradation in contaminated soil." Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phk165.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Merlin, Chloé. "Recherche de la signature biologique de la dégradation du chlordécone dans le sol des Antilles françaises." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS001/document.

Full text
Abstract:
L’utilisation du chlordécone (CLD) pour éradiquer les populations de charançon noir dans les bananeraies des Antilles françaises (Guadeloupe et Martinique) entre 1972 et 1993 a conduit à la contamination des sols et de l’environnement. Cet insecticide organochloré très hydrophobe persiste dans les sols d’où il transfère lentement vers les ressources en eau et vers les biotes terrestre et aquatique (plantes, animaux, poissons, crustacées). Réputé « indégradable », le CLD résiste à la photolyse, à l’hydrolyse et à la biodégradation. A ce jour, il n’existe pas de méthode pour remédier les 20 000 hectares de sols pollués avec cet insecticide. Compte-tenu de l’étendue de la pollution avec le CLD, les procédés biologiques de décontamination paraissent appropriés au contexte antillais. Les objectifs de mon travail de thèse étaient d’explorer les possibilités de transformation microbienne du CLD et l’impact écotoxicologique du CLD sur la communauté microbienne des sols. Mes travaux reposent sur l’hypothèse selon laquelle des populations microbiennes exposées de manière chronique au CLD se seraient adaptées à sa dégradation pour détoxifier leur environnement ou éventuellement pour l’utiliser comme source d’énergie pour leur croissance. Pour cela, j’ai développé une méthode d’analyse du CLD dans les sols et les cultures microbiennes basée sur l’isotopie stable. J’ai conduit des expériences d’enrichissement à partir de sols de Guadeloupe pollués avec le CLD. Une centaine de souches fongiques et près de 200 souches bactériennes ont été isolées. Aucunes souches bactériennes dégradantes n’ont pu être mises en évidence bien que certaines formaient un halo de dissolution du CLD sur milieu gélosé. Parmi les isolats fongiques, seul F. oxysporum sp. MIAE01197 se développait sur un milieu minéral contenant le CLD comme seul source de carbone et dissipait 40% du CLD. Cet isolat était deux fois plus tolérant au CLD qu’un isolat de référence jamais exposé au CLD. Cet isolat minéralisait très peu le 14C-CLD, formait très peu de 14C-métabolites, mais le 14C-CLD s’adsorbait sur les parois fongiques, suggérant que l’adsorption était le principal mécanisme impliqué dans la dissipation du CLD. L’analyse de trois autres isolats appartenant au genre Aspergillus a confirmé que l’exposition au CLD était un des paramètres améliorant la tolérance des souches fongiques au CLD et que la biomasse fongique était capable d’adsorber le CLD dans des proportions proches de celles obtenues avec du charbon actif utilisé pour traiter l’eau potable aux Antilles. L’évaluation de l’impact écotoxicologique du CLD sur la communauté microbienne et les fonctions qu’elle supporte a été menée sur deux sols aux propriétés physicochimiques contrastées n’ayant jamais été exposés au CLD. L’analyse de la structure globale (évaluée par RISA), de l’abondance et de l’activité de la communauté microbienne du sol argilo-limoneux n’étaient pas affectées par le CLD. En revanche, la composition taxonomique (qPCR) et l’activité respiratoire de la communauté microbienne étaient affectées par le CLD dans le sol sableux. Ces résultats montrent que la toxicité du CLD pour la communauté microbienne dépend des propriétés physicochimiques du sol qui conditionne sa biodisponibilité. Des études complémentaires devront être menées pour évaluer la toxicité possible du CLD sur des fonctions écosystémiques des sols des Antilles
The use of chlordecone (CLD) to eradicate the weevil populations in the banana plantations in the French West Indies (Guadeloupe and Martinique) between 1972 and 1993 led to the contamination of the soil and the environment. This very hydrophobic organochlorine insecticide persists in the soil where it slowly transfers not only to the water resources but also to terrestrial and aquatic biota (plants, animals, fishes, shellfishes). Deemed “non-degradable”, CLD is resistant to photolysis, hydrolysis and biodegradation. To date, there is no method to remediate the 20,000 hectares of polluted soil with this insecticide. Given the extent of CLD pollution, biological decontamination processes appear appropriate to the Caribbean context. The objectives of my thesis were to explore the possibilities of microbial transformation of CLD and to assess the ecotoxicological impact of CLD on the soil microbial community. My work is based on the hypothesis that microbial populations chronically exposed to CLD would be adapted to its degradation to detoxify their environment or possibly for use as an energy source for growth.To do so, I developed an analysis method in soils and microbial cultures based on the use of stable isotope to trace CLD. I conducted enrichment experiments with CLD polluted soils from Guadeloupe yielding in the isolation of one hundred fungal strains and nearly two hundred bacterial strains. No degrading bacterial strains have been identified although few of them formed dissolution halo of CLD on solid media. Among the fungal isolates, only F. oxysporum sp. MIAE01197 grew on a mineral medium containing CLD as sole carbon source and dissipated 40% of the CLD. This isolate was twice more tolerant than the reference isolate which had never been exposed to CLD. This isolate mineralizes 14C-CLD very lowly, formed very few 14C-metabolites, but the 14C-CLD was adsorbed on the fungal cell walls, suggesting that the adsorption was the main mechanism involved in the dissipation of the CLD. Analysis of three other isolates belonging to the genus Aspergillus confirmed that exposure to CLD was one of the parameters improving the tolerance of fungal strains to CLD and fungal biomass was capable of adsorbing the CLD in proportions close to those obtained with activated carbon used to treat drinking water in the French West Indies.The assessment of the CLD ecotoxicological impact on the microbial community and functions it supports was carried out on two soils never exposed to CLD showing contrasting physicochemical properties. The analysis of the overall structure (evaluated by RISA), the abundance and the activity of the microbial community of the silty-clay soil were not affected by the CLD. However, the taxonomic composition (evaluated by group specific qPCR) and respiratory activity of the microbial community were affected by the CLD in the sandy soil. These results showed that the toxicity of CLD for microbial community depends on the physicochemical properties of the soil which may determine its bioavailability. Further studies are needed to evaluate the possible toxicity of the CLD on Caribbean soil ecosystemic functions
APA, Harvard, Vancouver, ISO, and other styles
4

SANTOS, Lauricí Maria Pires dos. "Efeitos dos fungos Metarhizium anisopliae (Metsch.) SOROK. e Beauveria bassiana (BALS.) VUILL sobre Tuta absoluta (Meyrick) e compatabilidade com inseticidas." Universidade Federal Rural de Pernambuco, 2008. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6055.

Full text
Abstract:
Submitted by (edna.saturno@ufrpe.br) on 2016-12-01T16:28:25Z No. of bitstreams: 1 Laurici Maria Pires dos Santos.pdf: 3466863 bytes, checksum: 5d731758c5c5bc0c0ab7e9025027b287 (MD5)
Made available in DSpace on 2016-12-01T16:28:25Z (GMT). No. of bitstreams: 1 Laurici Maria Pires dos Santos.pdf: 3466863 bytes, checksum: 5d731758c5c5bc0c0ab7e9025027b287 (MD5) Previous issue date: 2008-02-04
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The control of Tuta absoluta (Meyrick) is usually done with intensive insecticide sprays, which has led to the research of alternative control methods as part of the tomato leafminer integrated management in tomato crops. The objective of this work was to evaluate the pathogenicity of Metarhizium anisopliae (Metsch) Sorok. and Beauveria bassiana (Bals.)Vuill isolates on eggs and larvae of T. absoluta, and their compatibility with insecticides used to control this pest. Also, it was investigated the infection process of M. anisopliae on eggs and the effect over fecundity and mortality of females. Although both fungi showed pathogenicity to eggs and larvae of T. absoluta, M. anisopliae showed higher pathogenicity than B. bassiana. Among the isolates of M. anisopliae tested, URPE-6 and URPE-19 caused 95% and 42% infection in eggs and 1st instar larvae, respectively. The LC50-value for T. absoluta eggs was 3.5 x 104 conidia.mL-1 of the URPE-6 isolate. The compatibility of isolates URPE-6 and URPE-19 with neem, chlorfenapyr, indoxacarb, spinosad and abamectin was evaluated. Field dosages of chlorfenapyrand neem were toxic to the isolate URPE-19, while abamectin and neem showed toxicity to the isolate URPE-6. Ultra-structure analysis of URPE-6 infecting eggs showed that the process of conidia penetration occurred within 6 h after application of the fungus. Bodies of hyphae presenceand intense micelle extrusion were observed in eggs at 12 and 72 h after application, respectively. The URPE-6 isolate did not show any effect on egg-laying preference and fecundity of T. absoluta females, but it affected their survivals. The use of entomopathogenic fungi is a potential alternative control for T. absoluta mainly at the egg stage, and it may be associated with insecticides used in the control of this tomato pest
Um dos fatores limitantes da produtividade da cultura do tomateiro é a ocorrência de pragas, destacando-se Tuta absoluta (Meyrick) (Lepidoptera:Gelechiidae). A aplicação intensiva de inseticidas no controle convencional desse inseto torna relevante a busca por métodos alternativos que possam compor o Manejo Integrado desta praga. Esta pesquisa teve como objetivos avaliar a patogenicidade de isolados de Metarhizium anisopliae (Metsch) Sorok. e Beauveria bassiana (Bals.) Vuill para ovos e lagartas de T. absoluta, estudar a compatibilidade destes patógenos com inseticidas, investigar o processo de infecção de M. anisopliae sobre ovos e avaliar seu efeito na fecundidade e mortalidade de fêmeas. Todos os isolados testados apresentaram patogenicidade a ovos e lagartas de T. absoluta, sendo M. anisopliae mais patogênico. Destacaram-se os isolados URPE-6 causando infecção de 95% sobre ovos e URPE-19 com mortalidade de 42% sobre lagartas de primeiro ínstar. Foi determinada a CL50 do isolado URPE-6 de M. anisopliae sobre ovos de T. absoluta, obtendo-se um valor de 3,5 x 104 conídios mL-1. Testou-se a compatibilidadedos isolados URPE-6 e URPE-19 com Nim, Clorfenapir, Indoxacarbe, Espinosade e Abamectina. Os produtos Clorfenapir e Nim foram tóxicos ao isolado URPE-19 e Abamectina e Nim apresentaram toxicidade para o isolado URPE-6, nas dosagens recomendadas pelo fabricante. Aavaliação ultra-estrutural dos ovos infectados pelo isolado URPE-6 de M. anisopliae nos períodos de 6, 12, 24, 48 e 72h após a aplicação do patógeno, demonstrou que o processo de penetração dos conídios ocorreu dentro do período de 6 horas, confirmando sua virulência. Foi observada a presença de corpos hifais no interior do ovo, nos períodos de 12 e 24h. No período de 72h após a infecção ocorreu intensa extrusão do micélio cobrindo a superfície externa dos ovos. O isolado URPE-6 não apresentou efeito sobre a oviposição e fecundidade de T. absoluta, porém afetou a sobrevivência. A utilização de M. anisopliae representa mais uma alternativa no controle de T. absoluta, principalmente no estágio de ovo, sendo possível associação deste patógeno com inseticidas utilizados no controle desta praga.
APA, Harvard, Vancouver, ISO, and other styles
5

Liegeois, Marie-Hélène. "Efficacité et impact environnemental d'un insecticide anti-taupin, le fipronil, en agrosystème simplifié." Grenoble 1, 1998. http://www.theses.fr/1998GRE10175.

Full text
Abstract:
Le fipronil, molecule insecticide appliquee en traitement de pelliculage sur les semences de mais, penetre directement, via un flux transtegumentaire ou transpedicellaire, dans l'albumen et le scutellum. Un taux maximal de 7% de la quantite appliquee penetre dans la graine des la phase de pelliculage. La penetration transtegumentaire dans la graine redemarre ensuite lors de la phase de gonflement et de germination de la semence, pour atteindre 20% de la quantite initiale apportee par le pelliculage, dans la plantule, apres 6 jours de croissance. Pour les parties neoformees du mais, c'est l'eau du sol qui devient le vecteur du fipronil (apres solubilisation a partir du pelliculage). Cette eau, chargee en fipronil, conduit aussi a un chargement du complexe argilo-humique dans la zone de la graine. Dans la plante de mais, comme l'ont montre les etudes realisees par rhone-poulenc ainsi que nos observations au sein d'un agrosysteme simplifie, le fipronil est partiellement metabolise. Compte tenu de la longue periode (5 mois) entre le traitement et la fructification du mais et des aptitudes a la degradation que presentent cette espece, pour donner des metabolites relativement lipophiles, il est peu probable de trouver des residus importants dans les grains. La larve de taupin, ravageur souterrain des cultures de mais et organisme cible du fipronil, acquiert cette matiere active principalement par ingestion. Nous avons demontre que, pour un plant de mais, ce sont les reserves de la graine qui sont les plus appetentes pour le taupin et qu'elles sont consommees. Pour les atteindre, les larves consomment pelliculage et teguments et acquierent ainsi la quantite de fipronil declenchant la letalite. La quantite de fipronil absorbe par le taupin, par voie transtegumentaire, a ete determinee comme etant faible, et nous n'avons pas mis en evidence de metabolisation du produit au sein de la larve. Au niveau du sol, le fipronil est en equilibre de partition entre l'eau du sol et le c omplexe argilo-humique, sur lequel il va s'adsorber. Deux elements importants dans la dissipation du fipronil sont les vers de terre et la biomasse microbienne. La biomasse microbienne acquiert le fipronil a la mesure de sa partition avec l'eau du sol. Cette flore bacterienne est susceptible de metaboliser cette matiere active (resultats presentes dans le dossier d'homologation). Parallelement, les vers de terre sont potentiellement susceptibles de concentrer des quantites importantes de fipronil, et de le metaboliser en un produit majoritaire gardant des proprietes insecticides. Cependant, le ver ne manifeste aucune atteinte toxique, ce qui tend fortement a demontrer que ses canaux chlore ne sont pas atteints par le fipronil, contrairement a ceux des insectes. Le ver apparait aussi comme un acteur potentiellement important de la chaine de dissipation du fipronil. Nous avons etudie en detail le processus de partition du fipronil entre l'eau et divers etres vivants (differents organes du mais, taupins, micro-organismes, vers de terre). L'equilibre de partition analyse et mesure est une fonction non seulement de la teneur en lipides libres des etres ou organes etudies, mais aussi de la presence de proteines a sites lipophiles comme la zeine ou de polymeres lipophiles comme la lignine. Dans l'agrosysteme simplifie etudie au laboratoire en conditions controlees, il semble que l'efficacite anti-taupin depende directement de la presence du fipronil dans les reserves des graines ou associe aux reserves lors de l'ingestion. Le fipronil contenu dans les organes neoformes ou adsorbe sur le complexe argilo-humique ne semblent jouer qu'un role mineur du point de vue de l'efficacite insecticide. L'apport du fipronil par le biais du traitement de semences sur mais, dans la lutte anti-taupin, presente des caracteristiques tres interessantes d'un point de vue environnemental. La surface de sol traitee est faible, la matiere active presente une faible mobilite dans le sol et la position enfouie du fipronil autour des semences ecarte la possibilite d'une contamination atmospherique. Des modifications de la formulation utilisee en traitement de semences sont suggerees pour augmenter la penetration de la matiere active dans l'albumen lors de la phase de pelliculage des semences. Ceci pourrait conduire a une diminution de la quantite necessaire de fipronil a l'hectare, tout en gardant l'efficacite agronomique, en raison d'une diminution de la quantite liee au sol. Evidemment, le succes d'une telle modification necessiterait l'absence de phytotoxicite au niveau de la semence et de la plantule.
APA, Harvard, Vancouver, ISO, and other styles
6

Manwill, Preston Kim. "Discovery and Development of Natural Products from Plant and Microbial Sources: Drimane Sesquiterpenes and Abyssomicins as Mosquito Control and Antimicrobial Agents." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1591285556969447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hubert, Marie. "Structure de mycotoxines et d'analogues- recherche de leurs métabolites chez un insecte hôte." Rouen, 1998. http://www.theses.fr/1998ROUES037.

Full text
Abstract:
Dans l'optique d'utiliser les mycotoxines en tant que bioinsecticides potentiels de nouvelle génération, nous nous sommes intéressés à celles de deux champignons entomopathogènes, Metarhizium anisopliae et Paecilomyces farinosus. Celles de M. Anisopliae, les destruxines (DTXs), sont des cyclohexadepsipeptides connus depuis plusieurs décennies. Sur le plan structural, une systématique de fragmentation de ces composés a été mise au point par PFAB/MS/Linked Scan. Au niveau biologique, nous avons complété les études sur le comportement in vivo des destruxines. Les métabolites des DTXs A et E, destruxines les plus toxiques et les plus abondamment produites par M. Anisopliae, avaient été mis en évidence chez un insecte modèle, le criquet Locusta migratoria. Ici, nous les avons étudies à l'aide de deux techniques analytiques complémentaires, la spectrométrie de masse et l'HPLC, dans l'hémolymphe d'un insecte ciblé, les larves du lépidoptère Galleria mellonella. Ainsi, pour la DTXE, un processus de détoxication identique à celui observé chez le criquet a été décelé chez G. Mellonella : hydrolyse (DEDiol), conjugaison par le glutathion (DESG) puis métabolisation ultérieure en conjugué cystéinique (DESCys) et enfin conjugaison en dérivé phosphate et/ou sulfate (DEDiolP ou DEDiolS). En revanche, pour la DTXA, le processus se révèle différent selon les deux insectes. Chez le criquet, la DTXA se métabolise en peptide linéaire, tandis que chez G. Mellonella, elle mène principalement au DEDiolP, en passant vraisemblablement par la DTXE et la DTXEDiol. En outre, le comportement in vivo d'analogues synthétiques des destruxines a été étudié. C'est d'ailleurs la première fois qu'une telle étude est menée. Pour ces deux diastéréoisomères, dont l'un est actif et l'autre inactif, un processus de métabolisation identique a été mis en évidence. Il s'agit de la formation du peptide linéaire résultant d'une hydrolyse au niveau de la liaison lactone. Cependant, le processus d'excrétion semble différent. En effet, l'isomère inactif disparaît alors que l'actif est toujours présent après 24h d'incubation. En ce qui concerne les toxines de P. Farinosus souche KVL420, elles n'ont malheureusement pu être caracterisées. Il s'agit de molécules de petites tailles, très hydrophiles. Aucune méthode de séparation adéquate et préalable à des analyses par spectrométrie de masse et RMN n'a pu être determinée à ce jour.
APA, Harvard, Vancouver, ISO, and other styles
8

Maloney, Sarah Elizabeth. "Microbial transformation of synthetic pyrethroid insecticides." Thesis, University of Greenwich, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weitzman, Matthew D. "Characterization of Panolis flammea nuclear polyhedrosis virus." Thesis, Oxford Brookes University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Al-Hafidh, E. M. T. "The integration of Nosema whitei and some insecticides on Tribolium castaneum." Thesis, University of Newcastle Upon Tyne, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.353790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Microbial insecticide"

1

Ladd, Roger. The effects of the organophosphorus insecticide fenitrothion on the microbial degradation of cellulose. Bellingham, Wash: Huxley College of Environmental Studies, Western Washington University, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weinzierl, Rick. Microbial insecticides. Urbana, Ill: Cooperative Extension Service, University of Illinois at Urbana-Champaign, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sahayaraj, K., J. Francis Borgio, and I. Alper Susurluk. Microbial insecticides: Principles and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hokkanen, Heikki M. T., and Ann E. Hajek, eds. Environmental Impacts of Microbial Insecticides. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-1441-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Táborsky, V. Small-scale processing of microbial pesticides. Rome: Food and Agriculture Organization of the United Nations, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Táborsky, V. Small-scale processing of microbial pesticides. Rome: Food and Agriculture Organization of the United Nations, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vaňková, Jiřina. Bacillus thuringiensis, bakterijní insekticid. Praha: Academia, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Entomological Society of Canada (1951- ). Microbial insecticides in Canada: Their registration and use in agriculture, forestry and public and animal health : a report. [Ottawa: Entomological Society of Canada], 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Temeyer, Kevin Bruce. Monoclonal antibodies to crystal protein of Bacillus thuringiensis subspecies Israelensis. [Washington, D.C.?: U.S. Dept. of Agriculture?], 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dales, M. J. Controlling insect pests of stored products using insect growth regulators and insecticides of microbial origin. Chatham: Natural Resources Institute, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Microbial insecticide"

1

Young, S. Y., D. C. Steinkraus, and D. H. Gouge. "Microbial Insecticide Application: Cotton." In Field Manual of Techniques in Invertebrate Pathology, 467–95. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-1547-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Steinkraus, D. C., S. Y. Young, D. H. Gouge, and J. E. Leland. "Microbial insecticide application and evaluation: Cotton." In Field Manual of Techniques in Invertebrate Pathology, 427–55. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5933-9_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chapple, Andrew C., Roger A. Downer, and Roy P. Bateman. "Theory and practice of microbial insecticide application." In Field Manual of Techniques in Invertebrate Pathology, 9–34. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5933-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chapple, Andrew C., Roger A. Downer, and Roy P. Bateman. "Theory and Practice of Microbial Insecticide Application." In Field Manual of Techniques in Invertebrate Pathology, 5–37. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-1547-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Potireddy, Suvarnalatha Devi, Sudha Rani Thenepalli, Swetha Tejaswi Thumma, Rajaswi Devi Mandadi, and Ranjani Ramakrishnan. "Microbial Degradation of Fenitrothion (an Insecticide) Found in Agriculture Soils—A Review." In Learning and Analytics in Intelligent Systems, 339–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46943-6_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Achari, T. Sarita, Tapan Kumar Barik, and U. R. Acharya. "Toxins of Bacillus thuringiensis: A Novel Microbial Insecticide for Mosquito Vector Control." In Molecular Identification of Mosquito Vectors and Their Management, 89–116. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9456-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Perry, A. S., I. Yamamoto, I. Ishaaya, and R. Perry. "Microbial Insecticides." In Insecticides in Agriculture and Environment, 163–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03656-3_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Salem, Asma Ben, Nadine Rouard, Marion Devers, Jérémie Béguet, Fabrice Martin-Laurent, Pierluigi Caboni, Hanene Chaabane, and Sami Fattouch. "Environmental Fate of the Insecticide Chlorpyrifos in Soil Microcosms and Its Impact on Soil Microbial Communities." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 387–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kalawate, Aparna S. "Microbial Viral Insecticides." In Basic and Applied Aspects of Biopesticides, 47–68. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1877-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cory, Jenny S. "Ecological Impacts of Virus Insecticides: Host Range and Non-Target Organisms." In Environmental Impacts of Microbial Insecticides, 73–91. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-1441-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Microbial insecticide"

1

Little, Nathan S. "Effectiveness of microbial and chemical insecticides for controlling heliothines on Bt cotton." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.112207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography