Journal articles on the topic 'Microbial metabolism'

To see the other types of publications on this topic, follow the link: Microbial metabolism.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Microbial metabolism.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

VINOPAL, R. T. "Microbial Metabolism." Science 239, no. 4839 (January 29, 1988): 513.2–514. http://dx.doi.org/10.1126/science.239.4839.513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Downs, Diana M. "Understanding Microbial Metabolism." Annual Review of Microbiology 60, no. 1 (October 2006): 533–59. http://dx.doi.org/10.1146/annurev.micro.60.080805.142308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ARNAUD, CELIA. "VIEWING MICROBIAL METABOLISM." Chemical & Engineering News 85, no. 38 (September 17, 2007): 11. http://dx.doi.org/10.1021/cen-v085n038.p011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wackett, Lawrence P. "Microbial metabolism prediction." Environmental Microbiology Reports 2, no. 1 (February 8, 2010): 217–18. http://dx.doi.org/10.1111/j.1758-2229.2010.00144.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hahn-Hägerdal, Bärbel, and Neville Pamment. "Microbial Pentose Metabolism." Applied Biochemistry and Biotechnology 116, no. 1-3 (2004): 1207–10. http://dx.doi.org/10.1385/abab:116:1-3:1207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wackett, Lawrence P. "Microbial community metabolism." Environmental Microbiology Reports 5, no. 2 (March 5, 2013): 333–34. http://dx.doi.org/10.1111/1758-2229.12041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wackett, Lawrence P. "Microbial community metabolism." Environmental Microbiology Reports 15, no. 3 (May 5, 2023): 240–41. http://dx.doi.org/10.1111/1758-2229.13161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rajini, K. S., P. Aparna, Ch Sasikala, and Ch V. Ramana. "Microbial metabolism of pyrazines." Critical Reviews in Microbiology 37, no. 2 (April 11, 2011): 99–112. http://dx.doi.org/10.3109/1040841x.2010.512267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chubukov, Victor, Luca Gerosa, Karl Kochanowski, and Uwe Sauer. "Coordination of microbial metabolism." Nature Reviews Microbiology 12, no. 5 (March 24, 2014): 327–40. http://dx.doi.org/10.1038/nrmicro3238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ash, Caroline. "Microbial entrainment of metabolism." Science 365, no. 6460 (September 26, 2019): 1414.10–1416. http://dx.doi.org/10.1126/science.365.6460.1414-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nakamura, T. "Microbial Manipulation of Metabolism." Science Translational Medicine 4, no. 148 (August 22, 2012): 148ec153. http://dx.doi.org/10.1126/scitranslmed.3004777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Orabi, K. "Microbial metabolism of artemisitene." Phytochemistry 51, no. 2 (May 1999): 257–61. http://dx.doi.org/10.1016/s0031-9422(98)00770-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rao, AS. "Terminology in microbial metabolism." Biochemical Education 24, no. 1 (January 1996): 61–62. http://dx.doi.org/10.1016/s0307-4412(96)80011-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Howland, John L. "Microbial physiology and metabolism." Biochemical Education 23, no. 2 (April 1995): 106. http://dx.doi.org/10.1016/0307-4412(95)90661-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Cerniglia, Carl E., Daniel W. Kelly, James P. Freeman, and Dwight W. Miller. "Microbial metabolism of pyrene." Chemico-Biological Interactions 57, no. 2 (February 1986): 203–16. http://dx.doi.org/10.1016/0009-2797(86)90038-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sonnleitner, B. "Quantitation of microbial metabolism." Antonie van Leeuwenhoek 60, no. 3-4 (1991): 133–43. http://dx.doi.org/10.1007/bf00430361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Stoker, C. R., P. J. Boston, R. L. Mancinelli, W. Segal, B. N. Khare, and C. Sagan. "Microbial metabolism of tholin." Icarus 85, no. 1 (May 1990): 241–56. http://dx.doi.org/10.1016/0019-1035(90)90114-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Alfred, Jane. "Microbial genomes to metabolism." Nature Reviews Genetics 3, no. 10 (October 2002): 733. http://dx.doi.org/10.1038/nrg922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dong, Mei, Xizhi Feng, Ben-Xiang Wang, Takashi Ikejima, and Li-Jun Wu. "Microbial Metabolism of Pseudoprotodioscin." Planta Medica 70, no. 7 (July 2004): 637–41. http://dx.doi.org/10.1055/s-2004-827187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mikell, Julie Rakel, Wimal Herath, and Ikhlas Ahmad Khan. "Microbial Metabolism. Part 12." Chemical and Pharmaceutical Bulletin 59, no. 6 (2011): 692–97. http://dx.doi.org/10.1248/cpb.59.692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Heider, Johann, and Georg Fuchs. "Microbial Anaerobic Aromatic Metabolism." Anaerobe 3, no. 1 (February 1997): 1–22. http://dx.doi.org/10.1006/anae.1997.0073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

McChesney, J., and S. Kouzi. "Microbial Models of Mammalian Metabolism: Sclareol Metabolism." Planta Medica 56, no. 06 (December 1990): 693. http://dx.doi.org/10.1055/s-2006-961374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Raab, Andrea, and Jörg Feldmann. "Microbial Transformation of Metals and Metalloids." Science Progress 86, no. 3 (August 2003): 179–202. http://dx.doi.org/10.3184/003685003783238671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Throughout evolution, microbes have developed the ability to live in nearly every environmental condition on earth. They can grow with or without oxygen or light. Microbes can dissolve or precipitate ores and are able to yield energy from the reduction/oxidation of metal ions. Their metabolism depends on the availability of metal ions in essential amounts and protects itself from toxic amounts of metals by detoxification processes. Metals are metabolised to metallorgano-compounds, bound to proteins or used as catalytic centres of enzymes in biological reactions. Microbes, as every other cell, have developed a whole range of mechanisms for the uptake and excretion of metals and their metabolised compounds. The diversity of microbial metabolism can be illustrated by the fact that certain microbes can be found living on arsenate, which is considered a highly toxic metal for most other forms of live.
24

Fouillaud, Mireille, and Laurent Dufossé. "Microbial Secondary Metabolism and Biotechnology." Microorganisms 10, no. 1 (January 7, 2022): 123. http://dx.doi.org/10.3390/microorganisms10010123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In recent decades scientific research has demonstrated that the microbial world is infinitely richer and more surprising than we could have imagined. Every day, new molecules produced by microorganisms are discovered, and their incredible diversity has not yet delivered all of its messages. The current challenge of research is to select from the wide variety of characterized microorganisms and compounds, those which could provide rapid answers to crucial questions about human or animal health or more generally relating to society’s demands for medicine, pharmacology, nutrition or everyday well-being.
25

Wintermute, Edwin H., and Pamela A. Silver. "Emergent cooperation in microbial metabolism." Molecular Systems Biology 6, no. 1 (January 2010): 407. http://dx.doi.org/10.1038/msb.2010.66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Crunkhorn, Sarah. "Microbial metabolite predicts human metabolism." Nature Reviews Drug Discovery 8, no. 10 (October 2009): 772–73. http://dx.doi.org/10.1038/nrd3008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Schuetz, R., N. Zamboni, M. Zampieri, M. Heinemann, and U. Sauer. "Multidimensional Optimality of Microbial Metabolism." Science 336, no. 6081 (May 3, 2012): 601–4. http://dx.doi.org/10.1126/science.1216882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

VanHook, Annalisa M. "Microbial metabolites shape lipid metabolism." Science Signaling 13, no. 627 (April 14, 2020): eabc1552. http://dx.doi.org/10.1126/scisignal.abc1552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ensign, Scott A. "Microbial Metabolism of Aliphatic Alkenes†." Biochemistry 40, no. 20 (May 2001): 5845–53. http://dx.doi.org/10.1021/bi015523d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kochanowski, Karl, Uwe Sauer, and Elad Noor. "Posttranslational regulation of microbial metabolism." Current Opinion in Microbiology 27 (October 2015): 10–17. http://dx.doi.org/10.1016/j.mib.2015.05.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Heinemann, Matthias, and Uwe Sauer. "Systems biology of microbial metabolism." Current Opinion in Microbiology 13, no. 3 (June 2010): 337–43. http://dx.doi.org/10.1016/j.mib.2010.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kelly, D. P., and J. C. Murrell. "Microbial metabolism of methanesulfonic acid." Archives of Microbiology 172, no. 6 (November 15, 1999): 341–48. http://dx.doi.org/10.1007/s002030050770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Codd, G. A. "Environmental regulation of microbial metabolism." Endeavour 10, no. 1 (January 1986): 52. http://dx.doi.org/10.1016/0160-9327(86)90063-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

McArthur, George H., and Stephen S. Fong. "Toward Engineering Synthetic Microbial Metabolism." Journal of Biomedicine and Biotechnology 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/459760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements inde novoDNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism.
35

Zhan, Ji-Xun, Yuan-Xing Zhang, Hong-Zhu Guo, Jian Han, Li-Li Ning, and De-An Guo. "Microbial Metabolism of Artemisinin byMucorpolymorphosporusandAspergillusniger." Journal of Natural Products 65, no. 11 (November 2002): 1693–95. http://dx.doi.org/10.1021/np020113r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Negre, M., M. Gennari, V. Andreoni, R. Ambrosoli, and L. Celi. "Microbial metabolism of fluazifop-butyl." Journal of Environmental Science and Health, Part B 28, no. 5 (October 1993): 545–76. http://dx.doi.org/10.1080/03601239309372841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Herath, Wimal, Daneel Ferreira, Julie Rakel Mikell, and Ikhlas Ahmad Khan. "Microbial Metabolism. Part 5. Dihydrokawain." CHEMICAL & PHARMACEUTICAL BULLETIN 52, no. 11 (2004): 1372–74. http://dx.doi.org/10.1248/cpb.52.1372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Herath, Wimal, Daneel Ferreira, and Ikhlas A. Khan. "Microbial metabolism. Part 7: Curcumin." Natural Product Research 21, no. 5 (May 2007): 444–50. http://dx.doi.org/10.1080/14786410601082144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Klitgord, Niels, and Daniel Segrè. "Ecosystems biology of microbial metabolism." Current Opinion in Biotechnology 22, no. 4 (August 2011): 541–46. http://dx.doi.org/10.1016/j.copbio.2011.04.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gennari, Mara, Marco Vincenti, Michèle Nègre, and Roberto Ambrosoli. "Microbial metabolism of fenoxaprop-ethyl." Pesticide Science 44, no. 3 (July 1995): 299–303. http://dx.doi.org/10.1002/ps.2780440314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Martínez-Espinosa, Rosa María, and Carmen Pire. "Molecular Advances in Microbial Metabolism." International Journal of Molecular Sciences 24, no. 9 (April 28, 2023): 8015. http://dx.doi.org/10.3390/ijms24098015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Climate change, global pollution due to plastics, greenhouse gasses, or heavy metals among other pollutants, as well as limited natural sources due to unsustainable lifestyles and consumption patterns, are revealing the need for more research to understand ecosystems, biodiversity, and global concerns from the microscale to the macroscale [...]
42

Kiyota, H., S. Otsuka, A. Yokoyama, S. Matsumoto, H. Wada, and S. Kanazawa. "Effects of highly volatile organochlorine solvents on nitrogen metabolism and microbial counts." Soil and Water Research 7, No. 3 (July 10, 2012): 109–16. http://dx.doi.org/10.17221/30/2011-swr.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The effects of highly volatile organochlorine solvents (1,1,1-trichloroethane, TCET; trichloroethylene, TCE; and tetrachloroethylene, PCE) on soil nitrogen cycle and microbial counts were investigated using volcanic ash soil with different fertilizations. All the solvents significantly inhibited the activity of the cycle under the sealed conditions with 10 to 50 mg/g (dry soil) solvents added. No significant difference between the solvents, and between fertilization plots, was observed. Nitrate ion was not accumulated, and instead, ammonium ion was highly accumulated in the presence of the solvents. Nitrite ion was partially detected, while l-glutaminase activity was inhibited. The growths of ammonification, nitritation, nitratation and denitrification bacteria, and filamentous fungi were significantly inhibited in the presence of 10 mg/g (dry soil) of the solvents. 
43

Dillard, Lillian R., Dawson D. Payne, and Jason A. Papin. "Mechanistic models of microbial community metabolism." Molecular Omics 17, no. 3 (2021): 365–75. http://dx.doi.org/10.1039/d0mo00154f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gray, T. R. G., and G. A. Codd. "Aspects of Microbial Metabolism and Ecology." Journal of Applied Ecology 23, no. 1 (April 1986): 357. http://dx.doi.org/10.2307/2403111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fitzpatrick, Paul F. "The enzymes of microbial nicotine metabolism." Beilstein Journal of Organic Chemistry 14 (August 31, 2018): 2295–307. http://dx.doi.org/10.3762/bjoc.14.204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Because of nicotine’s toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized forArthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon–nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.
46

Wu, Bo, Feifei Liu, Wenwen Fang, Tony Yang, Guang-Hao Chen, Zhili He, and Shanquan Wang. "Microbial sulfur metabolism and environmental implications." Science of The Total Environment 778 (July 2021): 146085. http://dx.doi.org/10.1016/j.scitotenv.2021.146085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Amend, J. P., C. Saltikov, G. S. Lu, and J. Hernandez. "Microbial Arsenic Metabolism and Reaction Energetics." Reviews in Mineralogy and Geochemistry 79, no. 1 (January 1, 2014): 391–433. http://dx.doi.org/10.2138/rmg.2014.79.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sun, Jing, Michaela A. Mausz, Yin Chen, and Stephen J. Giovannoni. "Microbial trimethylamine metabolism in marine environments." Environmental Microbiology 21, no. 2 (December 3, 2018): 513–20. http://dx.doi.org/10.1111/1462-2920.14461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Coates, John D., and Laurie A. Achenbach. "Microbial perchlorate reduction: rocket-fuelled metabolism." Nature Reviews Microbiology 2, no. 7 (July 2004): 569–80. http://dx.doi.org/10.1038/nrmicro926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Stolz, John F., Partha Basu, Joanne M. Santini, and Ronald S. Oremland. "Arsenic and Selenium in Microbial Metabolism." Annual Review of Microbiology 60, no. 1 (October 2006): 107–30. http://dx.doi.org/10.1146/annurev.micro.60.080805.142053.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography