Journal articles on the topic 'Microbial peptides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microbial peptides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Matsuzaki, K. "Why and how are peptide-lipid interactions utilized for self defence?" Biochemical Society Transactions 29, no. 4 (2001): 598–601. http://dx.doi.org/10.1042/bst0290598.
Full textDang, Xiangli, and Guangshun Wang. "Spotlight on the Selected New Antimicrobial Innate Immune Peptides Discovered During 2015-2019." Current Topics in Medicinal Chemistry 20, no. 32 (2020): 2984–98. http://dx.doi.org/10.2174/1568026620666201022143625.
Full textCytryńska, Małgorzata, and Agnieszka Zdybicka-Barabas. "Defense peptides: recent developments." Biomolecular Concepts 6, no. 4 (2015): 237–51. http://dx.doi.org/10.1515/bmc-2015-0014.
Full textRuiz, Pedro J., Hideki Garren, David L. Hirschberg, et al. "Microbial Epitopes Act as Altered Peptide Ligands to Prevent Experimental Autoimmune Encephalomyelitis." Journal of Experimental Medicine 189, no. 8 (1999): 1275–84. http://dx.doi.org/10.1084/jem.189.8.1275.
Full textGrogan, Jane L., Achim Kramer, Axel Nogai, et al. "Cross-Reactivity of Myelin Basic Protein-Specific T Cells with Multiple Microbial Peptides: Experimental Autoimmune Encephalomyelitis Induction in TCR Transgenic Mice." Journal of Immunology 163, no. 7 (1999): 3764–70. http://dx.doi.org/10.4049/jimmunol.163.7.3764.
Full textRUISSEN, Anita L. A., Jasper GROENINK, Eva J. HELMERHORST, et al. "Effects of histatin 5 and derived peptides on Candida albicans." Biochemical Journal 356, no. 2 (2001): 361–68. http://dx.doi.org/10.1042/bj3560361.
Full textNagler, Adi, Shelly Kalaora, Deborah Gitta Rosenberg, et al. "672 Identification of microbial-derived HLA-bound peptides in melanoma." Journal for ImmunoTherapy of Cancer 8, Suppl 3 (2020): A710. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0672.
Full textWallace, R. J. "Acetylation of peptides inhibits their degradation by rumen micro-organisms." British Journal of Nutrition 68, no. 2 (1992): 365–72. http://dx.doi.org/10.1079/bjn19920095.
Full textRamón-García, Santiago, Ralf Mikut, Carol Ng, et al. "Targeting Mycobacterium tuberculosis and Other Microbial Pathogens Using Improved Synthetic Antibacterial Peptides." Antimicrobial Agents and Chemotherapy 57, no. 5 (2013): 2295–303. http://dx.doi.org/10.1128/aac.00175-13.
Full textHearn, Jack, Jacob M. Riveron, Helen Irving, Gareth D. Weedall, and Charles S. Wondji. "Gene Conversion Explains Elevated Diversity in the Immunity Modulating APL1 Gene of the Malaria Vector Anopheles funestus." Genes 13, no. 6 (2022): 1102. http://dx.doi.org/10.3390/genes13061102.
Full textSun, Xiaopeng, Min Wang, Chuanjin Xu, et al. "Positive Effect of a Pea–Clam Two-Peptide Composite on Hypertension and Organ Protection in Spontaneously Hypertensive Rats." Nutrients 14, no. 19 (2022): 4069. http://dx.doi.org/10.3390/nu14194069.
Full textOtvos Jr., Laszlo. "Immunomodulatory effects of anti-microbial peptides." Acta Microbiologica et Immunologica Hungarica 63, no. 3 (2016): 257–77. http://dx.doi.org/10.1556/030.63.2016.005.
Full textKato, Hajime, Susumu Y. Imanishi, Kiyomi Tsuji, and Ken-ichi Harada. "Microbial degradation of cyanobacterial cyclic peptides." Water Research 41, no. 8 (2007): 1754–62. http://dx.doi.org/10.1016/j.watres.2007.01.003.
Full textEgorov, Tsezi A., Tatyana I. Odintsova, Vitaliy A. Pukhalsky, and Eugene V. Grishin. "Diversity of wheat anti-microbial peptides." Peptides 26, no. 11 (2005): 2064–73. http://dx.doi.org/10.1016/j.peptides.2005.03.007.
Full textBarreto-Santamaría, Adriana, Zuly Jenny Rivera, Javier Eduardo García, et al. "Shorter Antibacterial Peptide Having High Selectivity for E. coli Membranes and Low Potential for Inducing Resistance." Microorganisms 8, no. 6 (2020): 867. http://dx.doi.org/10.3390/microorganisms8060867.
Full textSun, Changbao, Yingying Li, Songsong Cao, et al. "Antibacterial Activity and Mechanism of Action of Bovine Lactoferricin Derivatives with Symmetrical Amino Acid Sequences." International Journal of Molecular Sciences 19, no. 10 (2018): 2951. http://dx.doi.org/10.3390/ijms19102951.
Full textHausmann, Stefan, Margarita Martin, Laurent Gauthier, and Kai W. Wucherpfennig. "Structural Features of Autoreactive TCR That Determine the Degree of Degeneracy in Peptide Recognition." Journal of Immunology 162, no. 1 (1999): 338–44. http://dx.doi.org/10.4049/jimmunol.162.1.338.
Full textRussi, J. P., R. J. Wallace, and C. J. Newbold. "The influence of the pattern of peptide supply on microbial activity in the rumen simulating fermentor Rusitec." Proceedings of the British Society of Animal Science 2001 (2001): 28. http://dx.doi.org/10.1017/s1752756200004105.
Full textMaddah, Fayrouz El, Mamona Nazir, and Gabriele M. König. "The Rare Amino Acid Building Block 3-(3-furyl)-Alanine in the Formation of Non-ribosomal Peptides." Natural Product Communications 12, no. 1 (2017): 1934578X1701200. http://dx.doi.org/10.1177/1934578x1701200140.
Full textNelson, Ryan, and Marc Jenkins. "Implications of T cell receptor cross-reactivity on the CD4+ T cell repertoire (APP3P.111)." Journal of Immunology 194, no. 1_Supplement (2015): 113.12. http://dx.doi.org/10.4049/jimmunol.194.supp.113.12.
Full textNiemi, Liza Danielsson, and Ingegerd Johansson. "Salivary Statherin Peptide-Binding Epitopes of Commensal and Potentially Infectious Actinomyces spp. Delineated by a Hybrid Peptide Construct." Infection and Immunity 72, no. 2 (2004): 782–87. http://dx.doi.org/10.1128/iai.72.2.782-787.2004.
Full textYang, Yu, Sabrina Schwiderek, Guido Grundmeier, and Adrian Keller. "Strain-Dependent Adsorption of Pseudomonas aeruginosa-Derived Adhesin-Like Peptides at Abiotic Surfaces." Micro 1, no. 1 (2021): 129–39. http://dx.doi.org/10.3390/micro1010010.
Full textSingh, D. P., T. Kikuchi, V. K. Singh, and T. Shinohara. "A single amino acid substitution in core residues of S-antigen prevents experimental autoimmune uveitis." Journal of Immunology 152, no. 9 (1994): 4699–705. http://dx.doi.org/10.4049/jimmunol.152.9.4699.
Full textGu, Qiu-hua, Megan Huynh, Yue Shi, et al. "Experimental Antiglomerular Basement Membrane GN Induced by a Peptide from Actinomyces." Journal of the American Society of Nephrology 31, no. 6 (2020): 1282–95. http://dx.doi.org/10.1681/asn.2019060619.
Full textAmeen, Ayesha, and Shahid Raza. "Metaproteomics approaches and techniques: A review." International Journal of Advances in Scientific Research 3, no. 5 (2017): 49. http://dx.doi.org/10.7439/ijasr.v3i5.4167.
Full textNong, Nhung Thi Phuong, and Jue-Liang Hsu. "Bioactive Peptides: An Understanding from Current Screening Methodology." Processes 10, no. 6 (2022): 1114. http://dx.doi.org/10.3390/pr10061114.
Full textLuu, Dee Dee, Anna Joe, Yan Chen, et al. "Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor." Proceedings of the National Academy of Sciences 116, no. 17 (2019): 8525–34. http://dx.doi.org/10.1073/pnas.1818275116.
Full textLarder, Christina E., Michèle M. Iskandar, and Stan Kubow. "Dynamic Multi-Stage Gastrointestinal Digestion Model Assessment of Microbial Fermentation Products of Collagen Hydrolysates." Proceedings 61, no. 1 (2020): 12. http://dx.doi.org/10.3390/iecn2020-06998.
Full textKaul, Viraj, Shubhangi Warke, and Uma Tumlam. "Anti-microbial Peptides: New Weapon against Bacteria." International Journal of Current Microbiology and Applied Sciences, no. 9 (June 10, 2020): 2313–19. http://dx.doi.org/10.20546/ijcmas.2020.906.283.
Full textPieters, Roland, Christopher Arnusch, and Eefjan Breukink. "Membrane Permeabilization by Multivalent Anti-Microbial Peptides." Protein & Peptide Letters 16, no. 7 (2009): 736–42. http://dx.doi.org/10.2174/092986609788681841.
Full textBulet, Philippe, Reto Stocklin, and Laure Menin. "Anti-microbial peptides: from invertebrates to vertebrates." Immunological Reviews 198, no. 1 (2004): 169–84. http://dx.doi.org/10.1111/j.0105-2896.2004.0124.x.
Full textLarrick, James W., Michimasa Hirata, Jian Zhong, and Susan C. Wright. "Anti-microbial activity of human CAP18 peptides." Immunotechnology 1, no. 1 (1995): 65–72. http://dx.doi.org/10.1016/1380-2933(95)00006-2.
Full textJavid, B., P. A. MacAry, W. Oehlmann, M. Singh, and P. J. Lehner. "Peptides complexed with the protein HSP70 generate efficient human cytolytic T-lymphocyte responses." Biochemical Society Transactions 32, no. 4 (2004): 622–25. http://dx.doi.org/10.1042/bst0320622.
Full textPrzybylski, Rémi, Laurent Bazinet, Loubna Firdaous, et al. "Electroseparation of Slaughterhouse By-Product: Antimicrobial Peptide Enrichment by pH Modification." Membranes 10, no. 5 (2020): 90. http://dx.doi.org/10.3390/membranes10050090.
Full textCardoso, Priscila, Hugh Glossop, Thomas G. Meikle, et al. "Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities." Biophysical Reviews 13, no. 1 (2021): 35–69. http://dx.doi.org/10.1007/s12551-021-00784-y.
Full textBotelho, Cláudia M., Pedro Ferreira-Santos, Duarte Toubarro, et al. "Chicken Feather Keratin Peptides for the Control of Keratinocyte Migration." Applied Sciences 11, no. 15 (2021): 6779. http://dx.doi.org/10.3390/app11156779.
Full textSolieri, Lisa, Andrea Baldaccini, Serena Martini, Aldo Bianchi, Valentina Pizzamiglio, and Davide Tagliazucchi. "Peptide Profiling and Biological Activities of 12-Month Ripened Parmigiano Reggiano Cheese." Biology 9, no. 7 (2020): 170. http://dx.doi.org/10.3390/biology9070170.
Full textZinina, O., O. Neverova, P. Sharaviev, E. Neverova, and E. Aleksandrina. "Determination of the functional properties of protein hydrolysates by the in silico method." E3S Web of Conferences 395 (2023): 03004. http://dx.doi.org/10.1051/e3sconf/202339503004.
Full textSerba, Elena, Liubov Rimareva, Marina Overchenko, Nadezhda Ignatova, Polina Tadzhibova, and Sergey Zorin. "Production of peptides and amino acids from microbial biomass in food and feed industries: biotechnological aspects." Foods and Raw Materials 8, no. 2 (2020): 268–76. http://dx.doi.org/10.21603/2308-4057-2020-2-268-276.
Full textEndres, Kristina. "Amyloidogenic Peptides in Human Neuro-Degenerative Diseases and in Microorganisms: A Sorrow Shared Is a Sorrow Halved?" Molecules 25, no. 4 (2020): 925. http://dx.doi.org/10.3390/molecules25040925.
Full textRanilla, M. J., M. D. Carro, S. López, C. J. Newbold, and R. J. Wallace. "Influence of nitrogen source on the fermentation of fibre from barley straw and sugarbeet pulp by ruminal micro-organismsin vitro." British Journal of Nutrition 86, no. 6 (2001): 717–24. http://dx.doi.org/10.1079/bjn2001475.
Full textZemanová, Jana, and Květoslava Šustová. "The Problem of Bitter Peptides Formed in the Process of Cheese Ripening." Chemické listy 117, no. 5 (2023): 301–7. http://dx.doi.org/10.54779/chl20230301.
Full textVo, Tien Duy, Christoph Spahn, Mike Heilemann, and Helge B. Bode. "Microbial Cationic Peptides as a Natural Defense Mechanism against Insect Antimicrobial Peptides." ACS Chemical Biology 16, no. 3 (2021): 447–51. http://dx.doi.org/10.1021/acschembio.0c00794.
Full textWallace, R. J. "Influence of acetylation on peptide breakdown by microorganisms from the sheep rumen." Proceedings of the British Society of Animal Production (1972) 1991 (March 1991): 46. http://dx.doi.org/10.1017/s0308229600019978.
Full textBhopale, Girish M. "Antimicrobial Peptides: A Promising Avenue for Human Healthcare." Current Pharmaceutical Biotechnology 21, no. 2 (2020): 90–96. http://dx.doi.org/10.2174/1389201020666191011121722.
Full textCasciaro, Bruno, Floriana Cappiello, Maria Rosa Loffredo, Francesca Ghirga, and Maria Luisa Mangoni. "The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2." Current Medicinal Chemistry 27, no. 9 (2020): 1405–19. http://dx.doi.org/10.2174/0929867326666190722095408.
Full textRussi, Juan P., R. John Wallace, and C. James Newbold. "Influence of the pattern of peptide supply on microbial activity in the rumen simulating fermenter (RUSITEC)." British Journal of Nutrition 88, no. 1 (2002): 73–80. http://dx.doi.org/10.1079/bjn2002585.
Full textHETRU, Charles, Lucienne LETELLIER, Ziv OREN, Jules A. HOFFMANN, and Yechiel SHAI. "Androctonin, a hydrophilic disulphide-bridged non-haemolytic anti-microbial peptide: a plausible mode of action." Biochemical Journal 345, no. 3 (2000): 653–64. http://dx.doi.org/10.1042/bj3450653.
Full textRojas, Verónica, Luis Rivas, Constanza Cárdenas, and Fanny Guzmán. "Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides." Molecules 25, no. 24 (2020): 5804. http://dx.doi.org/10.3390/molecules25245804.
Full textCarrizosa, Ana M., Lindsay B. Nicholson, Michael Farzan, et al. "Expansion by Self Antigen Is Necessary for the Induction of Experimental Autoimmune Encephalomyelitis by T Cells Primed with a Cross-Reactive Environmental Antigen." Journal of Immunology 161, no. 7 (1998): 3307–14. http://dx.doi.org/10.4049/jimmunol.161.7.3307.
Full text