To see the other types of publications on this topic, follow the link: Microbiology and Fermentation Technology.

Dissertations / Theses on the topic 'Microbiology and Fermentation Technology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Microbiology and Fermentation Technology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Mendoza, L. S. "The microbiology of cooked rice and fish fermentation." Thesis, University of Reading, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Minabe, Masaharu. "The lipids of post-fermentation yeast." Thesis, Heriot-Watt University, 1992. http://hdl.handle.net/10399/1487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Economides, Aristodemos G. "Chemical changes induced by fermentation with saccharomyces species." Thesis, University of Reading, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fairbrother, Paul. "The fermentation of cheese whey by Lactobacillus helveticus." Thesis, University of South Wales, 1991. https://pure.southwales.ac.uk/en/studentthesis/the-fermentation-of-cheese-whey-by-lactobacilius-helvecticus(32b72e44-3d2a-4fcb-85d4-9b34263bd05e).html.

Full text
Abstract:
The lactic acid fermentation of cheese whey permeate by Lactobacillus helveticus was studied. Precipitate formation during autoclaving of whey permeate was examined. Precipitation was found to be pH and temperature dependent. Qualitative analysis suggested that the precipitate was a calcium-phosphate complex. Solubilisation was achieved both by acidification and use of the sequestering agent EDTA. Optimisation of L. helveticus growth in whey permeate was carried out using factorial design, as opposed to a traditional univariate approach. Using this technique, the variation of specific growth rate with pH, temperature and stiirer speed was assessed. Cell growth and lactic acid formation in whey permeate containing various supplements, were investigated. Yeast extract was the most effective nitrogen/growth factor supplement. Maximum lactic acid production was achieved in permeate containing yeast extract (0.75% w/v), Tween 80 (0.1% v/v) and sodium acetate (0.05% w/v). Optimisation of lactic acid production in supplemented whey permeate was performed using factorial design. Optimum conditions for both acid formation and cell growth were pH 5.9, temperature 42°C and stirrer speed 200 rpm. Fourier transform infrared spectroscopy was applied to the on line and off line quantitative analysis of lactose and lactic acid during the fermentation process. This technique enabled substrate and product levels to be assessed quickly and simply, with no sample pre-treatment. Continuous culture of L. helveticus in MRS medium and supplemented whey permeate was carried out. Substrate conversion and lactic acid productivity decreased with increasing dilution rate. Maximum productivity corresponded to a dilution rate of 0.3 h" 1, whereas minimum residual substrate occured at a dilution rate of 0.1 h' 1 . Translation of the fermentation process from bench scale (11) to pilot scale (161) appeared to be successful. Completion times, productivity and lactose utilisation compared favourably with bench scale results.
APA, Harvard, Vancouver, ISO, and other styles
5

Delclos, Paul-R. Mrocek. "Vegetable preservation by a mixed organic acid fermentation." Thesis, University of Surrey, 1991. http://epubs.surrey.ac.uk/842740/.

Full text
Abstract:
Lactic acid fermented fruit and vegetables are normally obtained following a natural spontaneous fermentation in which no starter cultures are added. It could be expected that a suitable starter culture would help standardise production. Several lactic acid bacteria were selected for a series of physiological studies, in a defined medium (MRS broth) and in carrot juices, under varying conditions of growth temperature, salt concentration and carbohydrate source. Based on these, the homofermenter Lactobacillus pentosus and the heterofermenter Leuconostoc mesenteroides were tested as potential starters, in single and mixed cultures, for the fermentation of carrots (Daucus carota), as a novel fermentable substrate, and cabbage (Brassica oleracea) into sauerkraut. Fermentations were performed in the presence of the natural microflora. Sugar catabolism and acid production were monitored through H.P.L.C. In the fermentation of carrots Leuconostoc mesenteroides played a major role, with no homofermenters present. For sauerkraut, the mixed starter culture composed of Leuconostoc mesenteroides and Lactobacillus pentosus gave the closest resemblance to the product normally obtained following a natural commercial fermentation. The inclusion of the heterofermenter provided the required acid balance for correct product flavour and aroma by enhancing production of acetic acid. Acetate is also a better antimicrobial than lactate. A shorter fermentation time was also obtained, reducing the time from 3-4 weeks in the natural fermentation to only 7 days with the use of the mixed starter. When reduced salt concentrations were tried, 1% NaCl (w/w) resembled the spontaneous fermentation more closely, in regard to microbial sequence, pH and total acidity. Different ratios of the two lactic acid bacteria in combination were tried, the best being that in which L, mesenteroides and L. pentosus were initially present in the same proportions. Survival of Listeria monocytogenes in fermenting sauerkraut was shorter when starter cultures were used, but no difference was detectable between mixed and single cultures.
APA, Harvard, Vancouver, ISO, and other styles
6

Williams, Gareth. "Application of innovative beverage fermentation technology to plums and selected berries." Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2338.

Full text
Abstract:
Thesis (MTech (Food Technology))--Cape Peninsula University of Technology, 2016.
This study focused on alcoholic fermented fruit beverages that were produced from various types of fruit, value addition and thus potentially increasing the diversity of commercially available fruit wines. Non-grape alcoholic fermented fruit beverages is a complex mixture of water, alcohol, and other components, that are either initially present in the fruit, or are formed during the fermentation process. The evaluation of wine and similar fermented products quality is important for manufacturers and consumers. The routine analysis of alcoholic fermented fruit beverages acts as an important tool that is useful for wine classification, quality control and sensory evaluation. Therefore, the aims of this study were (1) to measure methanol, ethanol, titratable acidity, objective colour, total soluble solids and sensory profile as a function of yeast strain and percentage pulp in order to adapt existing technologies toward producing new fermented fruit beverage products using plums, an under-utilized agricultural produce; and (2) to measure methanol, ethanol, titratable acidity, objective colour, total soluble solids and sensory profile as a function of yeast strain, pulp percentage and sugar levels in order to adapt existing technologies toward producing new fermented fruit beverages based on red and white wine styles, while applying the technology developed in the first part of the study using red-fleshed plums, blueberries and blackberries. The independent variables (ID) were yeast strains (1) Saccharomyces cerevisiae VIN13, (2) Saccharomyces cerevisiae NT116, and (3) Saccharomyces bayanus N96, with formulations containing percentage pulp concentrations at (40%, 50% and 60%). The dependent variables (DV) constituted key quality parameters for white and red wine style, namely methanol, ethanol, titratable acidity, objective colour, total soluble solids, pH and sensory profile were measured. The optimal combination of independent variables was ascertained and in terms of the overall consumer response, for the red-fleshed plum beverage sample treatment N 96, 60% pulp showed the highest preference amongst consumers. In terms of the other dependent variables, namely methanol, ethanol, titratable acidity, objective colour, total soluble solids, pH and sensory profiles of alcoholic fermented fruit beverages based on white and red wine styles. The processing conditions developed and applied in this study towards the development of alcoholic fermented beverages utilizing plums and selected berries demonstrated ways of improving the utilization of fruit commodities by developing niche products. Hence, the development of alcoholic fermented beverages utilizing (plums and selected berries) showed potential for micro agro-industries, as well as the impact on its potential role in employment creation and income generation.
APA, Harvard, Vancouver, ISO, and other styles
7

Sparringa, Roy Alexander. "Growth and protein utilisation by Rhizopus oligosporus during tempe fermentation." Thesis, University of Reading, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yusof, Rokiah Binti Mohd. "Improved safety of infant weaning foods through lactic acid fermentation." Thesis, University of Surrey, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Drysdale, Conor R. "Organic acid production by the microbial fermentation of sucrose and inulin." Thesis, Queen's University Belfast, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rycroft, Catherine Elaine. "A comparative in vitro evaluation of the fermentation properties of potential prebiotic food ingredients : investigating structure-function relationships." Thesis, University of Reading, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Martins, Jose Francisco Pereira. "Raw meat fermentation : an approach to the study of selected characteristics of Pediococci and other lactic acid bacteria important to Brazilian salami processing." Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mackintosh, E. D. "The effect of monensin on in vitro rumen fermentation and in vivo rumen and total tract digestion and milk production in the dairy cow." Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Pelicaen, Rudy. "Genome-scale metabolic modeling of candidate functional starter cultures for cocoa bean fermentation." Doctoral thesis, Universite Libre de Bruxelles, 2020. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/308886.

Full text
Abstract:
Cocoa bean fermentation is an essential but spontaneous fermentation process to obtain the necessary raw material for the production of cocoa-derived products, among which chocolate. Successful cocoa bean fermentation processes are typically dominated by three microbial groups, namely yeasts, lactic acid bacteria, and acetic acid bacteria. The use of functional starter cultures may allow to gain a better control over the fermentation process. Previously, a number of candidate functional starter cultures have been proposed for the lactic acid bacteria, namely Lactobacillus fermentum 222 and Lactobacillus plantarum 80, and for the acetic acid bacteria, namely Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848T, and Acetobacter senegalensis 108B. The metabolism of bacteria determines an important part of their physiology, and this is recently being investigated by using computational models. The aim of this PhD thesis was to develop such models for the candidate functional starter cultures for the cocoa bean fermentation process and to perform the related computational analysis. The computational models developed were genome-scale metabolic models, which constitute a comprehensive repertoire of metabolic enzymes with their concomitant reactions, and this at genome-scale. The reconstruction of such models requires a combination of high-quality genome re-annotation, comparative genomics, manual curation, and experimental validation. Genome-scale metabolic modeling together with the use of previously published experimental data under cocoa fermentation conditions allowed to contextualize the experimental data and to gain new insights into the metabolic properties of the candidate functional starter cultures. Simulations with the A. pasteurianus 386B genome-scale metabolic model revealed the metabolic roles of lactate and ethanol, the energetic properties of the strains’ aerobic respiratory chain, and the possible functional role of an NAD(P)+ transhydrogenase. Modeling the metabolite dynamics of A. ghanensis LMG 23848T under cocoa fermentation conditions revealed an alternative strategy for its diauxic growth, compared with A. pasteurianus 386B, which was related to a difference in lactate consumption rate and pyruvate overflow. For A. senegalensis 108B, it was shown that, next to lactic acid, also citric acid could sustain its growth in vitro as the sole carbon source. Furthermore, the absence of the glyoxylate cycle predicted from its genome did not correspond with its species description that reports growth on ethanol as the sole carbon source. For L. fermentum 222 and L. plantarum 80, core genome-scale metabolic models allowed to gain insight into the possible metabolic flux distributions as a function of environmental conditions. The modeling also indicated a current lack in knowledge; for example, concerning the presence and consumption of undefined substrates in the complex medium used.In summary, genome-scale metabolic modelling of candidate functional starter cultures for the cocoa bean fermentation process provided useful in silico tools to gain insight into their metabolic properties at a systemic level.
La fermentation du cacao est un processus essentiel pour obtenir la matière première nécessaire pour la production de produits dérivés du cacao, comme par exemple le chocolat. Une fermentation de cacao favorable est caractérisée par la domination de trois groupes de microorganismes :les levures, les bactéries lactiques, et les bactéries acétiques. L'utilisation de cultures de départ fonctionnelles permet un meilleur contrôle sur le processus de fermentation. En ce qui concerne les bactéries, de nombreuses cultures "starter" ont été proposées, à savoir Lactobacillus fermentum 222 et Lactobacillus plantarum 80 pour les bactéries lactiques et Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848T, et Acetobacter senegalensis 108B pour les bactéries acétiques. Le métabolisme des bactéries constitue une partie importante de leur physiologie et la recherche actuelle se concentre de plus en plus sur la modélisation du métabolisme et la simulation des flux métaboliques par ordinateur. Cette thèse de doctorat a été consacrée au développement et à l'analyse de tels modèles computationnels pour des cultures fonctionnelles "starter" proposés pour la fermentation du cacao.Les modèles qui ont été développés dans cette thèse sont des modèles métaboliques à l’échelle du génome. La reconstruction du réseau métabolique a entraîné la ré-annotation du génome, une étude de génomique comparative, la curation manuelle des annotations et la validation du modèle par des expériences in vitro. La modélisation nous a permis de contextualiser des données expérimentales déjà publiées pour en obtenir de nouvelles informations concernant les propriétés métaboliques des cultures starter. Des simulations utilisant le modèle métabolique de A. pasteurianus 386B ont clarifié les rôles métaboliques de l’acide lactique et de l’éthanol, les propriétés énergétiques de sa chaîne respiratoire, et ont permis d'assigner un rôle possible à une NAD(P)+ transhydrogénase. La modélisation de la dynamique des métabolites provenant d’un milieu de croissance de A. ghanensis LMG 23848T dans des conditions simulant la fermentation du cacao, a mis en évidence une stratégie alternative de croissance biphasique comparé à A. pasteurianus 386B. Ceci est dû à une différence dans le taux de consommation de l’acide lactique et à l’éventuelle production de pyruvate. Pour A. senegalensis 108B, les expériences ont démontré, tant pour l’acide lactique que pour l’acide citrique, que ces sources de carbone permettaient, à elles seules, la croissance de cette bactérie. L’absence du cycle du glyoxylate chez A. senegalensis 108B ne correspondait pas à la description de cette espèce, laquelle pouvant croître sur l’éthanol comme seule source de carbone. Pour L. fermentum 222 et L. plantarum 80, la modélisation de leur métabolisme du carbone a permis d’explorer les distributions de flux métaboliques en fonction des substrats consommés. Les simulations ont aussi révélé le manque de connaissance que nous avons sur ces bactéries lactiques, telle que la consommation de substrats non identifiés venant du milieu de croissance et qui pourrait influencer leur dynamique de croissance.En résumé, la modélisation métabolique à l’échelle du génome des cultures starter proposées pour la fermentation du cacao a permis le développement d’outils in silico qui peuvent être utilisés pour mieux comprendre le métabolisme global de ces souches.
Het cacaoboonfermentatieproces is een essentieel maar spontaan proces dat nodig is om de noodzakelijke grondstof, met name de gefermenteerde cacaobonen, voor de productie van cacao-afgeleide producten, waaronder chocolade, te bekomen. Succesvolle cacaoboonfermentatieprocessen worden typisch gedomineerd door drie microbiële groepen, met name gisten, melkzuurbacteriën en azijnzuurbacteriën. Om meer controle te verkrijgen over het fermentatieproces is het gebruik van functionele starterculturen aangewezen. In vorige studies werd reeds een reeks kandidaat-functionele starterculturen voorgesteld. Voor de melkzuurbacteriën zijn dit Lactobacillus fermentum 222 en Lactobacillus plantarum 80 en voor de azijnzuurbacteriën zijn dit Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848T en Acetobacter senegalensis 108B. Het metabolisme van bacteriën bepaalt in grote mate hun fysiologie, en dit wordt recent onderzocht door middel van computationele modellen. Het ontwikkelen en analyseren van zulke modellen voor de voorgestelde kandidaat-functionele starterculturen vormde het onderwerp van deze doctoraatsthesis.De computationele modellen waarvan sprake waren genoomwijde metabole modellen (GEMs), dewelke het repertoire aan metabole enzymen en de biochemische reacties die zij katalyseren in de bacteriële cellen omvat. De reconstructie van het metabole netwerk op genoomschaal vraagt om een gecombineerde aanpak van hoge-kwaliteit genoomherannotatie, comparatieve genomica en experimentele validatie. De GEMs werden gebruikt om reeds gepubliceerde experimentele data onder cacaofermentatiecondities te contextualiseren en nieuwe inzichten te verkrijgen in de metabole karakteristieken van de kandidaat-functionele starterculturen. Door middel van simulaties met het A. pasteurianus 386B GEM kon de metabole rol van melkzuur en ethanol, en de energetische karakteristieken van de aerobe respiratieketen van deze stam aangetoond worden, alsook de mogelijke metabole functie van een NAD(P)+ transhydrogenase. Het modelleren van de microbiële dynamica van A. ghanensis LMG 23848T onder cacaofermentatiecondities wees op een alternatieve strategie voor de tweevoudige groei van deze stam ten opzichte van de tweevoudige groei van A. pasteurianus 386B onder dezelfde condities, en dit omwille van een verschil in melkzuurconsumptiesnelheid en pyruvaatsecretie. Voor A. senegalensis 108B werd aangetoond dat deze stam, naast melkzuur, ook op citroenzuur als enige koolstofbron kon groeien. De afwezigheid van de glyoxylaatcyclus, voorspeld op basis van het genoom, bij A. senegalensis 108B is in tegenstelling tot de soortbeschrijving, dewelke stipuleert dat deze azijnzuurbacteriesoort in staat is tot groei op ethanol als enige koolstofbron. Voor L. fermentum 222 en L. plantarum 80 leidde de ontwikkeling van GEMs tot nieuwe inzichten in de mogelijke metabole fluxverdelingen, voornamelijk ten aanzien van substraatverbruik. Het modelleren van de microbiële dynamica wees ook op een tekortkoming aan huidige kennis over deze stammen, bijvoorbeeld met betrekking tot het gebruik van ongedefinieerde substraten in een rijk groeimedium.Samenvattend werden door middel van de ontwikkelde GEMs van de kandidaat-functionele starterculturen voor cacaoboonfermentatieprocessen nieuwe inzichten verkregen in hun metabolisme en dit op systeemniveau.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
14

Jawad, Emad. "Technological benefits and potential of incorporation of probiotic bacteria and inulin in soft cheese." Thesis, University of Plymouth, 2016. http://hdl.handle.net/10026.1/4377.

Full text
Abstract:
There is an increasing consumer demand for dairy products which are safe and free from additives. Microbial starter strains, in combination with other factors, were studied for their contribution to the control of unwanted microbes, and maintaining the quality of soft cheese. The technological and functional characteristics of the starter culture strains Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris, and probiotic bacterial strains Bifidobacterium animalis subsp. lactis BB12, Lactobacillus acidophilus LA-5 and Lactobacillus casei Shirota were investigated. The tests included the milk fermentation, resistance to salt and heat, bile and acid resistance, and growth at a range of temperatures. The probiotic strains differed in their resistance to salt, bile salts and acid. Inhibitory interactions between probiotic bacterial strains with each other and with starter culture strains were not detected. The probiotic bacteria and starter culture strains used have an ability to grow together on homofermentative and heterofermentative differential agar and fermentation of fructose in different levels. Non-starter cheese (NSC), cheese with starter strains (SCS), and cheese with starter and probiotic strains (PSC) were manufactured. The levels of mesophilic aerobic and lactic acid bacteria, moulds and yeasts, and Enterobacteriaceae were evaluated in all cheeses. Their contents of fat, total solids, salt and pH value were tested during 21 days of storage at 2-5°C. Starter culture strains contributed to maintaining the quality of all cheeses, through decreasing the viable count of some undesirable microbes. Cheeses differed in the intensity of the crumbliness attribute, and in preference and intensity of colour attribute. The colour of starter soft cheese, which was tested using a colorimeter, was closer to the colour of probiotic soft cheese than those cheeses which were manufactured without starter culture. The microbial status, storage conditions, rancidity, and the sensory characteristics of unripened soft cheese, which was manufactured with starter culture strains only, were determined during the storage for 50 days at 2-5°C, as well as during their shelf life for the product. Modified Atmosphere Packaging (MAP) contributed to slowing the growth of unwanted microbes, and decreased the values of TBA, TVB-N and TMA in soft cheese. Consequently, delaying the undesirable changes and maintaining the quality of the product and extending its shelf life, when compared with vacuum, brine, and air packaging methods, under the same storage conditions. Potential effects of inulin on the cheese quality and sensory characteristics of probiotic soft cheese were investigated. The cheeses differed in their loads of lactic acid bacteria, in addition to the total solids and water activity. The levels of probiotic bacterial strains were higher in probiotic soft cheese that manufactured with inulin than in cheese without inulin, with a potential in the formation synbiotic between the probiotic strains LA-5 and BB12 and inulin. Both cheeses were recorded to have high acceptance in the cheese attributes, in terms of appearance, aroma, colour texture and the overall acceptance. The presence of inulin increased the hardness of cheese under vacuum packaging, after storage for 14 days at 2-5°C.
APA, Harvard, Vancouver, ISO, and other styles
15

Veiga, da Cunha Maria de Almada Cardoso. "Co-fermentations of sugar and glycerol by lactobacilli." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jozala, Angela Faustino. "Produção e purificação de nisina produzida por Lactococcus lactis em leite desnatado e soro de leite." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/9/9134/tde-02082016-142714/.

Full text
Abstract:
O peptídeo antimicrobiano retratado neste trabalho é a nisina, produzido pela bactéria Lactococcus lactis subsp. lactis, um peptídeo estruturalmente composto por 34 aminoácidos, mostra um vasto espectro de atividade inibitória em microrganismos Gram-positivos, Gram-negatios e esporo formadores. O objetivo deste trabalho foi produzir a nisina a partir de células de Lactococcus lactis utilizando soro de leite e leite desnatado como meio de cultivo. Para tanto as células de L. lactis foram desenvolvidas em agitador rotacional (30°C/36 h/100 rpm) e a atividade de nisina, os parâmetros de crescimento e os componentes do meio de cultivo foram analisados. Em leite desnatado, contendo 2,27 9 de sólidos totais, a atividade de nisina foi 20077,05 AU.mL-1 sendo 3 vezes maior em relação ao leite desnatado com 4,54 9 sólidos totais, 8739,77 AU.mL-1 ; e foi 73 vezes maior em relação ao leite desnatado com 1,14 9 sólidos totais, 273,21 AU.mL-1. Osoro de leite utilizado foi doado por uma indústria de lacticínios, em laboratório parte do soro foi tratada de duas formas: (i) filtrado e (ii) esterilizado, e ambos foram utilizados para cultivo das células produtoras de nisina em agitador rotacional 30°C/36 h/100 rpm. Os resultados mostraram que o meio de cultivo composto por soro de leite não filtrado forneceu uma adaptação ao L. lactis, sendo a concentração de nisina obtida 1628 vezes maior que do soro de leite filtrado, 11120,13 e 6,83 mg.L-1 respectivamente. Em relação à atividade de nisina contra Gram-negativos, aumentou-se o efeito bactericida quando adicionada ao EDTA. O comportamento da nisina no sistema micelar de duas fases aquosas foi investigado experimentalmente, demonstrando que a biomolécula alvo pode ser extraída tanto do meio fermentado complexo quanto daslmpurezas presentes na nisina comercial. Nos testes com o sistema micelar de duas fases aquosas, a nisina particionou, preferencialmente, para a fase rica em micelas (coeficiente de partição (KNis) maior que 1,5), ocorrendo um aumento de 1 ciclo logaritimo na concentração inicial de nisina comercial (105 AU, no sistema). Este trabalho reúne os estudos desenvolvidos onde o principal objetivo foi a obtenção da nisina através de meios- de cultivo alternativos, além de sua aplicação e purificação.
Nisin is a natural antimicrobial peptide used as food preservative produced by Lactococcus lactis, that inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Gram-negative bacteria. Applications of this bacteriocin include dental care products pharmaceutical products such as stomach ulcers and colon infection treatment and potencial birth control. This study aims to evaluate growth conditions for L. lactis as well as the effect in nisin production when utilizing milk whey and skimmed milk. Lactococcus lactis ATCC 11454 was developed in a rotatory shaker (30°C/36 h/100 rpm) in diluted skimmed milk and nisin expression, growth parameters and media components were also studied. Nisin expression in skimmed milk 2.27 9 total solids (20077.05 AU.mL-1) was up to 3-fold higher than transfers in skimmed milk 4.54 9 total solids (8739.77 AU.mL-1) and was up to 85-fold higher than transfers in skimmed milk 1.14 9 total solids (273.21 AU.mL-1). Milk whey, abyproduct from dairy industries, was utilized in two different ways (i) without filtration, autoclaved at 121°C for 30 min and (ii) filtrated (1.20 µm and 0.22 µm membrane filter), L. lactis was developed in a rotary shaker (30°C/36 h/100 rpm) and these cultures were transferred five times using 5 mL aliquots of broth culture for each new volume of the respective media. The results showed that culture media composed by milk whey without filtration was better for L. lactis in its adaptation than milk whey without filtration. Nisin titers, in milk whey without filtration, was 11120.13 mg.L-1 in 2nd transfer, and Up to 1628-fold higher than the filtrated milk whey, 6.83 mg.L-1 in 1st transfer. Nisin activity was assayed by the agar diffusion method using Lactobacillus sakei ATCC 15521 and a recombinant Escherichia coli DH5α expressing the recombinant green fluorescent protein (GFPuv) as the nisin-susceptible test organisms. Combining EDTA with nisin increased the bactericidal effect of nisin upon the bacteria examined. A potentially scalable and cost-effective way to purify commercial and biosynthesized in bioreactor nisin, including simultaneously removal of impurities and contaminants, increasing nisin activity, was studied (two phase micellar system). Results indicated that nisin partitions preferentially to the micelle richphase, despite the surfactant concentration tested, and its antimicrobial activity increases. Biological processing of byproducts (milk whey) can be considered one profitable alternative, generating highvalued bioproducts.
APA, Harvard, Vancouver, ISO, and other styles
17

Oommen, Retty. "Production of blue pigments from the callus cultures of Lavandula augustifolia and red pigments (betalain) from the hairy root culture of Beta vulgaris : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Biotechnology at Massey University, Palmerston North, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/997.

Full text
Abstract:
Plants are used to produce many secondary metabolites that are too difficult, expensive or impossible to make by chemical synthesis. Conventional cultivation of plants is of course subject to vagaries of weather, pests and availability of land; hence, the interest in highly controlled culture of plant cells and hairy roots in bioreactors as methods of producing various products. This project focussed on production of blue and red colors of Lavandula augustifolia and Beta vulgaris, respectively. Callus and suspension cell culture were successfully produced from L. augustifolia after extensive trials, but hairy roots could not be generated from this species. In contrast, a successful protocol was developed for consistently producing hairy roots from B. vulgaris, but calli could not be generated from this species. Effects of medium composition on growth of L. augustifolia calli and freely suspended cells and production of the blue pigment by the latter, were investigated. Optimal production of callus occurred in full-strength Murashige and Skoog (MS) medium supplemented with 2 mg/l of indole-3-acetic acid (IAA) and 1 mg/l of kinetin. Stable suspension cultures could be produced and maintained in full-strength MS medium supplemented with 1 mg/l each of IAA and kinetin. In suspension culture in full-strength MS medium, the following hormone combinations were tested: (1) 1 mg/l each of indole-3-acetic acid (IAA) and kinetin; (2) 2 mg/l of IAA and 1 mg/l of kinetin; (3) 2 mg/l of IAA and 1 mg/l of benzyl amino purine (BAP); and (4) 2 mg/l each of IAA and BAP. Combination (3) maximized cell growth, but the highest cell-specific production of the blue pigment was seen in combination (2), although pigment production occurred at all hormone combinations. The medium formulation that gave the best production of the pigment in shake flasks was scaled up to a 2 L aerated stirred tank bioreactor, but both the biomass and pigment productivities were reduced in the bioreactor apparently due to the high shear stress generated by the Rushton turbine impeller. Compared to suspension cultures of L. augustifolia, the hairy root cultures of B. vulgaris grew extremely rapidly. Hairy roots also produced large amounts of the red pigments. Growth of hairy roots was influenced by the composition of the medium. Although the full strength MS medium better promoted biomass growth compared to the half-strength MS medium, the final concentration of the biomass and the pigment were nearly the same in both media. Attempts were made to enhance production by using various hormones (i.e. naphthalene acetic acid, BAP, IAA added individually at a concentration of 0.5 mg/l), but none of the hormones proved useful. BAP adversely affected the growth of hairy roots. In summary, production of pigments by suspension culture of L. augustifolia and hairy root culture of B. vulgaris, is technically possible, but requires substantial further optimization for enhancing productivity than has been possible in this project. iii
APA, Harvard, Vancouver, ISO, and other styles
18

Ries, Daniel. "Studies on the antioxidant activity of milk proteins in model oil-in-water emulsions : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology, Riddet Institute, Massey University, Palmerston North, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/1084.

Full text
Abstract:
The present study was aimed at extending our knowledge of the antioxidative properties of the milk protein products, whey protein isolate (WPI) and sodium caseinate (NaCas), in oil-in-water (O/W) emulsions rich in polyunsaturated fatty acids (PUFAs). In particular, the objective was to contribute to our understanding of the compositional and processing factors that influence the oxidative stability of protein-stabilised O/W emulsions. Linoleic acid (approximately 60 %) was used as the lipid for the oil phase (10.6 %). The emulsion samples were usually incubated at 50 °C to accelerate lipid oxidation. Lipid oxidation indicators were lipid hydroperoxides and headspace hexanal, determined by solid phase microextraction (SPME) combined with gas chromatography (GC). WPI- or NaCas-stabilised emulsions were prepared using a wide range of protein concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 7.0 or 10.0 %) at two droplet sizes (d32 = 0.31 and 0.65 µm). In general, higher lipid oxidation levels were found for the larger droplet size. Increasing protein concentration led to a decrease in the lipid oxidation rate. The greatest decrease in lipid hydroperoxide levels (values after 4 h) occurred at up to 4.0 % protein concentration. The greatest decrease in hexanal levels (values after 24 h) occurred at up to 4.0 % protein concentration in WPI emulsions (0.31 µm). The hexanal levels were more independent of the protein concentration in the other emulsion types. The hexanal level decreased at protein concentrations > 4.0 % in NaCas emulsions (0.31 and 0.65 µm) and at protein concentrations > 7.0 % in WPI emulsions (0.65 µm). The difference between lipid hydroperoxide generation in emulsions with small and large droplet sizes decreased with increasing protein concentration. This effect was more pronounced in NaCas emulsions. In general, NaCas was a better inhibitor of lipid oxidation than WPI, but WPI appeared to be the better antioxidant at some droplet size/protein concentration combinations. The protein in the continuous phase, i.e. the unadsorbed protein, played an important role in lipid oxidation. In principal, the lipid hydroperoxide and hexanal levels showed the same development over the continuous phase protein concentration as over the protein concentration in WPI and NaCas emulsions (d32 = 0.31 µm). A low NaCas level in the continuous phase already led to a relatively low hexanal level, whereas a higher WPI level was required. When NaCas solution was added to a WPI emulsion or WPI solution was added to a NaCas emulsion, a synergistic antioxidative effect was observed. The high molecular weight fractions (molecular weight = 12000-14000) of WPI and NaCas contained pro-oxidative metal ions that contributed to lipid oxidation in the emulsions. An enrichment of NaCas emulsions with the low molecular weight fraction of NaCas (with a molecular weight = 12000-14000) notably inhibited lipid oxidation. An enrichment of WPI emulsions with the low molecular weight fraction of WPI (with a molecular weight = 12000-14000) also seemed to inhibit lipid oxidation, but the effect was not significant. The protein solutions were enriched with these fractions before emulsion preparation. Pure WPI solution or mixed WPI/NaCas (1:1, weight/weight) solution with 1.12 or 2.24 % protein concentration was heated at 84 °C for up to 40 min, cooled and then used to prepare emulsions. Lipid oxidation was generally not affected by the heat treatment or the degree of whey protein denaturation. However, at the lower WPI concentration, more hexanal was produced for the longer heating times (20, 30 and 40 min) and this appeared to be connected with the physical instability of the emulsions. Greater oxidative stability was found at the higher protein concentration and when the proteins were mixed, pointing to a possible synergistic antioxidative effect of WPI and NaCas. The addition of the free radical source 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH) greatly increased the oxygen uptake and the generation of lipid hydroperoxides in the emulsions. The oxidative stability increased with increasing protein concentration (1.0, 4.0 and 7.0 %). NaCas had a greater antioxidative effect than WPI. The inhibition of oxygen uptake appeared to be largely influenced by the free-radical-scavenging activity of the system, determined by the protein type and the protein concentration, as the radicals were produced linearly over time and oxygen was consumed linearly over time. It can therefore be concluded that free-radical-scavenging activity represents a major antioxidative mechanism of the milk proteins. Oxygen was consumed much faster in emulsions than in protein solutions when the same level of AAPH was incorporated. In a WPI (1.0 % protein) emulsion, much lower levels of protein hydroperoxides than of lipid hydroperoxides developed. This pointed to a much greater reactivity of linoleic acid than of the milk proteins with oxygen. In contrast, the exposure of WPI to oxidising linoleic acid in an emulsion (1.0 % protein) or to AAPH in aqueous solution led to oxidative damage of the whey proteins, indicated by the loss of amino acids. The loss of specific amino acids was different for proteins in the continuous phase or cream phase of an emulsion or in WPI solution. The present study confirms the antioxidative potential of WPI and NaCas and gives new insights into their functionality as oxidative stabilisers in O/W emulsions.
APA, Harvard, Vancouver, ISO, and other styles
19

Ninow, Jorge Luiz. "Propriétés de capteurs à membrane PTFE pour la détection de produits volatils : application au suivi en ligne de procédés de fermentation." Vandoeuvre-les-Nancy, INPL, 1989. http://www.theses.fr/1989NAN10073.

Full text
Abstract:
Étude et mise au point d'un capteur à membrane microporeuse et hydrophobe pour la détection en temps réel de molécules volatiles ou gazeuses dans des procédés ou leur concentration peuvent varier au cours du temps, et notamment les fermentations. Application à l'analyse de métabolites secondaires pour l'étude cinétique et métabolique des microorganismes en fermentation
APA, Harvard, Vancouver, ISO, and other styles
20

Srichantra, Arunee. "Studies of UHT-plant fouling by fresh, recombined and reconstituted whole milk : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Engineering." Massey University, 2008. http://hdl.handle.net/10179/961.

Full text
Abstract:
The objective of this study was to investigate the effects of preheat treatments on fouling by fresh whole milk (FWM), recombined whole milk (RCB) and reconstituted whole milk (Recon) in the high-temperature heater of indirect UHT plants. Various preheat treatments prior to evaporation during milk powder manufacture were applied to skim milk powder (SMP, 75 °C 2 s, 85 °C, 155 s and 95 °C, 155 s) and whole milk powder (WMP, 95 °C, 33 s). These preheat treatments were so-called “evaporator preheat treatments”. Skim milk powder (SMP) and whole milk powder (WMP) were derived from the same original batch of pasteurised FWM to remove the effects of the variation in milk composition between different milk batches. These SMPs were recombined with anhydrous milk fat and water to prepare RCB, and WMPs were reconstituted with water to prepare Recon. Then, (homogenized) FWM, RCB and Recon were subjected to various preheat treatments (75 °C, 11 s, 85 °C, 147 s and 95 °C, 147 s) prior to UHT processing. These preheat treatments were so-called “UHT preheat treatments”. Temperature difference (hot water inlet temperature – milk outlet temperature) was taken as a measure of the extent of fouling in the high-temperature heater. The slope of the linear regression of temperature difference versus time (for two hours of UHT processing) was taken as fouling rate (°C/h). Increasing both evaporator and UHT preheat treatments resulted in increasing fouling rate and total deposit weight for all three whole milk types for several milk batches. In the case of FWM, there was no reduction in fouling rate with increasing UHT preheat treatment whether FWM was homogenized then preheated, preheated then homogenized or not homogenized at all. These findings, which are wholly consistent and well replicated, are in apparent conflict with the results of most previous comparable studies. Possible reasons for this are explained. Further investigations of the effects of homogenization relating to the role of whey protein on the surface of the fat globules showed that whey protein associated with the membrane covering the surface of fat globules for homogenized then preheated FWM, RCB and Recon and that association increased with increasing heating process stage. The increasing association of whey protein with the milk fat globules membrane with increasing severity of heating process stage became faster when preheat treatment was more severe: the association of whey protein plateaued on intermediate temperature heating when the milks were preheated at 75°C, 11 s and on preheating when the milks were preheated at 95°C, 147 s. In the case of FWM, the thickness of the membrane covering the surface of fat globules for homogenized then preheated FWM, which increased with the severity of heating process stage, was greater than the thickness of the membrane in preheated then homogenized FWM. Preheating then homogenization resulted in the greater interfacial spreading of small molecules on the surface of fat globules, i.e. whey protein or small molecules from the disintegration of casein micelles during preheating. Possible basic mechanisms for UHT fouling in the high-temperature heater include: the reduction in the solubility of calcium phosphate and the deposition of protein as fat-bound protein and non-fat-bound protein. When non-fat-bound protein in milk plasma deposited, it could be a carrier for the deposition of mineral, such as, the precipitate of calcium phosphate in the casein micelles or the deposition of complexes between whey protein and casein micelles.
APA, Harvard, Vancouver, ISO, and other styles
21

Wang, Xin. "Comparative aspects of carbohydrate fermentation by colonic bacteria." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Drouin, Carole M. "Partition of biosurfactants in two-phase fermentation media." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61246.

Full text
Abstract:
The partition of surfactants and of a biosurfactant-producing microorganism was studied in polyethylene glycol and dextran aqueous two-phase systems. In the presence of sodium phosphate, surfactants distributed themselves according to their charge. Cationic surfactants preferred the bottom phase, while anionic surfactants were attracted to the top phase. Increasing the phosphate molarity, the pH, the polymer concentration or molecular weight all resulted in a more one-sided surfactant partitioning. Biosurfactant partition was weaker than synthetic surfactant partition due to their weaker effective charge and lack of strong specific affinity for one of the polymers.
Bacillus subtilis cells partitioned very strongly to the bottom phase. Its biosurfactant, surfactin, was found in slightly larger quantities in the top phase. Batch fermentations were carried out in an aqueous two-phase system. Bacterial growth was not inhibited by the high polymer concentration. Surfactin was produced earlier and in larger quantities than in the regular mineral salts medium.
APA, Harvard, Vancouver, ISO, and other styles
23

Ismoyo, Fenny. "Biochemical changes associated with Rhizopus fermentation of soybean." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22743.

Full text
Abstract:
The conversion of soybeans to tempe is achieved through fermentation by Rhizopus. This fermentation process leads to hydrolysis of both proteins and lipids. The present work investigated certain biochemical changes which accompany the conversion of soybeans to tempe. The contents of non-protein nitrogen and free $ alpha$-amino nitrogen increased from 2.34 to 15.14%, and 2.03 to 5.22%, respectively after 48 h fermentation. SDS electrophoresis showed that a substantial quantity of the proteins in raw soybeans were hydrolysed by the Rhizopus to low molecular species (molecular weight $<$13,000 Daltons). Trypsin inhibitor activity found in tempe was lower than that of soybean and soaked soybean (an intermediate step in tempe preparation). The protein digestibilities of tempe and soaked soybean were higher than that of soybean. Reversed phase HPLC showed that the peptide separation profile of tempe was different from that of soybean and soaked soybean. The ESI/MS of the RP-HPLC fractions gave molecular weight of soybean peptides ranging from 1962 Da to 22,699 Da and tempe peptides ranging from 569 Da to 16,688 Da. The fatty acid compositions of tempe, soybean and soaked soybean were similar; relatively high levels of linoleic acid followed by oleic, linolenic and stearic acids were found. The acid values increased from 1.49 to 11.42 during the fermentation of soybeans. The total soluble carbohydrate contents of soybean, tempe and soaked soybean as well as the types and quantities of individual sugars were similar. The fermentation of soybean by Rhizopus had only a minor effect on the proximate composition of soybean; however, the soybean and fungal enzymes contributed primarily to changes in protein composition.
APA, Harvard, Vancouver, ISO, and other styles
24

Watson, J. S. "Effect of fermentation conditions on release of intracellular material from Bacillus amyloliquefaciens by autolysis." Thesis, Teesside University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jacobs, Annali. "The production of the highly unsaturated fatty acid eicosapentaenoic acid by fungal solid state fermentation." Thesis, Stellenbosch : Stellenbosch University, 2010. http://hdl.handle.net/10019.1/4500.

Full text
Abstract:
Thesis (MSc (Microbiology))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: Long chain omega-3 fatty acids such as eicosapentaenoic acid (EPA) are essential for the regulation of critical biological functions in humans and other mammals. Fish oil as the main dietary source of EPA holds several disadvantages and alternative sources and production processes such as microbial fermentation are increasingly being investigated. Therefore the aim of the first part of this study was to evaluate brewers’ spent grain (BSG) as substrate for the production of EPA by solid state fermentation with 29 fungal strains representing different Mortierella species. The effect of a 10% (w/w) linseed oil (LSO) supplement on EPA production was also studied. Consequently, fungal inoculated BSG was incubated at 22oC for three days to obtain optimal fungal growth, before the incubation temperature was lowered to 16oC for the following eight days. Cultures were then harvested and dried, followed by lipid extraction and analyses using gas chromatography. All the strains were found to produce EPA on BSG, while addition of the LSO improved the EPA yield of most strains. The strains which produced the highest levels of EPA on BSG supplemented with LSO were Mortierella antarctica Mo 67 and Mortierella epicladia Mo 101, which respectively produced 2.8 mg and 2.5 mg EPA per g of BSG. During the second part of the study eight Mortierella strains were used to study EPA production via solid state fermentation of sunflower press cake (SPC). Similar culture conditions and analytical methods were used as in the first part of the study. The effect of supplementing the SPC substrate with 10% (w/w) LSO was studied with regard to the supplement’s impact on EPA production and on the highly unsaturated fatty acid (HUFA) profile of the fermented substrate. Addition of LSO improved EPA yield of most strains on SPC, leading to a reduction in the average arachidonic acid (ARA):EPA ratio from 50.68 to 3.66. The ratio of HUFA to saturated and monoenoic fatty acids, was increased significantly (t=5.75, p=0.05) by the addition of LSO, with higher desaturation levels among the 20-carbon fatty acids. Addition of LSO also had a positive effect (r = 0.9291, p = 0.001) on the relative amount of long chain fatty acids (C≥20) produced. The strains which produced the highest levels of EPA on SPC supplemented with LSO were Mortierella alpina Mo 46 and Mortierella basiparvispora Mo 88, which produced 6.4 mg and 5.8 mg EPA per g of sunflower press cake, respectively. Fungi belonging to the genus Mortierella successfully converted LSO supplemented agro-processing wastes, such as BSG and SPC, to materials containing EPA, thereby adding value to these substrates. These EPA-enriched waste substrates could eventually find applications as animal or fish feed or as a source of EPA and other HUFA for the growing omega-3 market in the neutraceutical and therapeutics industry.
AFRIKAANSE OPSOMMING: Langketting omega-3 vetsure soos eikosapentaenoë suur (EPS) is noodsaaklik vir die regulasie van kritiese biologiese funksies in mense en ander soogdiere. Visolie, die mees belangrike EPS-bron in die dieet, hou verskeie nadele in en alternatiewe bronne sowel as produksie-prosesse, soos mikrobiologiese fermentasie, word dus toenemend ondersoek. Die doel van die eerste gedeelte van hierdie studie was dus om gebruikte brouersgraan (GBG) te ëvalueer as ‘n substraat vir die produksie van EPS deur soliede staat fermentasie met 29 fungus isolate wat verskillende Mortierella spesies verteenwoordig. Die uitwerking van byvoeging van 10% (m/m) lynsaadolie (LSO) op EPS-produksie is ook bepaal. Gevolglik is fungus-geïnokuleerde GBG vir drie dae by 22oC geïnkubeer om optimale fungusgroei te verkry, waarna die inkubasie temperatuur verlaag is na 16oC vir die volgende agt dae. Kulture is hierna ge-oes en gedroog, gevolg deur lipied ekstraksie en analise met behulp van gaschromatografie. Al die isolate het EPS geproduseer op die GBG substraat, terwyl byvoeging van LSO die EPS-opbrengs van die meeste isolate verbeter het. Die isolate wat die hoogste vlakke van EPS op GBG wat met LSO verryk is, geproduseer het, was Mortierella antarctica Mo 67 en Mortierella epicladia Mo 101, wat onderskeidelik 2.8 mg en 2.5 mg EPS per g GBG geproduseer het. Tydens die tweede gedeelte van die studie is agt Mortierella isolate gebruik om die produksie van EPS deur soliede staat fermentasie van sonneblom perskoek (SPK) te ondersoek. Kultuurtoestande en analitiese metodes soortgelyk aan die eerste gedeelte van die studie is gebruik. Die uitwerking van byvoeging van 10% LSO tot die SPK substraat is ondersoek met betrekking tot die impak van die byvoeging op EPS produksie asook op die profiel van hoogs onversadigde vetsure (HOVS) van die gefermenteerde substraat. Die byvoeging van LSO tot SPK het die EPS opbrengs van meeste isolate verbeter en het tot ‘n verlaging in die gemiddelde arachidoonsuur (ARS):EPS verhouding vanaf 50.69 tot 3.66 gelei. Die verhouding van HOVS tot versadigde en mono-onversadigde vetsure, is betekenisvol (t=5.75, p=0.05) verhoog deur die byvoeging van LSO, met hoër vlakke van onversadigheid onder die 20-koolstof vetsure. Byvoeging van LSO het ook ‘n positiewe uitwerking (r = 0.9291, p = 0.001) op die relatiewe aantal langketting vetsure (C≥20) gehad. Die isolate wat die hoogste vlakke van EPS geproduseer het op LSO-verrykte SPK, was Mortierella alpina Mo 46 en Mortierella basiparvispora Mo 88, wat onderskeidelik 6.4 mg en 5.8 mg EPS per g SPK geproduseer het. Fungi wat aan die genus Mortierella behoort, het LSO-verrykte agroprosesserings afvalprodukte, soos GBG en SPK, suksesvol omgeskakel na materiale wat EPS bevat, en sodoende waarde toegevoeg aan hierdie substrate. Die EPS-verrykte afvalsubstrate kan uiteindelik toepassings vind as diere- of visvoer of as bron van EPS of ander HOVS vir die groeiende omega-3 mark in die neutraseutiese en terapeutiese industrie.
APA, Harvard, Vancouver, ISO, and other styles
26

Thanvanthri, Gururajan Vasudevan. "Enhancing xylose utilisation during fermentation by engineering recombinant Saccharomyces cerevisiae strains." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/18705.

Full text
Abstract:
Dissertation (DPhil)--University of Stellenbosch, 2007.
ENGLISH ABSTRACT: Xylose is the second most abundant sugar present in plant biomass. Plant biomass is the only potential renewable and sustainable source of energy available to mankind at present, especially in the production of transportation fuels. Transportation fuels such as gasoline can be blended with or completely replaced by ethanol produced exclusively from plant biomass, known as bio-ethanol. Bio-ethanol has the potential to reduce carbon emissions and also the dependence on foreign oil (mostly from the Middle East and Africa) for many countries. Bio-ethanol can be produced from both starch and cellulose present in plants, even though cellulosic ethanol has been suggested to be the more feasible option. Lignocellulose can be broken down to cellulose and hemicellulose by the hydrolytic action of acids or enzymes, which can, in turn, be broken down to monosaccharides such as hexoses and pentoses. These simple sugars can then be fermented to ethanol by microorganisms. Among the innumerable microorganisms present in nature, the yeast Saccharomyces cerevisiae is the most efficient ethanol producer on an industrial scale. Its unique ability to efficiently synthesise and tolerate alcohol has made it the ‘workhorse’ of the alcohol industry. Although S. cerevisiae has arguably a relatively wide substrate utilisation range, it cannot assimilate pentose sugars such as xylose and arabinose. Since xylose constitutes at least one-third of the sugars present in lignocellulose, the ethanol yield from fermentation using S. cerevisiae would be inefficient due to the non-utilisation of this sugar. Thus, several attempts towards xylose fermentation by S. cerevisiae have been made. Through molecular cloning methods, xylose pathway genes from the natural xylose-utilising yeast Pichia stipitis and an anaerobic fungus, Piromyces, have been cloned and expressed separately in various S. cerevisiae strains. However, recombinant S. cerevisiae strains expressing P. stipitis genes encoding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) had poor growth on xylose and fermented this pentose sugar to xylitol. The main focus of this study was to improve xylose utilisation by a recombinant S. cerevisiae expressing the P. stipitis XYL1 and XYL2 genes under anaerobic fermentation conditions. This has been approached at three different levels: (i) by creating constitutive carbon catabolite repression mutants in the recombinant S. cerevisiae background so that a glucose-like environment is mimicked for the yeast cells during xylose fermentation; (ii) by isolating and cloning a novel xylose reductase gene from the natural xylose-degrading fungus Neurospora crassa through functional complementation in S. cerevisiae; and (iii) by random mutagenesis of a recombinant XYL1 and XYL2 expressing S. cerevisiae strain to create haploid xylose-fermenting mutant that showed an altered product profile after anaerobic xylose fermentation. From the data obtained, it has been shown that it is possible to improve the anaerobic xylose utilisation of recombinant S. cerevisiae to varying degrees using the strategies followed, although ethanol formation appears to be a highly regulated process in the cell. In summary, this work exposits three different methods of improving xylose utilisation under anaerobic conditions through manipulations at the molecular level and metabolic level. The novel S. cerevisiae strains developed and described in this study show improved xylose utilisation. These strains, in turn, could be developed further to encompass other polysaccharide degradation properties to be used in the so-called consolidated bioprocess.
AFRIKAANSE OPSOMMING: Xilose is die tweede volopste suiker wat in plantbiomassa teenwoordig is. Plantbiomassa is die enigste potensiële hernubare en volhoubare bron van energie wat tans vir die mensdom beskikbaar is, veral vir die produksie van vervoerbrandstowwe. Vervoerbrandstowwe soos petrol kan vermeng word met etanol wat uitsluitlik van plantbiomassa vervaardig is, bekend as bio-etanol, of heeltemal daardeur vervang word. Bio-etanol het die potensiaal om koolstofuitlatings te verminder en vir baie lande ook afhanklikheid op buitelandse olie (hoofsaaklik afkomstig van die Midde-Ooste en Afrika) te verminder. Bio-etanol kan vanaf beide die stysel en sellulose in plante vervaardig word, maar sellulosiese etanol word as die meer praktiese opsie beskou. Lignosellulose kan deur die hidrolitiese aksie van sure of ensieme in sellulose en hemisellulose afgebreek word en dit kan op hulle beurt weer in monosakkariede soos heksoses en pentoses afgebreek word. Hierdie eenvoudige suikers kan dan deur mikro-organismes tot etanol gegis word. Onder die tallose mikro-organismes wat in die natuur teenwoordig is, is die gis Saccharomyces cerevisiae die doeltreffendste etanolprodusent in die bedryf. Sy unieke vermoë om alkohol te vervaardig en te weerstaan het dit die werksperd van die alkoholbedryf gemaak. Hoewel S. cerevisiae ‘n taamlike breë spektrum van substrate kan benut, kan dit nie pentosesuikers soos xilose en arabinose assimileer nie. Aangesien xilose ten minste ‘n derde van die suikers wat in lignosellulose teenwoordig is, uitmaak, sou die etanolopbrengs uit gisting met S. cerevisiae onvoldoende wees omdat hierdie suiker nie benut word nie. Verskeie pogings is dus aangewend om xilosegisting deur S. cerevisiae te bewerkstellig. Deur middel van molekulêre kloneringsmetodes is gene van die xiloseweg uit ‘n gis wat xilose natuurlik benut, Pichia stipitis, en ‘n anaërobiese swam, Piromyces, afsonderlik in S. cerevisiae-rasse gekloneer en uitgedruk. ‘n Rekombinante ras wat P. stipitis- se XYL1-xilosereduktase- en XYL2-xilitoldehidrogenase gene uitdruk, het egter swak groei op xilose getoon en het dié pentosesuiker tot xilitol gegis. Die hooffokus van hierdie ondersoek was om die benutting van xilose deur ‘n rekombinante S. cerevisiae-ras wat P. stipitis se XYL1 en XYL2-gene uitdruk onder anaërobiese gistingstoestande te verbeter. Dit is op drie verskillende vlakke benader: (i) deur konstitutiewe koolstofkataboliet-onderdrukkende mutante in die rekombinante S. cerevisiae-agtergrond te skep sodat ‘n glukose-agtige omgewing tydens xilosegisting vir die gisselle nageboots word; (ii) deur ‘n nuwe xilose-reduktasegeen uit die natuurlike xilose-afbrekende swam Neurospora crassa te isoleer en deur funksionele komplementasie in S. cerevisiae te kloneer; en (iii) deur willekeurige mutagenese van die rekombinante S. cerevisiae-ras ‘n haploïede xilose-gistende mutant te skep wat ‘n gewysigde produkprofiel ná anaërobiese xilosegisting vertoon. Deur hierdie drieledige benadering te volg, is dit bewys dat dit moontlik is om die anaërobiese xilosebenutting van rekombinante S. cerevisiae-rasse in wisselende mate deur die aangepaste metodes te verbeter, hoewel etanolvorming ‘n hoogs gereguleerde proses in die sel blyk te wees. Opsommend kan gesê word dat hierdie werk drie verskillende metodes uiteensit om xilosebenutting onder anaërobiese toestande te verbeter deur manipulasies op die molekulêre en metaboliese vlak. Die nuwe S. cerevisiae-rasse wat in hierdie studie ontwikkel en beskryf word, toon verbeterde xilosebenutting. Hierdie rasse kan op hulle beurt verder ontwikkel word om ander polisakkariedafbrekende eienskappe in te sluit wat in die sogenaamde gekonsolideerde bioproses gebruik kan word.
APA, Harvard, Vancouver, ISO, and other styles
27

Huang, Eric. "Fermentation monitoring of single and co-culture processes with saccharomyces cerevisiae and scheffersomyces stipitis using shotgun proteomics." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110612.

Full text
Abstract:
System biology and fermentation development can be integrated using shotgun proteomics as a monitoring technique. This study established shotgun proteomics methods and bioinformatics workflows to monitor and study the temporal proteome of three different fermentation processes, a) Saccharomyces cerevisiae ethanol fermentation, b) Scheffersomyces stipitis xylose fermentation, c) co-culture fermentation using S. cerevisiae and S. stipitis. This study identified 1,331 non-redundant proteins in S. cerevisiae fermentation, 958 in S. stipitis fermentation, and 1,390 in the co-culture process. The false discovery rates were calculated from 0.16% to 4.22%. Technical replicates throughout the study exhibited high correlations. Throughout the study, rich medium under oxygen limited condition were used, and shotgun proteomics samples were taken between or within the exponential phase and early diauxic shift. The most abundant proteins consisted of translation elongation factors, ribosomal proteins, chaperones and glycolytic enzymes such as glyceraldehyde-3-phosphate dehydrogenase, fructose 1, 6-bisphosphate aldolase and enolase. The unexpected observation in S. stipitis included the induction of NAD(P)H-dependent D-xylose reductase and D-xylulose reductase in co-culture process with xylose absent. Continuous expressions of malate synthase and isocitrate lyase before glucose or xylose depletion suggested a different glyoxylate regulatory pathway in S. stipitis. Up-regulation of enzymes involved in various amino acids biosynthesis inferred the lack of amino acid pool in rich medium. Differentially expressed proteins based on label-free quantitation showed steady and consistent decline of ribosomal protein into diauxic shift in S. stipitis. The majority of the up-regulated proteins in late-exponential and early diauxic shift in S. stipitis were involved in carbohydrate metabolism, glycolysis, amino acid metabolism, gluconeogenesis, glyoxylate and oxidative phosphorylation. In S. cerevisiae, the concurrence of ribosomal proteins in both up-and down-regulated proteins demonstrated no discernible pattern. Toward the end of the exponential phase, cytochrome c, F1F0 ATP synthase (oxidative phosphorylation) and pyruvate decarboxylase (committing pyruvate to acetaldehyde) were simultaneously up-regulated. In the co-culture process, S. cerevisiae glycolytic enzymes, ribosomal proteins and chaperones were up-regulated in early diauxic shift after glucose depletion. Shotgun proteomics allowed scientists and engineers to observe the progression and the status of the fermentation, while high-throughput data sets can elucidate yeast physiological states during fermentations.
La biologie systémique et le développement des fermentations peuvent être intégrés à l'aide de la méthode de surveillance dite « protéomique fusil ». La présente étude a mis en place une méthode de protéomique fusil jumelée à un flux de travaux bioinformatiques pour surveiller et étudier le protéome temporel de trois processus de fermentation différents : a) fermentation de l'éthanol Saccharomyces cerevisiae ; b) fermentation du xylose Scheffersomyces stipitis ; c) fermentation de co-cultures mêlant S. cerevisiae et S. stipitis.L'étude a identifié 1331 protéines non-redondantes dans la fermentation de S. cerevisiae, 958 dans la fermentation de S. stipitis et 1390 dans le processus en co-culture. La marge d'erreur a été établie entre 0.16% et 4.22%. Des reproductions techniques au cours de l'étude ont montré une grande reproductibilité et de nombreuses corrélations.L'étude a utilisé un milieu riche limité en oxygène ; les échantillons de protéomique fusil ont été pris entre (ou au cours de) la phase exponentielle et le début de la Diauxie. Les protéines les plus abondantes ont été des facteurs d'élongation, des ribosomes, des protéines chaperon ainsi que des enzymes de glycolyse tels que glycéraldéhyde-3-phosphate déshydrogénase, fructose-1,6-diphosphate aldolase et énolase.Parmi les observations inattendues dans S. stipitis, on note le déclenchement de D-xylose réductase NADH-dépendant et de D-xylulose réductase dans le processus de co-culture même en l'absence de xylose. Les manifestations récurrentes de synthase de malate et de lyase isocitrique avant l'appauvrissement en glucose ou en xylose suggèrent une voie de régulation de l'acide glyoxylique différente dans S. stipitis. La régulation positive d'enzymes impliquées dans diverses biosynthèses d'acides aminés indique la pauvreté du réservoir d'acides aminés dans un milieu riche. Des protéines s'exprimant différemment sur une base quantificative libre montrent un recul régulier et prononcé de protéines ribosomales durant la Diauxie de S. stipitis. La majorité des protéines positivement régulées à la fin de la phase exponentielle ou au début de la Diauxie de S. stipitis sont impliquées dans le métabolisme des glucides, la glycolyse, le métabolisme des acides aminés, la néoglucogenèse, le cycle du glyoxylate et la phosphorylation oxydative.Dans S. cerevisiae, la présence simultanée de ribosomes dans les protéines à la fois positivement et négativement régulées démontre un mode de comportement complexe et inconstant. Vers la fin de la phase exponentielle, le cytochrome C, F1-F0 ATP-synthase et la pyruvate décarboxylase sont tous positivement régulés. Dans le processus en co-culture, les enzymes de glycolyse de S. cerevisiae, les ribosomes et les protéines chaperon sont positivement régulés au début de la Diauxie après l'appauvrissement en glucose.
APA, Harvard, Vancouver, ISO, and other styles
28

Ferreira, Jacques. "Factors influencing the fermentation performance of commercial wine yeasts." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16322.

Full text
Abstract:
Thesis (MScAgric)--University of Stellenbosch, 2004.
ENGLISH ABSTRACT: The production of quality wine is influenced by numerous factors of which grape quality is one of the most important factors. The production of quality wine, however, is not possible without good winemaking techniques and effective quality control. Critical control points (CCP) during the winemaking process must be identified to ensure optimum wine quality. Grape must is a complex medium that contains different micro-organisms which can be either beneficial or negative to wine quality, depending on the physical and chemical conditions that prevail in the must. Yeasts are responsible for alcoholic fermentation, lactic acid bacteria (LAB) for malolactic fermentation (MLF) and acetic acid bacteria (AAB) for the production acetic acid from ethanol. Yeasts and certain LAB can also produce acetic acid and thereby increasing the volatile acidity (VA) of wine. These micro-organisms can influence each other in complex fashions by competing for growth nutrients and by producing inhibitory substances. Most winemakers nowadays use commercial yeast strains to inoculate wine fermentations. This, however, does not assure a problem-free fermentation and cases of stuck and sluggish fermentations are annually reported worldwide. In these or most cases fermentation takes longer than 21 days to complete and the wine contains a residual sugar concentration of more than 4 g/L, which can be utilised by wine spoilage micro-organisms such as certain bacteria and other wild yeasts. Stuck and sluggish fermentations also increase the chances of oxidation due to the absence of the protective CO2 layer on the surface of the wine, which is formed during alcoholic fermentation. Another effect of stuck and sluggish fermentations is that valuable tank space is wasted due to the unexpected time consumption of these fermentation problems. Many factors during the winemaking process can be responsible for stuck and sluggish fermentations. In this thesis the different factors is discussed with the emphasis on the effect of the yeast strain. The way that certain yeast strains influence AAB and LAB numbers during fermentation and MLF through the production of inhibiting by-products such as medium chain fatty acids has not been investigated in detail in the past. Certain fungicides and pesticides that are used in vineyards to control pests (e.g. mildew) contain copper which can be inhibiting to yeast growth and alcoholic fermentation. Legal limits and withholding periods on these sprays are not always strictly obeyed and can lead to stuck and sluggish fermentations. This motivated us to evaluate the growth and fermentation activities of a selection of commercial wine yeasts in the presence of copper levels in the range of maximum legal limits. The effect of these commercial strains on the LAB and AAB numbers during alcoholic fermentation and MLF were also investigated. Our results showed that there was no significant difference on numbers of the AAB obtained from fermentations inoculated with different commercial wine yeast strains. However, with regards to the LAB numbers, one of the strains produced significantly more sulphur dioxide (SO2), which led to the inhibition of MLF in that wine. Our results further indicated which commercial yeast strains were capable of effectively fermenting high sugar musts and which strains were less effective. From the strains tested VIN13, N96 & L2056 were able to utilize fructose more effectively than NT50, RJ11 & D80. We could further distinguish between yeast strains that produced the lowest (VIN13 & RJ11) and the highest (WE372, NT50 & L2056) VA concentrations in must containing high sugar levels. Strains that were more tolerant against high copper levels were also identified. We tested six yeast strains in must with added copper (0.25 mM cu2+) in the form of CuSO4 .H2O. Three Cu2+-tolerant (D80, Collection Cepage Cabernet & NT50) yeast strains were distinguished from three less Cu2+-tolerant yeast strains (VIN13, NT112 & RJ11). This study made a valuable contribution in knowledge gained about commercially available wine yeast strains that can ferment effectively under certain stress conditions. Research such as this, where wine yeasts are evaluated to ferment more effectively during strenuous winemaking conditions, will be very beneficial to winemakers.
AFRIKAANSE OPSOMMING: Die produksie van gehalte wyn word deur verskillende faktore beïnvloed waarvan druifkwaliteit seker die belangrikste is. Die produksie van gehalte wyn is egter nie moontlik sonder goeie wynmaaktegnieke en effektiewe kwaliteitsbeheer nie. Kritieke kontrole punte (KKP) tydens die wynmaakproses moet dus geïdentifiseer word om sodoende ‘n verlaging in wynkwaliteit te vermy. Druiwemos het ‘n komplekse mikrobiologiese samestelling en bestaan uit verskillende mikroörganismes wat vooren nadelig vir wynkwaliteit kan wees, afhangende van die fisiese en chemiese toestande wat in die mos bestaan. Giste is verantwoordelik vir alkoholiese fermentasie, melksuurbakterieë (MSB) vir appelmelksuurgisting (AMG) en asynsuurbakterieë (ASB) vir die produksie van asynsuur vanaf etanol. Asynsuur word egter ook deur giste en MSB geproduseer en dra so by tot die vlugtige suurheid (VS) van ‘n wyn. Hierdie mikroörganismes kan mekaar op komplekse wyses beïnvloed deur o.a. te kompeteer vir voedingstowwe asook deur die produksie van inhiberende verbindings. Die meeste wynmakers maak gebruik van kommersiële gisrasse om alkoholiese fermentasies mee uit te voer. Gevalle van sogenaamde slepende en gestaakte alkoholiese fermentasies, waar suiker nie volledig na etanol en CO2 omgeskakel word nie, kom egter nog gereeld in die wynbedryf voor. In sulke gevalle neem die fermentasie gewoonlik langer as 21 dae om te voltooi met ‘n suiker konsentrasie van meer as 4 g/L wat in die wyn oorbly. Dit is nadelig vir wynkwaliteit aangesien dit nie net die kanse vir bederf deur bakterieë en giste verhoog nie, maar ook die kanse vir oksidasie verhoog a.g.v. die verlies van die beskermende CO2 lagie bo-oor die wyn. Hoe sekere gisrasse, ASB en MSB getalle gedurende fermentasie en AMG beïnvloed deur die produksie van inhiberende verbindings soos medium ketting vetsure en SO2, is ook nie baie in die verlede ondersoek nie. Sommige spuitstowwe wat gebruik word in die bekamping van swamsiektes bevat koper wat inhiberend kan wees vir gisgroei en alkoholiese fermentasie. Wetlike maksimum limiete en onthoudingsperiodes op spuitstofresidue word egter nie altyd gehoorsaam nie en kan lei tot slepende en gestaakte fermentasies. Dit het ons gemotiveer om ‘n seleksie van kommersiële gisrasse te evalueer in terme van gisgroei en fermentasie in die teenwoordigheid van kopervlakke naby die maksimum limiet. Ons resultate het gewys dat daar nie noemenswaardige verskille in AAB getalle tydens alkoholiese fermentasie tussen behandelings met verskillende kommersiële gisrasse was nie. Een van die gisrasse het wel noemenswaardig meer SO2 geproduseer wat gelei het tot inhibering van AMG in hierdie wyn. Ons het verder uitgewys watter kommersiële gisrasse instaat is om meer effektief in hoër suiker mos te fermenteer en watter van die rasse minder suksesvol was. Ons het ook rasse geïdentifiseer wat meer weerstandbiedend is teen hoë kopervlakke in mos en sodoende groter kans op ‘n suksesvolle fermentasie sal hê in mos wat koperresidue bevat wat afkomstig is van sekere spuitstowwe. Die effek van die ASB en MSB getalle gedurende fermentasie en AMG is ook ondersoek. Ons resultate het verder gewys watter kommersiële gisrasse instaat was om mos met hoë suikervlakke meer effektief te fermenteer. Vam die gisrasse wat getoets was het VIN13, N96 & L2056 fruktose meer effektief benut as NT50, RJ11 & D80. Ons kon verder onderskei tussen gisrasse wat die laagste (VIN13 & RJ11) en die hoogste (WE372, NT50 & L2056) vlakke van VS produseer in mos met hoë inisiële suikervlakke. Gisrasse wat meer tolerant was teen koperresidue in mos is ook geidentifiseer. Ons het ses gisrasse getoets in mos met bygevoegde koper (0.25 mM Cu2+) in die vorm van CuSO4 .5H2O. Daar is onderskei tussen drie Cu2+-tolerante (D80, Collection Cepage Cabernet & NT50) en drie minder Cu2+-tolerante gisrasse (VIN13, NT112 & RJ11). Hierdie studie lewer ‘n waardevolle bydrae in die invordering van kennis oor kommersieel beskikbare wyngisrasse wat meer effektief sal fermenteer onder sekere streskondisies wat in mos voorkom. Inligting soos hierdie is belangrik om die wynmaker se keuse uit die reeks bestaande kommersiële gisrasse te vergemaklik.
APA, Harvard, Vancouver, ISO, and other styles
29

Stavrinides, Alexander James. "Isothermal microwave biology : catalysis and fermentation." Thesis, Liverpool John Moores University, 2012. http://researchonline.ljmu.ac.uk/6110/.

Full text
Abstract:
This thesis looks directly into the controversial subject of the microwave field effect by the production of a versatile prototype isothermal microwave reactor for the investigation of enzymatic and microbiological reactions. The observed results from the prototype reactor and experiments conducted conclude that there is a nonthermal, nonlinear response between the exposure microwave power and rate and yield of cellulose saccharification. The nature of the nonthermal response is controversial and may be dependent on the definition of "nonthermal,' leading to ambiguity of exact mechanism. Enzymatic and microbial conversion of cellulosic material to ethanol is a highly desirable industrial process. Whether the demand is for the mitigation of climate change, political obligations or energy independence, the use of arable land for energy crops limits the available glucose carbon sources for conversion to bioproducts. To prevent this limitation, cellulose (~-l,4-linked glucose polymers) are touted as the "silver bullet" to prevent carbon exhaustion or impinging on food crops. The technical constraint for the industrialization of cellulose based processing is the rate limitation in the cellulase enzymatic action on cellulose. The enzyme rate is limited by feedback cycles and limited mechanical freedom, therefore a relatively high enzyme concentration is required to speed up the process. To date, the associated enzyme production costs and infrastructure prevents bulk volume exploitation. Biomolecular advances (amino acid substitutions, recombination of expression vectors etc) have gone some way to increase either enzymatic rate or enzyme concentration. The work presented in this thesis differs by increasing the rate of the enzyme without molecular modification. Using a microwave field, the work presented shows that by separating the system into its base units, irradiation of the enzyme/substrate complex in an aqueous environment can increase both the initial enzyme rate and the saccharification yield without alteration of the temperature set point. This study shows that the rate increase is not proportional to the microwave field power. An optimal power in each study is either found or suggested. The results cited show that in the three systems (Endoglucanase and cellobiohydrolase with cellulose, endoglucanase and cellobiohydrolase and ~- glucosidase with cellulose, and ~-glucosidase with cellobiose) the initial rates can be increased by 201 %, 65.5% and 69% respectively. In the total hydrolytic process (endoglucanase and cellobiohydrolase and ~-glucosidase on a cellulose substrate) the final glucose yield was increased by 43% in comparison to the conventional thermal control reaction. This is shown in Figure 1. 10.000 1 9.000 1 8.000 j 7.000 6.000 o 20 40 60 80 100 120 140 160 180 I I 1 I U 5.000 r:: o u 4.000 3.000 2.000 j i t t , f 1.000 0.000 Time (hours) =->=OOOW Glucose' °012W Glucose ?p025W Glucose ~050W Glucose ·075W Glucose Figure 1. Microwave irradiated "cellulase" enzymes with cellulose substrate I For development into an industrial system and looking towards simultaneous saccharification and fermentation (SSF), the yeast Saccharomyces cerevisiae was subjected to irradiated microwave fermentations on a glucose substrate. Although inconclusive in terms of rate increase, cell density 1 was comparable across the power range showing that the irradiation does not have a derogatory effect. ! The natural evolution of the conclusions drawn would be development of the system into a SSF or SSCF configuration for bio-product formation is possible with irradiation up to SOW. ii The novelty of the experiments conducted is twofold. Firstly, the reactor has been designed to ensure that the microwave irradiation is independent of the bulk temperature therefore allowing the exploration of the microwave field effect independently to the thermal effect. Secondly, the microwave source is a continuous microwave irradiation (none pulse irradiation) ensuring that the reaction is subjected to the microwave field for the entire reaction.
APA, Harvard, Vancouver, ISO, and other styles
30

Khan, Mohammad Khalid. "In vitro fermentation of mixtures of indigestible carbohydrates by the human faecal bacteria." Thesis, University of Glasgow, 2000. http://theses.gla.ac.uk/5315/.

Full text
Abstract:
Aim of this thesis was to evaluate mixtures of indigestible carbohydrates in vitro to predict their effects on gut function. In this study, I investigate the effect of combining carbohydrates with different fermentative properties and their interactive influences, reflected in the end products from in vitro fermentation. The study focused on the rate of fermentation and fermentability of such mixtures and the SCFA produced to gain an index of the likely site of fermentation in the colon. The main aim of the thesis was to produce a mixture of carbohydrates which would delay but preserve butyrate production from rapidly fermenting carbohydrates such as raftilose. This was achieved in several mixtures but mostly those containing raftilose and ispaghula. In general, mixtures of carbohydrates were fermented more slowly than raftilose alone. Overall, ispaghula was the most effective in slowing the rate of fermentation compared with pectin or gums. Mixing raftilose with ispaghula or guar gum gave the best preservation of n-butyrate and propionate production. The rate of n-butyrate production was less rapid in mixed cultures of three carbohydrates (raftilose, ispaghula and pectin) than cultures of 100mg raftilose but production of n-butyrate was preserved. In summary, ispaghula and raftilose in two-carbohydrate mixtures and ispaghula, pectin and raftilose in three-carbohydrate mixtures delayed the release of butyrate with no loss in butyrate production and may move butyrate further round the colon, at the same time reducing the potential adverse effects of raftilose. Moreover, the addition of pectin (or guar gum) may add the therapeutic effect of delaying nutrient absorption in the small intestine was well. These studies have identified at least two mixtures (raftilose & ispaghula; raftilose, ispaghula & pectin) worthy of study in more detail in man.
APA, Harvard, Vancouver, ISO, and other styles
31

Syddall, Mark Timothy. "Improving the identification of a penicillin fermentation model." Thesis, University of Birmingham, 1999. http://etheses.bham.ac.uk//id/eprint/1478/.

Full text
Abstract:
This work concentrates on the selection and improvement of differential equation based models of the penicillin G fermentation. Published penicillin fermentation models have been reviewed and compared with regard to their abilities to predict fermentation behaviour, genetic algorithms have been applied to the design of optimal experiments for model parameter estimation, and a new approach to assessing the theoretical identifiability of model structures has been proposed. When applied to the best penicillin fermentation model yet found, this new approach suggests that the model's parameters are uniquely identifiable. The best performing model was shown to be a morphologically structured model for which measurement data related to the various morphologically distinct regions were obtained using image analysis. This model was modified to increase its speed of execution, and extended to describe fermentations where lactose was present in the inoculum. Design criteria from the field of optimal experiment design were combined with genetic algorithms as a technique for searching through the range of possible input combinations, subject to constraints on the fermenter operation, to develop experimental feed profiles. The theoretical identifiability of the fermentation model has been assessed for the first time, using a novel approach to identifiability testing which uses a symbolic mathematics package, along with subsequent post-processing, to determine almost at a glance whether or not a fermentation model should be uniquely identifiable.
APA, Harvard, Vancouver, ISO, and other styles
32

Karnati, Sanjay Kumar Reddy. "Application of molecular techniques to assess changes in ruminal microbial populations and protozoal generation time in cows and continuous culture." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1164662405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Longden, Nicholas Guy. "The effect of hydrostatic carbon dioxide pressure and extracellular ethanol on the performance of the yeast strain Saccharomyces cerevisiae during fermentation." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1004105.

Full text
Abstract:
The brewing industry constantly experiences problems in trying to maintain the quality of beer produced. Unfavourable conditions during fermentation may alter the performance of the yeast strain Saccharomyces cerevisiae, resulting in a "poor" end-product. It has been established that high concentrations of extracellular ethanol, when added to the fermentation medium inhibit yeast activity. It has been recently suggested that increased carbon dioxide pressure could inactivate the yeast activity adding to further brewing problems. The aim of this study was to investigate the effect of extracellular carbon dioxide pressure and ethanol addition, on yeast performance when added to a fermentation medium, and to establish whether an inhibitory relationship existed between ethanol and carbon dioxide pressure, when combined and added to the fermentation medium. Dissolved C0₂ in the medium, medium pH and substrate utilisation were analysed daily during a fermentation, as were membrane fatty acid composition. These parameters were used to assess the effect of ethanol and carbon dioxide on the yeast performance and consequently the final end-product. Supplementing the medium with extracellular ethanol, even as low as 5%, was shown to inhibit yeast performance during fermentation. This effect was even more marked as the ethanol concentration was increased, with almost total inhibition of yeast activity occuring after the addition of 15% ethanol (v/v). A similar effect was observed when elevated C0₂ pressures were applied to the medium, and although low C0₂ pressures initially induced the synthesis of saturated yeast membrane fatty acids, elevated C0₂ pressures (greater than 1,0 atm.) was shown to follow a similar inhibitory trend, if not as dramatic, as ethanol. A combination of both ethanol and C0₂ pressure showed a further increase in the level of yeast inhibition, although the low C0₂ pressure appeared to initially inhibit the toxicity of ethanol on the yeast. Increasing the levels of the C0₂/ethanol treatment (1,0 atm.), showed a synergistic effect on yeast performance. The results of this study indicate that both extracellular ethanol and carbon dioxide do appear to inhibit yeast performance and affect membrane fatty acid composition of the cells by inhibiting the synthesis of the respective fatty acid. This affect has a significant bearing on the general metabolism of the yeast cell.
APA, Harvard, Vancouver, ISO, and other styles
34

Loftus, John. "On the development of control systems technology for fermentation processes." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/on-the-development-of-control-systems-technology-for-fermentation-processes(61955790-a48b-4703-8942-bfe47a38a6c2).html.

Full text
Abstract:
Fermentation processes play an integral role in the manufacture of pharmaceutical products. The Quality by Design initiative, combined with Process Analytical Technologies, aims to facilitate the consistent production of high quality products in the most efficient and economical way. The ability to estimate and control product quality from these processes is essential in achieving this aim. Large historical datasets are commonplace in the pharmaceutical industry and multivariate methods based on PCA and PLS have been successfully used in a wide range of applications to extract useful information from such datasets. This thesis has focused on the development and application of novel multivariate methods to the estimation and control of product quality from a number of processes. The document is divided into four main categories. Firstly, the related literature and inherent mathematical techniques are summarised. Following this, the three main technical areas of work are presented. The first of these relates to the development of a novel method for estimating the quality of products from a proprietary process using PCA. The ability to estimate product quality is useful for identifying production steps that are potentially problematic and also increases process efficiency by ensuring that any defective products are detected before they undergo any further processing. The proposed method is simple and robust and has been applied to two separate case studies, the results of which demonstrate the efficacy of the technique. The second area of work concentrates on the development of a novel method of identifying the operational phases of batch fermentation processes and is based on PCA and associated statistics. Knowledge of the operational phases of a process can be beneficial from a monitoring and control perspective and allows a process to be divided into phases that can be approximated by a linear model. The devised methodology is applied to two separate fermentation processes and results show the capability of the proposed method. The third area of work focuses on undertaking a performance evaluation of two multivariate algorithms, PLS and EPLS, in controlling the end-point product yield of fermentation processes. Control of end-point product quality is of crucial importance in many manufacturing industries, such as the pharmaceutical industry. Developing a controller based on historical and identification process data is attractive due to the simplicity of modelling and the increasing availability of process data. The methodology is applied to two case studies and performance evaluated. From both a prediction and control perspective, it is seen that EPLS outperforms PLS, which is important if modelling data is limited.
APA, Harvard, Vancouver, ISO, and other styles
35

Boudler, Sabrina. "Stress markers as indicators of fermentative ability of a Saccharomyces cerevisiae brewery strain." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/16598.

Full text
Abstract:
Thesis (MSc)--University of Stellenbosch, 2005.
ENGLISH ABSTRACT: In the brewing industry yeast cells are re-used in successive fermentations. Consequently, the state of the cells at the end of each successive fermentation could impact on the quality of the subsequent fermentations. The use of markers to evaluate the fermentative ability of yeast to resist stress enables brewers to select populations of yeast for brewing. Yeasts are typically exposed to osmotic-, ethanol- and cold-stress during the high-gravity brewing process. In this study the vitality of the yeast cells was monitored during and after each successive high-gravity brewing fermentation. This was done by measuring the cell metabolites, which included glycerol, trehalose and glycogen. Others markers that were evaluated for yeast viability were the number of budding scars, the levels of activity of the enzymes neutral trehalase and esterase and the expression level of the heat shock protein Hsp12p. Coupled to these evaluations, the growth of the yeast and the utilisation of the sugars glucose, fructose, maltose and maltotriose were monitored during the fermentations. The experiments were conducted in 2-litre E.B.C. tubes at either 14 oC or at 18oC using standard techniques. Comparable growth patterns were obtained for different re-pitching fermentations, with fermentation 1 at 18ºC and 5 and 6 at 14°C being the most active fermentations. The higher temperature encouraged more rapid growth and a greater numbers of cells. The wort attenuation was more rapid at 18°C than at 14°C. Glucose and fructose in wort were utilised prior to maltose and maltotriose. At 18°C the yeast consumed the sugars faster, with mean utilisation values of 97.3% glucose, 100% fructose, 59.9% maltose and 65.6% maltotriose. At the lower temperature of 14°C high concentrations of residual sugars remained at the end of the fermentation. All re-pitching fermentations revealed lower viabilities at 18°C in comparison to the 14°C fermentations. Simultaneously, a number of other markers were evaluated. The intracellular trehalose concentration per cell varied considerably with each fermentation. Trehalose levels at 18°C gradually increased in concentration from 48h until the end of the stationary phase. Much lower trehalose concentrations were observed in fermentations conducted at 14°C. Higher and more consistent glycerol concentrations were found in fermentations at 14°C with mean concentrations of 12 mg/g dry weight at pitching. The expression of the heat shock protein Hsp12p level increased during the fermentation but no sharp increase was detected in any particular fermentation. No increase in yeast budding scar number was observed during re-pitching fermentations. Neutral trehalase and esterase activities in fermentations at 18°C were especially high at pitching. Neutral trehalase activities at 14°C were all generally lower than in the case of fermentations at 18°C. The fermentation ability of flocculated yeast in slurry and yeast suspended in beer was investigated after exposure to various stresses. The aged yeast present in the slurry was generally found to be more resistant to stress, in particularly to osmotic stress, throughout the serial re-pitching process. The fermentation rates of both yeast types were especially sensitive to prior exposure to ethanol stress.
AFRIKAANSE OPSOMMING: In die broubedryf word gisselle herhaaldelik gebruik vir agtereenvolgende fermentasies. Derhalwe kan die toestand van die gisselle teen die einde van elke agtereenvolgende fermentasie ‘n invloed hê op die kwaliteit van die daaropvolgende fermentasies. Deur gebruik te maak van merkers om die fermentasievermoë van gis om stres te weerstaan te evalueer, stel dit bierbrouers in staat om gispopulasies te selekteer. Gedurende die hoëdigtheid brouproses word giste tipies aan osmotiese-, etanol- en koue-stres blootgestel. In hierdie studie, gedurende hoë-digtheid fermentasies, is die lewensvatbaarheid van die gisselle gedurende en na elke agtereenvolgende fermentasie gemonitor deur die volgende selmetaboliete te bepaal: gliserol, trehalose en glikogeen. Bykomende merkers vir gis lewensvatbaarheidsbepalings was: die aantal botselletsels, die vlakke van aktiwiteit van die neutrale trehalose en esterase ensieme, en die uitdrukkingsvlak van die hitteskokprotein Hsp12p. As aanvullende evaluasies is die groei van die gis en die gebruik van die suikers glukose, fruktose, maltose en maltotriose gedurende fermentasies gemonitor:. Die proewe is in 2-liter E.B.C. buise uitgevoer, by ‘n temperatuur van 14oC of 18oC, deur van standaard tegnieke gebruik te maak. Die groeipatrone van die verskillende herhaaldelike-inokulasie gistings was ongeveer dieselfde. Fermentasie 1 by 18ºC en fermentasies 5 en 6 by 14°C was die mees aktiewe fermentasies. Die hoër temperatuur het vinniger groei en ‘n groter aantal selle begunstig. Die wortattenuasie was vinniger by 18°C as by 14°C. Glukose en fruktose in mout is voor die maltose and maltotriose opgebruik. By 18°C het die gis die suikers vinniger opgebruik. Gemiddelde gebruikswaardes vir die sewe reeksgewyse fermentasies was die volgende: 97.3% glukose, 100% fruktose, 59.9% maltose en 65.6% maltotriose. Teen die einde van fermentasie by 14°C was daar hoë konsentrasies van die oorblywende suikers, hoofsaaklik na fermentasie 1. Alle herhaaldelike inokulasie fermentasies het lae lewensvatbaarheid by 18°C in vergelyking met 14°C fermentasies getoon. Ander merkers is ook gelyktydig gebruik. In die verskillende fermentasies was daar ‘n groot verskil in die intrasellulêre trehalose konsentrasie per sel. Trehalose konsentrasies by 18°C het geleidelik toegeneem, vanaf 48 uur tot aan die einde van die stationêre fase. Baie laer trehalose konsentrasies is gemeet vir fermentasies by 14°C. In fermentasies by 14°C was die gliserolkonsentrasies hoër en meer konstant. Gemiddelde konsentrasies was 12mg/g 14°droë gewig by inokulasie. Die uitdrukking van die hitteskokproteien Hsp12p vlak het gedurende fermentasie toegeneem, maar daar was geen skerp toename vir die afsonderlike fermentasies nie. Die bepaling van die aantal botselletsels per sel het daarop gewys dat die gemiddelde aantal nie toegeneem het met die veroudering van die gis gedurende reeksgewyse herhaaldelike inokulasie nie. Neutrale trehalase aktiwiteite in fermentasies by 18°C was besonders hoog, veral by inokulasie. Die neutrale trehalase aktiwiteite in die fermentasies by 14°C was in die algemeen laer as die by 18°C. Die fermentasievermoë van die geflokkuleerde gis in die sediment en gesuspendeerde gis in die bier is ondersoek na blootstelling aan verskeie tipes stres. Die verouderde gis teenwoordig in die sediment was in die algemeen meer bestand teen stres, veral aan osmotiese stres, dwarsdeur die reeksgewyse herhaaldelike inokulasie proses. Etanolstres het die gistingstempo van beide giste dieselfde geaffekteer.
APA, Harvard, Vancouver, ISO, and other styles
36

Fundira, Margaret. "Optimization of fermentation processes for the production of indigenous fruit wines (Marula)." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52390.

Full text
Abstract:
Thesis (MSc)--University of Stellenbosch, 2001.
ENGLISH ABSTRACT: The importance of indigenous fruit wines is not well researched and documented. There is a need to develop and exploit these valuable food resources through improved production practices, storage, preservation and utilization technologies. The maruia fruit is beneficial in many ways, it can be used for making juice, jam, beer or can be eaten as a whole fruit. The highly nutritive nature of the fruit, its distinctive tropical flavor, its wild occurrence and demand by the local and international communities for the by-products of the fruit necessitated efforts to optimize the technological processes for the production of the possible by-products. This study focuses on the fermentation technology of the maruia fruit. The effect of enzymes prior to the fermentation process and post-fermentation was evaluated. For pre-fermentation processes we focused on the ability of commercial enzymes to increase juice yield, improve the clarification and filterability. For pre- and post-fermentation applications, aroma release was considered. The results indicated a significant increase in the yield depending on the enzyme used. An increase of at least 2% was recorded and a maximum of 12% yield increase was observed. The enzymes also had a phenomenal effect on the release of bound monoterpenes and hence enhancing the flavor of the juice. The panel of judges confirmed the results from the gas chromatography analyses by noting an increase in flavor intensity in the enzyme treated juice. The possibility of selecting a yeast strain that performs best during the fermentation of maruia pulp was also looked at. This study aimed at selecting a strain that produces wine and distillate with the typical maruia flavor complex. We showed the effect of the different yeast strains, in the wines and distillates, on the principal volatile compounds. We then correlated the performance of the different strains as perceived by the panel to the various volatile compounds. The effect of fermentation temperature on the performance of the different yeast strains was also considered. Fermenting the maruia pulp at different temperatures resulted in the production of wines and distillates with different volatile profiles for the different yeast strains. The wines and distillates fermented at a low temperature of 15°C were preferred to the wines and distillates fermented at 30°C. However, not all strains performed well at 15°C, strains like NT116 performed better at 30°C. The different commercial strains produced wines and distillates with significantly different flavor profiles. These differences in the flavor profiles were reflected in the sensory evaluation where, depending on the interaction of the volatile compounds some wines and distillates were preferred to others. The effect of the different commercial enzymes and yeast strains should thereof be further evaluated and optimized on a larger scale. This would greatly help prevent variation in quality of the fermented by-products of the maruia fruit.
AFRIKAANSE OPSOMMING: Die belang van inheemse vrugtewyne is nie goed nagevors en gedokumenteer nie. Daar is 'n behoefte om hierdie waardevolle voedselbronne te ontwikkel en te benut, deur verbeterde produksiepraktyke, storing, preservering en benuttingstegnologieë. Die maroelavrug is veelsydig op baie wyses, deurdat dit gebruik word vir die maak van sap, konfyt, bier, of as heel vrug geëet kan word. Die vrug is hoog in voedingswaarde, het In kenmerkende tropiese geur, kom wild voor, en is in aanvraag by plaaslike en internasionale gemeenskappe vir die by-produkte van die vrug. Dit maak dit essensieel om die tegnologiese prosesse vir die produksie van hierdie moontlike by-produkte te optimiseer. Hierdie studie fokus op die fermentasie-tegnologie van die maroelavrug. Die effek van ensieme voor en na die fermentasie-proses is geëvalueer. Vir prosesse wat voor fermentasie plaasvind, het ons gefokus op die vermoë van kommersiële ensieme om sapopbrengs te verhoog, asook om verheldering en filtrering te verbeter. Vir beide voor- en na-fermentasie toepassings is die vrystelling van aroma gemonitor. Die resultate dui op 'n betekenisvolle verhoging in die sapopbrengs, afhangende van die ensiem wat gebruik is. 'n Verhoging van ten minste 2% is opgeteken, en 'n maksimum van 12% opbrengsverhoging is waargeneem. Die ensieme het ook 'n geweldige effek op die vrystelling van gebonde monoterpene gehad, en dus die verhoging in die geur van die sap. Die proepaneel het die resultate bevestig van die gaschromatografie-analises, deur 'n verhoging in die geurintensiteit in die ensiembehandelde sap te bemerk. Daar is ook gekyk na die moontlikheid om 'n gisras te selekteer wat die beste presteer tydens die fermentasie van maroela-pulp. Hierdie studie het die doelstelling gehad om In gisras te selekteer wat wyn en distillaat produseer met In tipiese maroelageurkompleks. Ons het die effek van verskillende gisrasse aangedui in die wyne en distillate, op grond van van vlugtige komponente. Ons het dan die prestasie van die verskillende rasse, soos waargeneem deur die paneel, gekorrelleer met die verskeie vlugtige komponente. Die effek van fermentasie-temperatuur op die werkverrigting van die verskillende gisrasse is ook in ag geneem. Fermentasie van die maroela-pulp by verskillende temperature het gelei tot die produksie van wyne en distillate met verskillende vlugtige profiele vir die verskillende gisrasse. Die wyne en distillate wat by In laer temperatuur van 15°C gefermenteer is, is verkies bo die wyne en distillate wat by 30°C gefermenteer is. Alle rasse het egter nie baie goed presteer by 15°C nie, soos byvoorbeeld NT116 wat beter presteer het by 30°C. Die verskillende kommersiële rasse het wyne en distillate geproduseer met betekenisvol verskillende geurprofiele. Hierdie verskille in geurprofiele is gereflekteer in die sensoriese evaluering waar, afhangende van die interaksie van die vlugtige komponente, sommige wyne en distillate bo ander verkies is. Die effek van die verskillende kommersiële ensieme en gisrasse moet verkieslik verder op groter skaal geëvalueer en geoptimiseer word. Dit sal veral help om variasie in kwaliteit van die gefermenteerde by-produkte van die maroelavrug te voorkom.
APA, Harvard, Vancouver, ISO, and other styles
37

Zhao, Renyong. "Impact of sorghum proteins on ethanol fermentation and investigation of novel methods to evaluate fermentation quality." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wiryawan, I. Komang Gede. "Microbial control of lactic acidosis in grain-fed sheep." Title page, contents and summary only, 1994. http://web4.library.adelaide.edu.au/theses/09PH/09phw799.pdf.

Full text
Abstract:
Bibliography: leaves 122-138. Investigates the use of microbial inoculants to prevent the onset of acidosis in acutely grain fed animals; and, the most effective combination of virginiamycin and lactic acid utilising bacteria (selenomonas ruminantium subsp. lactilytica and Megasphaera elsdenii) in controlling lactic acid accumulations in vitro.
APA, Harvard, Vancouver, ISO, and other styles
39

Kateu, Kepher Kuchana, of Western Sydney Hawkesbury University, Faculty of Science and Technology, and Centre for Advanced Food Research. "A study of traditional production of Ugandan fermented cereal beverage, Obushera." THESIS_FST_CAFR_Kateu_K.xml, 1998. http://handle.uws.edu.au:8081/1959.7/634.

Full text
Abstract:
The study presented here was to investigate the traditional production of the Ugandan fermented cereal beverage, Obushera. The effects of germination and malting of sorghum grains under different steeping treatment were first investigated. The traditional preparation of Obushera beverage was carried out and course of fermentation monitored. The viscosity of Obushera was very low throughout the fermentation process. The microflora responsible for the fermentation of Obushera were identified. After considerable research and conduction of tests were carried out, it was found that there was no detectable quantity of alcohol in Obushera. It was also confirmed that that there were no strains of alcohol producing yeasts, such as Saccharomyces sp. found in the Obushera.
Master of Science (Hons) (Food Science)
APA, Harvard, Vancouver, ISO, and other styles
40

Devanthi, Putu Virgina Partha. "Microbial encapsulation for enhancing soy sauce aroma development during moromi fermentation." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8835/.

Full text
Abstract:
Moromi fermentation is an essential part of soy sauce production. This thesis aimed to characterize and control the growth and interaction of two predominant microorganisms, Tetragenococcus halophilus and Zygosaccharomyces rouxii for enhancing the aroma development during moromi fermentation. Antagonism was observed between T. halophilus and Z. rouxii, regardless of the inoculation sequence. However, sequential inoculation of Z. rouxii resulted in more complex aroma profile than simultaneous inoculation. To eliminate antagonism, chitosan-coated alginate and water-oil-water (W1/O/W2) double emulsions (DEs) were tested for their ability to encapsulate Z. rouxii and stability in high NaCl solutions. Alginate was unstable in high NaCl solutions and chitosan exhibited undesirable antimicrobial activity towards Z. rouxii. DEs minimized the antagonism between T. halophilus and Z. rouxii, by segregation in the external W2 and internal W1 phase, respectively. Physicochemical changes in the fermentation medium indicated that DEs affected microbial growth and cell physiology, contributing to the elimination of antagonism. The destabilization of DEs over 30-day storage depended on glucose concentration in W2, which indicated a possibility of sustained release mechanism of Z. rouxii into the moromi. Furthermore, the application of DEs was tested in a moromi model, formulated with reduced NaCl and/or substitution with KCl. DEs resulted in moromi with similar microbiological and aroma profile to that of high-salt. Overall, this thesis demonstrates the potential of DE for delivering mixed cultures in moromi fermentation, which could be applicable in any fermentation process where multiple species are required to act sequentially.
APA, Harvard, Vancouver, ISO, and other styles
41

Grant, Irene Ruth. "The microbiology of irradiated pork." Thesis, Queen's University Belfast, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Robinson, Tobin. "The microbiology of food microenvironments." Thesis, Cardiff University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hickman, Alan Douglas. "Agitation, mixing and mass transfer in simulated high viscosity fermentation broths." Thesis, University of Birmingham, 1985. http://etheses.bham.ac.uk//id/eprint/863/.

Full text
Abstract:
Gas-liquid mass transfer, agitator power consumption, rheology, gas-liquid mixing and gas hold-up have been studied in an agitated, sparged vessel of diameter, T = 0.3 m, with a liquid capacity of 0.02 m\(^3\), unaerated liquid height = 0.3 m. The solutions of sodium carboxymethylcellulose used exhibit moderate viscoelasticity and shear thinning behaviour, obeying the power law over the range of shear rates studied. The gas-liquid mass transfer was studied using a steady state technique. This involves monitoring the gas and liquid phase oxygen concentrations when a microorganism (yeast) is cultured in the solutions of interest. Agitator power consumption was measured using strain gauges mounted on the impeller shaft. Various agitator geometries were used. These were: Rushton turbines ( D = T/3 and D = T/2 ), used singly and in pairs; Intermig impellers ( D = 0.58T ), used as a pair; and a 45° pitched blade turbine ( D = T/2 ), used in combination with a Rushton turbine. Gas hold-up and gas-liquid flow patterns were visually observed. In addition, the state of the culture variables, (oxygen uptake rate and carbon dioxide production rate), were used to provide a respiratory quotient, the value of which can be linked to the degree of gas-liquid mixing in the vessel. Measurement of point values of the liquid phase oxygen concentration is also used to indicate the degree of liquid mixing attained. The volumetric mass transfer coefficient, k\(_L\)a, was found to be dependent on the conditions in which the yeast was cultivated, as well as being a function of time. These variations were associated with variations in solution composition seen over the course of each experiment. Steps were taken to ensure that further k\(_L\)a values were measured under identical conditions of the culture variables, in order to determine the effect on k\(_L\)a of varying viscosity, agitator speed and type and air flow rate. Increasing solution viscosity results in poorer gas-liquid mixing and a reduction in k\(_L\)a, as has been found by earlier workers. Thus high agitator speeds and power inputs are required to maintain adequate mass transfer rates. In the more viscous solutions used, large diameter dual impeller systems were required, to mix the gas and liquid phases. Of these a pair of Rushton turbines ( D = T/2 ) gave the highest k\(_L\)a values at a given power input. In these solutions the dependence of k\(_L\)a on the gassing rate, which is seen in intermediate and low viscosity solutions, virtually disappears, with k\(_L\)a highly dependent on the power input and the apparent viscosity. At intermediate viscosities a smaller pair of Rushton turbines showed the most efficient mass transfer characteristics, here k\(_L\)a is dependent on the power input and the gassing rate, but independent of viscosity. This is linked to the flow regime force in the vessel, which at intermediate viscosities lies in the transition region between the laminar and turbulent flow regimes. Variations in gas hold-up, rising then falling with increasing impeller speed, were linked to variations in the gassed power number, falling then rising with increasing impeller speed. These effects are considered to be due to variations in the size of the gas filled cavities behind the impeller blades.
APA, Harvard, Vancouver, ISO, and other styles
44

Sadie, Christa J. (Christiena Johanna). "Expression and characterization of an intracellular cellobiose phosphorylase in Saccharomyces cerevisiae." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/19862.

Full text
Abstract:
Thesis (MSc)--University of Stellenbosch, 2007.
ENGLISH ABSTRACT: Cellulose, a glucose polymer, is considered the most abundant fermentable polymer on earth. Agricultural waste is rich in cellulose and exploiting these renewable sources as a substrate for ethanol production can assist in producing enough bioethanol as a cost-effective replacement for currently used decreasing fossil fuels. Saccharomyces cerevisiae is an excellent fermentative organism of hexoses; however the inability of the yeast to utilize cellulose as a carbon source is a major obstruction to overcome for its use in the production of bio-ethanol. Cellobiose, the major-end product of cellulose hydrolysis, is hydrolyzed by -glucosidase or cellobiose phosphorylase, the latter having a possible metabolic advantage over -glucosidase. Recently, it has been showed that S. cerevisiae is able to transport cellobiose. The construction of a cellulolytic yeast that can transport cellobiose has the advantage that end-product inhibition of the extracellular cellulases by glucose and cellobiose is relieved. Furthermore, the extracellular glucose concentration remains low and the possibility of contamination is decreased. In this study the cellobiose phosphorylase gene, cepA, of Clostridium stercorarium was cloned and expressed under transcriptional control of the constitutive PGK1 promoter and terminator of S. cerevisiae on a multicopy episomal plasmid. The enzyme was expressed intracellulary and thus required the transport of cellobiose into the cell. The fur1 gene was disrupted for growth of the recombinant strain on complex media without the loss of the plasmid. The recombinant strain, S. cerevisiae[yCEPA], was able to sustain aerobic growth on cellobiose as sole carbon source at 30°C with Vmax = 0.07 h-1 and yielded 0.05 g biomass per gram cellobiose consumed. The recombinant enzyme had activity optima of 60°C and pH 6-7. Using Michaelis-Menten kinetics, the Km values for the colorimetric substrate p-nitrophenyl-b-D-glucopyranoside (pNPG) and cellobiose was estimated to be 1.69 and 92.85 mM respectively. Enzyme activity assays revealed that the recombinant protein was localized in the membrane fraction and no activity was present in the intracellular fraction. Due to an unfavourable codon bias in S. cerevisiae, CepA activity was very low. Permeabilized S. cerevisiae[yCEPA] cells had much higher CepA activity than whole cells indicating that the transport of cellobiose was inadequate even after one year of selection. Low activity and insufficient cellobiose transport led to an inadequate glucose supply for the yeast resulting in low biomass formation. Cellobiose utilization increased when combined with other sugars (glucose, galactose, raffinose, maltose), as compared to using cellobiose alone. This is possibly due to more ATP being available for the cell for cellobiose transport. However, no cellobiose was utilized when grown with fructose indicating catabolite repression by this sugar. To our knowledge this is the first report of a heterologously expressed cellobiose phosphorylase in yeast that conferred growth on cellobiose. Furthermore, this report also reaffirms previous data that cellobiose can be utilized intracellularly in S. cerevisiae.
AFRIKAANSE OPSOMMING: Sellulose, ‘n homopolimeer van glukose eenhede, word beskou as die volopste suiker polimeer op aarde. Landbou afval produkte het ‘n hoë sellulose inhoud en benutting van diè substraat vir bio-etanol produksie kan dien as ‘n koste-effektiewe aanvulling en/of vervanging van dalende fossielbrandstof wat tans gebruik word. Die gis, Saccharomyces cerevisiae, is ‘n uitmuntende organisme vir die fermentasie van heksose suikers, maar die onvermoë van die gis om sellulose as koolstofbron te benut is ‘n groot struikelblok in sy gebruik vir die produksie van bio-etanol. Sellobiose, die hoof eindproduk van ensiematiese hidrolise van sellulose, word afgebreek deur -glukosidase of sellobiose fosforilase. Laasgenoemde het ‘n moontlike metaboliese voordeel bo die gebruik van -glukosidase vir sellobiose hidrolise. Daar was onlangs gevind dat S. cerevisiae in staat is om sellobiose op te neem. Die konstruksie van ‘n sellulolitiese gis wat sellobiose intrasellulêr kan benut, het die voordeel dat eindproduk inhibisie van die ekstrasellulêre sellulases deur sellobiose en glukose verlig word. Verder, wanneer die omsetting van glukose vanaf sellobiose intrasellulêr plaasvind, word die ekstrasellulêre glukose konsentrasie laag gehou en die moontlikheid van kontaminasie beperk. In hierdie studie was die sellobiose fosforilase geen, cepA, van Clostridium stercorarium gekloneer en uitgedruk onder transkripsionele beheer van die konstitutiewe PGK1 promoter en termineerder van S. cerevisiae op ‘n multikopie episomale plasmied. Die ensiem is as ‘n intrasellulêre proteïen uitgedruk en het dus die opneem van die sellobiose molekuul benodig. Die disrupsie van die fur1 geen het toegelaat dat die rekombinante ras op komplekse media kon groei sonder die verlies van die plasmied. Die rekombinante ras, S. cerevisiae[yCEPA], het aërobiese groei by 30°C op sellobiose as enigste koolstofbron onderhou met mmax = 0.07 h-1 en ‘n opbrengs van 0.05 gram selle droë gewig per gram sellobiose. Die rekombinante ensiem het optima van 60°C en pH 6-7 gehad. Die K m waardes vir die kolorimetriese substraat pNPG en sellobiose was 1.69 en 92.85 mM onderskeidelik. Ondersoek van die ensiem aktiwiteit het getoon dat die rekombinante proteïen gelokaliseer was in die membraan fraksie en geen aktiwiteit was teenwoordig in die intrasellulêre fraksie nie. CepA aktiwiteit was laag as gevolg van ‘n lae kodon voorkeur in S. cerevisiae. Verder het geperforeerde S. cerevisiae[yCEPA] selle aansienlik beter CepA aktiwiteit getoon as intakte selle. Hierdie aanduiding van onvoldoende transport van sellobiose na binne in die sel tesame met die lae aktiwiteit van die CepA ensiem het gelei tot onvoldoende glukose voorraad vir die sel en min biomassa vorming. Sellobiose verbruik het toegeneem wanneer dit tesame met ander suikers (glukose, galaktose, raffinose, maltose) gemeng was, heelwaarskynlik deur die vorming van ekstra ATP’s vir die sel wat ‘n toename in sellobiose transport teweeg gebring het. Fruktose het egter kataboliet onderdrukking veroorsaak en sellobiose was nie benut nie. Sover ons kennis strek, is hierdie die eerste verslag van ‘n heteroloë sellobiose fosforilase wat in S. cerevisiae uitgedruk is en groei op sellobiose toegelaat het. Verder, bewys die studie weereens dat S. cerevisiae wel sellobiose kan opneem.
APA, Harvard, Vancouver, ISO, and other styles
45

Moscoviz, Roman. "Contrôle d'un bio-procédé par voie électrochimique : électro-fermentation du glycérol." Thesis, Montpellier, SupAgro, 2017. http://www.theses.fr/2017NSAM0005/document.

Full text
Abstract:
L’électro-fermentation est un nouveau levier permettant le contrôle des procédés fermentaires à travers l'utilisation d'électrodes au potentiel contrôlé. Parmi de nombreux substrats fermentaires, le glycérol est une source de carbone largement utilisée issue de l’industrie du biodiesel, et permettant la production de molécules à valeur ajoutée comme le 1,3-propanediol. L'objectif de cette thèse est d'évaluer le potentiel de l’électro-fermentation du glycérol comme moyen de mieux maîtriser les spectres de produits fermentaires dans les procédés mettant en œuvre des cultures mixtes.La thèse étudie dans un premier temps la fermentation du glycérol en cultures mixtes afin de caractériser les principales voies métaboliques d'intérêt en réponse au paramètre environnemental le plus influent pour la fermentation du glycérol (pH). L'effet de l'introduction d'électrodes colonisées par des bactéries électro-actives, capables d'échanger des électrons avec l'électrode et d’autres microorganismes, est ensuite étudié. Ce travail est réalisé en cultures mixtes dans l'objectif d'améliorer le procédé de fermentation en termes de spécificité des métabolites formés et de leur rendement de production. Enfin, un système modèle composé d’une souche fermentaire et une souche électro-active a ensuite été conçu afin de mieux comprendre les mécanismes mis en jeu lors de l’électro-fermentation. Cette thèse ouvre de nouvelles possibilités quant à la régulation des balances redox lors de fermentation. L’électro-fermentation ainsi que l’utilisation de bactéries électro-actives ont le potentiel de devenir de puissants outils permettant d’améliorer les rendements et spécificité de production du 1,3-propanediol et d’autres molécules à valeur ajoutée
Electro-fermentation is a novel tool allowing to control classic fermentation through the use of polarized electrodes. Among all possible fermentation substrates, glycerol is a widely used by-product from the biodiesel industry that can be converted in value-added chemicals such as 1,3-propanediol. This PhD thesis aims at evaluating the potential of glycerol electro-fermentation for the improvement of product specificity in mixed-culture fermentation.As a first step, classic fermentation of glycerol by mixed bacterial consortia was studied in order to characterize the main metabolic pathways according to the main influencing environmental parameter (pH). Then, the addition in fermentation broth of electrodes and electro-active bacteria, able to exchange electrons either with an electrode or other microorganisms has been investigated. This work was carried out in mixed-culture glycerol fermentation in order to optimize products selectivity and yields towards 1,3-propanediol. Finally, a model co-culture constituted of one fermentative and one electro-active species was used to elucidate part of the mechanisms underlying electro-fermentation. This thesis opens a whole new range of possibility regarding the regulation of redox balances in fermentation. Hence electro-fermentation and the use of electro-active bacteria could become efficient tools for improving specificity and yield of 1,3-propanediol and other value-added products in fermentation
APA, Harvard, Vancouver, ISO, and other styles
46

Affleck, Richard Peter. "Recovery of Xylitol from Fermentation of Model Hemicellulose Hydrolysates Using Membrane Technology." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/30873.

Full text
Abstract:
Xylitol can be produced from xylose or hemicellulose hydrolysates by either chemical reduction or microbial fermentation. Current technology for commercial production is based on chemical reduction of xylose or hemicellulose, and xylitol is separated and purified by chromatographic methods. The resultant product is very expensive because of the extensive purification procedures. Microbial production of xylitol is being researched as an alternative method for xylitol production. Apart from the chromatographic separation method and activated carbon treatment, no other separation method has been proposed for the separation of xylitol from the fermentation broth. Membrane separation was proposed as an alternative method for the recovery of xylitol from the fermentation broth because it has the potential for energy savings and higher purity. A membrane separation unit was designed, constructed, tested, and successfully used to separate xylitol from the fermentation broth. Eleven membranes were investigated for xylitol separation from the fermentation broth. A 10,000 nominal molecular weight cutoff (MWCO) polysulfone membrane was found to be the most effective for the separation and recovery of xylitol. The membrane allowed 82.2 to 90.3% of xylitol in the fermentation broth to pass through while retaining 49.2 to 53.6% of the Lowryâ s method positive material (such as oligopeptides and peptides). Permeate from the 10,000 MWCO membrane was collected and crystallized. Crystals were analyzed by HPLC for xylitol and impurities and determined to have purity up to 90.3%.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
47

Yamada, Kathryn K. "INACTIVATION OF FOODBORNE PATHOGENS DURING CIDER FERMENTATION, IN A CIDER MODEL SYSTEM AND COMMERICAL CIDER." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2134.

Full text
Abstract:
Hard cider is an alcoholic drink made from fermented crushed fruit, typically apples. The popularity of this fermented alcoholic beverage has been on the rise within the last decade. Historically, hard cider has been deemed safe due to the presence of ethanol and the low pH. Although there is lack of scientific evidence to prove that hard cider will and can be safe from foodborne pathogens. Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes are three predominate foodborne bacterial pathogens of concern in the food and beverage industry. Escherichia coli O157:H7 in particular has been associated with fresh produce and more specifically apples, and apple products such as apple juice. The purpose of this study was to determine the bactericidal effects of pH, ethanol, and malic acid on Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes to evaluate the safety parameters for safe hard cider production and storage. The fate of foodborne pathogens in cider was determined during hard cider fermentation, in a cider model system, and in commercial cider. Escherichia coli O157:H7, Salmonella spp, and Listeria monocytogenes did not survive a 5-day fermentation period resulting in a > 7 log CFU/mL reduction of each pathogen with no significant change in pH. The final ABV of the cider at the end of the 5-day fermentation was 4.4%. In the cider model system, the lower the pH and higher the ABV the quicker die off was observed, at pH 2.8, 3.0, 3.2, and 3.4 with 7, 8, and 9% ethanol concentration there was a 6.6 log reduction in E. coli O157:H7 population after 1 day. By the 7-day incubation period, no pathogens were detected at all pH and ABV combinations except for at pH 3.6 and 3.8 with 4% ethanol having ≤0.6 log CFU/mL of the population surviving. Similar E. coli O157:H7 inactivation patterns were observed in the model system and in the commercial ciders. The six commercial ciders observed had varying pH, ABV (%), and malic acid concentrations but successfully resulted in a > 6 log CFU/mL reduction in population of E. coli O157:H7 within 4 days of incubation. The ciders with the highest ABV’s, 8.7 and 9.6% observed a > 6 log reduction by 1 day. It was observed that at some point in time pH plays a bigger role in the presence of less ethanol, but it is clear that ethanol and pH work synergistically to kill of pathogens present in cider fermentation, a cider model, and commercial cider.
APA, Harvard, Vancouver, ISO, and other styles
48

Panteloglou, Apostolos. "Malt induced premature yeast flocculation : its origins, detection and impacts upon fermentation." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13142/.

Full text
Abstract:
Premature yeast flocculation (PYF) is a sporadic problem encountered during industrial brewing fermentations. Current hypothesis states that factors, thought to arise from fungal infection of the barley in the field and/or the malt in the maltings cause yeast to flocculate prematurely and/or heavily before the depletion of the sugars in the wort. This results in poorly attenuated worts, with higher residual extract and lower ABV, flavor abnormalities (i.e. diacetyl, SO2), lower carbonation levels, disruption of process cycle times and potential issues with the re-use of the yeast in subsequent fermentations. Consequently, PYF generates significant financial and logistical problems both to the brewer and the maltster. In the current study a small-scale fermentation assay was developed and optimized to predict the PYF potential of malts, as well as to investigate the importance of yeast strain in the incidence and severity of the phenomenon. Furthermore, the impacts of the PYF factor(s) (i.e. arabinoxylans, antimicrobial peptides) on yeast fermentation performance and metabolite uptake were also studied, whilst the Biolog detection system was investigated as a potential rapid tool which to detect PYF. The results obtained suggested that our in-house assay can be successfully used to predict the PYF potential of malts 69 or 40 h post-pitching depending upon the yeast strain used. Whilst ale yeasts were not found susceptible to PYF, lager yeasts exhibited different degrees of susceptibility even to the same PYF factor(s). More specifically, the more flocculent lager yeast SMA was found to be more susceptible than the medium flocculent lager yeast W34/70. However, interestingly, the fermentation performance of a PYF+ wort could be significantly improved by using a non-flocculent and relatively insensitive to PYF lager yeast. It was also shown that worts with lower amount of glucose and maltose could be responsible for poor fermentation profiles and/or heavy PYF as well as elevated residual sugars and lower fermentability. The observation that linoleic acid (6 mg.l-1) exacerbated PYF (P = 0.047) and made its detection more rapid was found to be contrary to the “titration hypothesis” (Axcell et al., 2000) which hypothesized that the addition of fatty acids might “titrate” out antimicrobial peptides so that they can no longer bind to the yeast cells. High gravity fermentations with worts inducing PYF did not have a significant effect (P > 0.05) on yeast physiological characteristics or fermentation performance suggesting that the PYF+ sample used in this study was inducing PYF though the ‘bridging’ polysaccharide mechanism rather than through the antimicrobial peptides. The Biolog system can be used for the metabolic characterization of different flocculence lager yeasts incubated in different fermentation media, whilst wort composition had a significant effect in redox reduction reactions.
APA, Harvard, Vancouver, ISO, and other styles
49

Minier, Michel. "Fermentation acetonobutylique par couplage a des procedes membranaires et fermentation extractive." Toulouse 3, 1987. http://www.theses.fr/1987TOU30290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Koren, David W. "Production of fructose and ethanol by selective fermentation of glucose-fructose mixtures." Thesis, University of Ottawa (Canada), 1991. http://hdl.handle.net/10393/7944.

Full text
Abstract:
In this project the selective conversion of glucose to ethanol from glucose/fructose mixtures was investigated. The process was carried out using a mutant of Saccharomyces cerevisiae, batchwise, continuously with immobilized cells and semicontinuously. The kinetic behaviour of S. cerevisiae ATCC 36859 was studied using batch fermentation data. The growth of the yeast is inhibited equally by glucose and fructose, even though fructose is not consumed by the yeast. Fermentation models were formulated in this work. These models include terms which account for the inhibition of growth, glucose consumption and ethanol production by the carbohydrate and ethanol. The models predict that the growth rate of the yeast will be zero if the medium contains either 488 g/L total carbohydrates of 62 g/L ethanol. Batch tests were carried out with hydrolyzed Jerusalem artichoke juice and High Fructose Corn Syrup. An ethanol productivity of 21 g/Lh was attained in a batch process using an initial biomass concentration of 94 g/L. It was found though that this process suffered from the inhibitory effects of high total carbohydrate concentrations, therefore products containing high fructose concentrations were produced with lower ethanol productivities. In addition, reuse of the biomass resulted in a reduction of 40% in its activity. The cells were immobilized in calcium alginate beads and placed in a tubular reactor. In this form they were used for more than 1000 hours without a loss of activity. A syrup containing fructose as 99% of the reducing sugars was produced from synthetic as well as from food grade glucose/fructose mixtures. A maximum ethanol productivity of 13 g/Lh was attained. A product containing 76 g/L ethanol was also produced in this process. The productivity of the reactor was reduced as the total carbohydrate concentration was increased, therefore products with a high fructose concentration ($>$150 g/L) could not be formed without a significant drop in the productivity using the immobilized cells. The inhibitory effects of high total carbohydrate concentrations were reduced by using a fed batch process. In this scheme, 42 High Fructose Corn Syrup was used with and without added nutrients as the feed solution; sterilization of the syrup was not necessary due to its high solids concentration. The syrup was continuously fed to a bioreactor, the glucose was converted to ethanol while the fructose accumulated. A syrup containing 257 g/L fructose and 68 g/L ethanol was produced in this process. The product formed in the process was purified with activated carbon and ion-exchange resin. A clear and colourless fructose syrup that visibly resembled HFCS was produced. The ethanol in the product allowed for storage of the product for long periods of time before its further treatment. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography