Journal articles on the topic 'Microfluidic device'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microfluidic device.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chen, Luyao, Xin Guo, Xidi Sun, et al. "Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review." Micromachines 14, no. 3 (2023): 547. http://dx.doi.org/10.3390/mi14030547.
Full textCai, Jianchen, Jiaxi Jiang, Jinyun Jiang, et al. "Fabrication of Transparent and Flexible Digital Microfluidics Devices." Micromachines 13, no. 4 (2022): 498. http://dx.doi.org/10.3390/mi13040498.
Full textKong, David S., Todd A. Thorsen, Jonathan Babb, et al. "Open-source, community-driven microfluidics with Metafluidics." Nature Biotechnology 35, no. 6 (2017): 523–29. http://dx.doi.org/10.1038/nbt.3873.
Full textChen, Pin Chuan, and Zhi Ping Wang. "A Rapid and Low Cost Manufacturing for Polymeric Microfluidic Devices." Advanced Materials Research 579 (October 2012): 348–56. http://dx.doi.org/10.4028/www.scientific.net/amr.579.348.
Full textXu, Anlin, and Ping Li. "Microfluidic Device Control System Based on Segmented Temperature Sensor." Mobile Information Systems 2021 (May 18, 2021): 1–11. http://dx.doi.org/10.1155/2021/9930649.
Full textPrajitna, Stefanus H., Christian Harito, and Brian Yuliarto. "Cost-Effective Manufacturing of Microfluidics Through the Utilization of Direct Ink Writing." Emerging Science Journal 9, no. 1 (2025): 1–11. https://doi.org/10.28991/esj-2025-09-01-01.
Full textZhu, Zhiyuan, Fan Zeng, Zhihua Pu, and Jiyu Fan. "Conversion Electrode and Drive Capacitance for Connecting Microfluidic Devices and Triboelectric Nanogenerator." Electronics 12, no. 3 (2023): 522. http://dx.doi.org/10.3390/electronics12030522.
Full textMännel, Max J., Elif Baysak, and Julian Thiele. "Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography." Molecules 26, no. 9 (2021): 2817. http://dx.doi.org/10.3390/molecules26092817.
Full textBogseth, Amanda, Jian Zhou, and Ian Papautsky. "Evaluation of Performance and Tunability of a Co-Flow Inertial Microfluidic Device." Micromachines 11, no. 3 (2020): 287. http://dx.doi.org/10.3390/mi11030287.
Full textDuan, Kai, Mohamad Orabi, Alexus Warchock, et al. "Monolithically 3D-Printed Microfluidics with Embedded µTesla Pump." Micromachines 14, no. 2 (2023): 237. http://dx.doi.org/10.3390/mi14020237.
Full textTrinh, Kieu The Loan, Duc Anh Thai, and Nae Yoon Lee. "Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics." Micromachines 13, no. 9 (2022): 1503. http://dx.doi.org/10.3390/mi13091503.
Full textBallacchino, Giulia, Edward Weaver, Essyrose Mathew, et al. "Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations." International Journal of Molecular Sciences 22, no. 15 (2021): 8064. http://dx.doi.org/10.3390/ijms22158064.
Full textWang, Xu, Jingtian Zheng, Maheshwar Adiraj Iyer, Adam Henry Szmelter, David T. Eddington, and Steve Seung-Young Lee. "Spatially selective cell treatment and collection for integrative drug testing using hydrodynamic flow focusing and shifting." PLOS ONE 18, no. 1 (2023): e0279102. http://dx.doi.org/10.1371/journal.pone.0279102.
Full textArebalo, Raymond J., Augustin J. Sanchez, and Nathan Tompkins. "Same Day Microfluidics: From Design to Device in Under Three Hours." Nanomanufacturing 5, no. 3 (2025): 9. https://doi.org/10.3390/nanomanufacturing5030009.
Full textGiri, Kiran, and Chia-Wen Tsao. "Recent Advances in Thermoplastic Microfluidic Bonding." Micromachines 13, no. 3 (2022): 486. http://dx.doi.org/10.3390/mi13030486.
Full textKurniawan, Yehezkiel Steven, Arif Cahyo Imawan, Sathuluri Ramachandra Rao, et al. "Microfluidics Era in Chemistry Field: A Review." Journal of the Indonesian Chemical Society 2, no. 1 (2019): 7. http://dx.doi.org/10.34311/jics.2019.02.1.7.
Full textKatherine, S. Elvira, and Fabrice Gielen. "Materials and methods for droplet microfluidic device fabrication." Lab on a Chip, no. 22 (October 2, 2024): 859. https://doi.org/10.1039/d1lc00836f.
Full textYou, Jae Bem, Byungjin Lee, Yunho Choi, et al. "Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device." BioTechniques 69, no. 1 (2020): 46–51. http://dx.doi.org/10.2144/btn-2020-0025.
Full textKim, Hojin, Alexander Zhbanov, and Sung Yang. "Microfluidic Systems for Blood and Blood Cell Characterization." Biosensors 13, no. 1 (2022): 13. http://dx.doi.org/10.3390/bios13010013.
Full textTang, Xiaoqing, Qiang Huang, Tatsuo Arai, and Xiaoming Liu. "Cell pairing for biological analysis in microfluidic devices." Biomicrofluidics 16, no. 6 (2022): 061501. http://dx.doi.org/10.1063/5.0095828.
Full textWu, Shigang, Xin Wang, Zongwen Li, Shijie Zhang, and Fei Xing. "Recent Advances in the Fabrication and Application of Graphene Microfluidic Sensors." Micromachines 11, no. 12 (2020): 1059. http://dx.doi.org/10.3390/mi11121059.
Full textTonooka, Taishi. "Microfluidic Device with an Integrated Freeze-Dried Cell-Free Protein Synthesis System for Small-Volume Biosensing." Micromachines 12, no. 1 (2020): 27. http://dx.doi.org/10.3390/mi12010027.
Full textNguyen, Duong Thanh, Van Thi Thanh Tran, Huy Trung Nguyen, Hong Thi Cao, Thai Quoc Vu, and Dung Quang Trinh. "Preparation of microfluidics device from PMMA for liposome synthesis." Vietnam Journal of Science and Technology 61, no. 1 (2023): 84–90. http://dx.doi.org/10.15625/2525-2518/16577.
Full textYuan, Rodger, Jaemyon Lee, Hao-Wei Su, et al. "Microfluidics in structured multimaterial fibers." Proceedings of the National Academy of Sciences 115, no. 46 (2018): E10830—E10838. http://dx.doi.org/10.1073/pnas.1809459115.
Full textAcosta-Cuevas, José M., Mario A. García-Ramírez, Gabriela Hinojosa-Ventura, Álvaro J. Martínez-Gómez, Víctor H. Pérez-Luna, and Orfil González-Reynoso. "Surface Roughness Analysis of Microchannels Featuring Microfluidic Devices Fabricated by Three Different Materials and Methods." Coatings 13, no. 10 (2023): 1676. http://dx.doi.org/10.3390/coatings13101676.
Full textMan, Jia, Luming Man, Chenchen Zhou, et al. "A Facile Single-Phase-Fluid-Driven Bubble Microfluidic Generator for Potential Detection of Viruses Suspended in Air." Biosensors 12, no. 5 (2022): 294. http://dx.doi.org/10.3390/bios12050294.
Full textKubicki, Wojciech, Aung Thiha, Tymon Janisz, et al. "A 3D printed microfluidic device for centrifugal droplet generation." Rapid Prototyping Journal 30, no. 11 (2024): 357–68. https://doi.org/10.1108/rpj-05-2024-0215.
Full textAkitsu, Takashiro. "Inversely Finding Peculiar Reaction Conditions toward Microfluidic Droplet Synthesis." Reactions 4, no. 4 (2023): 647–56. http://dx.doi.org/10.3390/reactions4040036.
Full textPeytavi, Régis, Frédéric R. Raymond, Dominic Gagné, et al. "Microfluidic Device for Rapid (<15 min) Automated Microarray Hybridization." Clinical Chemistry 51, no. 10 (2005): 1836–44. http://dx.doi.org/10.1373/clinchem.2005.052845.
Full textSaleheen, Amirus, Debalina Acharyya, Rebecca A. Prosser, and Christopher A. Baker. "A microfluidic bubble perfusion device for brain slice culture." Analytical Methods 13, no. 11 (2021): 1364–73. http://dx.doi.org/10.1039/d0ay02291h.
Full textShih, Steve C. C., Philip C. Gach, Jess Sustarich, et al. "A droplet-to-digital (D2D) microfluidic device for single cell assays." Lab on a Chip 15, no. 1 (2015): 225–36. http://dx.doi.org/10.1039/c4lc00794h.
Full textDeng, B., X. F. Li, D. Y. Chen, L. D. You, J. B. Wang, and J. Chen. "Parameter Screening in Microfluidics Based Hydrodynamic Single-Cell Trapping." Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/929163.
Full textLi, Qi, Xingchen Zhou, Qian Wang, Wenfang Liu, and Chuanpin Chen. "Microfluidics for COVID-19: From Current Work to Future Perspective." Biosensors 13, no. 2 (2023): 163. http://dx.doi.org/10.3390/bios13020163.
Full textOzcelik, Adem, Sinan Gucluer, and Tugce Keskin. "Continuous Flow Separation of Live and Dead Cells Using Gravity Sedimentation." Micromachines 14, no. 8 (2023): 1570. http://dx.doi.org/10.3390/mi14081570.
Full textZhang, Peiran, Hunter Bachman, Adem Ozcelik, and Tony Jun Huang. "Acoustic Microfluidics." Annual Review of Analytical Chemistry 13, no. 1 (2020): 17–43. http://dx.doi.org/10.1146/annurev-anchem-090919-102205.
Full textMeseguer, Fernando, Carla Giménez Rodríguez, Rocío Rivera Egea, Laura Carrión Sisternas, Jose A. Remohí, and Marcos Meseguer. "Can Microfluidics Improve Sperm Quality? A Prospective Functional Study." Biomedicines 12, no. 5 (2024): 1131. http://dx.doi.org/10.3390/biomedicines12051131.
Full textYip, Hon Ming, John C. S. Li, Kai Xie, et al. "Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method." Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/608184.
Full textNatu, Rucha, Luke Herbertson, Grazziela Sena, Kate Strachan, and Suvajyoti Guha. "A Systematic Analysis of Recent Technology Trends of Microfluidic Medical Devices in the United States." Micromachines 14, no. 7 (2023): 1293. http://dx.doi.org/10.3390/mi14071293.
Full textPerumal, Veeradasan, U. Hashim, and Tijjani Adam. "Mask Design and Simulation: Computer Aided Design for Lab-on-Chip Application." Advanced Materials Research 832 (November 2013): 84–88. http://dx.doi.org/10.4028/www.scientific.net/amr.832.84.
Full textMd Sahin Ali. "Machine Learning-Based Computational Framework for Microfluidic Device Design and Simulation." Journal of Information Systems Engineering and Management 10, no. 28s (2025): 100–116. https://doi.org/10.52783/jisem.v10i28s.4296.
Full textGoyal, Garima, Nick Elsbree, Michael Fero, Nathan J. Hillson, and Gregory Linshiz. "Repurposing a microfluidic formulation device for automated DNA construction." PLOS ONE 15, no. 11 (2020): e0242157. http://dx.doi.org/10.1371/journal.pone.0242157.
Full textEtxebarria-Elezgarai, Jaione, Maite Garcia-Hernando, Lourdes Basabe-Desmonts, and Fernando Benito-Lopez. "Precise Integration of Polymeric Sensing Functional Materials within 3D Printed Microfluidic Devices." Chemosensors 11, no. 4 (2023): 253. http://dx.doi.org/10.3390/chemosensors11040253.
Full textCatarino, Susana O., Raquel O. Rodrigues, Diana Pinho, João M. Miranda, Graça Minas, and Rui Lima. "Blood Cells Separation and Sorting Techniques of Passive Microfluidic Devices: From Fabrication to Applications." Micromachines 10, no. 9 (2019): 593. http://dx.doi.org/10.3390/mi10090593.
Full textIslam, Md Nazibul, Jarad Yost, and Zachary Gagnon. "Electrokinetically Assisted Paper-Based DNA Concentration for Enhanced qPCR Sensing." Proceedings 60, no. 1 (2020): 33. http://dx.doi.org/10.3390/iecb2020-07074.
Full textOta, Nobutoshi, Yaxiaer Yalikun, Tomoyuki Suzuki, et al. "Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device." Royal Society Open Science 6, no. 2 (2019): 181776. http://dx.doi.org/10.1098/rsos.181776.
Full textHong, Yan, Zhihao Xia, Jingming Su, et al. "Multi-Sample Detection of Soil Nitrate Nitrogen Using a Digital Microfluidic Platform." Agriculture 13, no. 12 (2023): 2226. http://dx.doi.org/10.3390/agriculture13122226.
Full textCheon, Jeonghyeon, and Seunghyun Kim. "Fabrication and Demonstration of a 3D-printing/PDMS Integrated Microfluidic Device." Recent Progress in Materials 4, no. 1 (2021): 1. http://dx.doi.org/10.21926/rpm.2201002.
Full textMa, Shou-Yu, Yu-Cheng Chiang, Chia-Hsien Hsu, et al. "Peanut Detection Using Droplet Microfluidic Polymerase Chain Reaction Device." Journal of Sensors 2019 (May 2, 2019): 1–9. http://dx.doi.org/10.1155/2019/4712084.
Full textTesta, Genni, Gianluca Persichetti, and Romeo Bernini. "Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels." Micromachines 13, no. 7 (2022): 1028. http://dx.doi.org/10.3390/mi13071028.
Full textSubirada, Francesc, Roberto Paoli, Jessica Sierra-Agudelo, Anna Lagunas, Romen Rodriguez-Trujillo, and Josep Samitier. "Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices." Polymers 14, no. 14 (2022): 2955. http://dx.doi.org/10.3390/polym14142955.
Full text