Academic literature on the topic 'Microfluidics. Fluidic devices. Mixing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microfluidics. Fluidic devices. Mixing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microfluidics. Fluidic devices. Mixing"
Grimmer, Andreas, Philipp Frank, Philipp Ebner, Sebastian Häfner, Andreas Richter, and Robert Wille. "Meander Designer: Automatically Generating Meander Channel Designs." Micromachines 9, no. 12 (November 27, 2018): 625. http://dx.doi.org/10.3390/mi9120625.
Full textWu, J. W., H. M. Xia, Y. Y. Zhang, and P. Zhu. "Microfluidic mixing through oscillatory transverse perturbations." Modern Physics Letters B 32, no. 12n13 (May 10, 2018): 1840030. http://dx.doi.org/10.1142/s0217984918400304.
Full textSu, Liang Yao, Yue Yang, and Zhong Bin Xu. "Numerical Simulation of Micromixing with Isolate Bubbles in Microfluidic Flow-Focusing Devices." Advanced Materials Research 781-784 (September 2013): 2876–80. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.2876.
Full textBoutiette, Amber L., Cristoffer Toothaker, Bailey Corless, Chouaib Boukaftane, and Caitlin Howell. "3D printing direct to industrial roll-to-roll casting for fast prototyping of scalable microfluidic systems." PLOS ONE 15, no. 12 (December 28, 2020): e0244324. http://dx.doi.org/10.1371/journal.pone.0244324.
Full textYuen, Po Ki, Guangshan Li, Yijia Bao, and Uwe R. Müller. "Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays." Lab Chip 3, no. 1 (2003): 46–50. http://dx.doi.org/10.1039/b210274a.
Full textYao, Ping, Ronghui Wang, Xinge Xi, Yanbin Li, and Steve Tung. "3D-Printed Pneumatic Microfluidic Mixer for Colorimetric Detection of Listeria monocytogenes." Transactions of the ASABE 62, no. 3 (2019): 841–50. http://dx.doi.org/10.13031/trans.13245.
Full textWang, Anyang, Domin Koh, Philip Schneider, Evan Breloff, and Kwang W. Oh. "A Compact, Syringe-Assisted, Vacuum-Driven Micropumping Device." Micromachines 10, no. 8 (August 17, 2019): 543. http://dx.doi.org/10.3390/mi10080543.
Full textZoupanou, Sofia, Maria Serena Chiriacò, Iolena Tarantini, and Francesco Ferrara. "Innovative 3D Microfluidic Tools for On-Chip Fluids and Particles Manipulation: From Design to Experimental Validation." Micromachines 12, no. 2 (January 21, 2021): 104. http://dx.doi.org/10.3390/mi12020104.
Full textMukherjee, Siddhartha, Jayabrata Dhar, Sunando DasGupta, and Suman Chakraborty. "Patterned surface charges coupled with thermal gradients may create giant augmentations of solute dispersion in electro-osmosis of viscoelastic fluids." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, no. 2221 (January 2019): 20180522. http://dx.doi.org/10.1098/rspa.2018.0522.
Full textZhang, Peiran, Hunter Bachman, Adem Ozcelik, and Tony Jun Huang. "Acoustic Microfluidics." Annual Review of Analytical Chemistry 13, no. 1 (June 12, 2020): 17–43. http://dx.doi.org/10.1146/annurev-anchem-090919-102205.
Full textDissertations / Theses on the topic "Microfluidics. Fluidic devices. Mixing"
Jang, Ling-Sheng. "Microfluidic mixing technology for biological applications /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/7152.
Full textKang, Kai. "Microfluidics of complex liquids." Connect to this title online, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1064325460.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiv, 212 p.; also includes graphics. Includes bibliographical references (p. 195-202).
McDaniel, Kevin Jerome. "Passive mixing on microfluidic devices via dielectric elastomer actuation." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1032.
Full textBickham, Anna V. "Microfabricated Fluidic Devices for Biological Assays and Bioelectronics." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8470.
Full textHoeman, Kurt W. "Novel methods for micellar electro kinetic chromatography and preconcentration on traditional micro fluidic devices and the fabrication and characterization of paper micro fluidic." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2752.
Full textLutz, Barry R. "Microeddies as microfluidic elements : reactors and cell traps /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/9857.
Full textRask, Olaf Haller. "The Reduction of Mixing Noise and Shock Associated Noise using Chevrons and other Mixing Enhancement Devices." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1223056142.
Full textÖberg, Månsson Ingrid. "Electroanalytical devices with fluidic control using textile materials and methods." Licentiate thesis, KTH, Fiberteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279327.
Full textDenna avhandling, skriven av Ingrid Öberg Månsson vid Kungliga Tekniska Högskolan och titulerad ”Elektroanalytiska sensorer med vätskekontroll integrerad genom användande av textila material och metoder”, presenterar experimentella studier inom utvecklingen av textilbaserade elektroniska komponenter och biosensorer. Detta är av intresse på grund av den ökade efterfrågan på integrerade smarta produkter som till exempel bärbara sensorer för hälsoövervakning eller för att samla upp och konvertera energi till elektricitet. För att möjliggöra denna typ av produkter föds nya interdisciplinära fält där traditionell textilteknologi och elektronik möts. Textilbaserade enheter har väckt stort intresse under de senaste åren på grund av den naturliga förmågan att integrera funktion i till exempel kläder eller förband genom textila tillverkningsprocesser som väveri, stickning eller sömnad. Många modifikationer hos garner som krävs för att möjliggöra sådana tillämpningar är dock inte tillgängliga i större skala. Därför har det huvudsakliga syftet med denna studie varit att undersöka hur man kan uppnå den prestanda som krävs för att tillverka elektroniska textila komponenter, antingen genom att belägga garner med elektroniskt ledande material eller genom att använda kommersiellt tillgängliga ledande garner som sedan modifieras kemiskt för att skapa sensorer. Utöver detta har vätsketransport inom textila material studerats för att kunna styra och kontrollera kontaktytan mellan elektrolyt och elektroder i elektrokemiska enheter så som sensorer och transistorer. Garner med speciella tvärsnitt, som traditionellt använts i sportkläder för att transportera svett bort från kroppen och underlätta avdunstning, har använts för att transportera elektrolytvätska till elektroder av garn. Den definierade kontaktytan där det vätsketransporterade garnet korsar elektrodgarnet har visats öka stabiliteten av mätningen och reproducerbarheten mellan mätenheter. Resultaten som presenteras i de två artiklar som denna avhandling bygger på samt i avhandlingen själv visar på lovande potential för användandet av textila material för att integrera elektronisk och elektrokemisk funktionalitet i våra vardagsliv. Detta har uppnåtts genom att använda grundläggande textila material och tillverkningsprocesser för att tillverka komplexa enheter för olika tillämpningsområden så som sensorer för diagnostik samt elektroniska komponenter.
QC 2020-08-21
Luharuka, Rajesh. "An electromagnetically actuated rotary gate microvalve with bistability." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22576.
Full textCommittee Chair: Hesketh, Peter J.; Committee Member: Allen, Mark G.; Committee Member: Degertekin, F. Levent; Committee Member: Frazier, Bruno A.; Committee Member: Graham, Samuel.
"Digital microfluidics using PDMS microchannels." 2004. http://library.cuhk.edu.hk/record=b5891979.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2004.
Includes bibliographical references (leaves 74-78).
Abstracts in English and Chinese.
ABSTRACT --- p.i
摘要 --- p.ii
ACKNOWLEDGEMENTS --- p.iii
TABLE OF CONTENTS --- p.iv
LIST OF FIGURES --- p.vi
LIST OF TABLES --- p.viii
Chapter 1 --- INTRODUCTION --- p.1
Chapter 1.1 --- Digital Microfluidics --- p.1
Chapter 1.2 --- Soft Lithography of Polymer --- p.2
Chapter 2 --- ELECTROCAPILLARY-BASED MICROACTUATION --- p.5
Chapter 2.1 --- Surface Tension in Microscale --- p.5
Chapter 2.2 --- thermocapillary-based microactuation --- p.6
Chapter 2.3 --- electrocapillary-based microactuation --- p.6
Chapter 2.3.1 --- Continuous Electrowetting (CEW) --- p.7
Chapter 2.3.2 --- Electrowetting (EW) --- p.8
Chapter 2.3.3 --- Electrowetting-On-Dielectric (EWOD) --- p.11
Chapter 3 --- SOFT LITHOGRAPHY --- p.14
Chapter 3.1 --- Rapid Prototyping --- p.15
Chapter 3.2 --- Replica Molding --- p.16
Chapter 3.2.1 --- Pouring Method --- p.17
Chapter 3.2.2 --- Sandwich Molding Method --- p.17
Chapter 3.2.3 --- Spin On Method --- p.18
Chapter 3.3 --- Sealing --- p.20
Chapter 3.3.1 --- Reversible Sealing --- p.20
Chapter 3.3.2 --- Irreversible Sealing --- p.20
Chapter 3.4 --- Multilayer Fabrication --- p.21
Chapter 4 --- METAL DEPOSITION --- p.22
Chapter 4.1 --- Gold Deposition by Sputtering Method --- p.22
Chapter 4.1.1 --- Gold Deposition on PMMA --- p.22
Chapter 4.1.2 --- Gold Deposition on PDMS --- p.23
Chapter 4.2 --- ITO Deposition by Sputtering Method --- p.26
Chapter 4.2.1 --- Image Patterning of ITO --- p.27
Chapter 5 --- POLYMER-BASED SUBSTRATES BONDING USING PDMS --- p.29
Chapter 5.1 --- Design of Microfluidic System --- p.29
Chapter 5.1.1 --- PDMS --- p.29
Chapter 5.1.2 --- Design of the Vortex Micropump --- p.30
Chapter 5.2 --- Fabrication of Microfluidic System --- p.31
Chapter 5.2.1 --- Micro Impeller Fabrication Process --- p.31
Chapter 5.2.2 --- Micro Patterning of PMMA by Hot Embossing Technique --- p.32
Chapter 5.2.3 --- Assembly of Micropump by PDMS Bonding Process --- p.34
Chapter 5.3 --- Experimental Results --- p.36
Chapter 5.3.1 --- Tensile Bonding Test --- p.36
Chapter 5.3.2 --- Leakage Test --- p.38
Chapter 6 --- DIGITAL MICROFLUIDICS IN MICROCHANNEL --- p.39
Chapter 6.1 --- Digital Microfluidics --- p.39
Chapter 6.2 --- Design of the MicroChannel --- p.39
Chapter 6.3 --- Materials of the MicroChannel --- p.42
Chapter 6.3.1 --- Substrate --- p.42
Chapter 6.3.2 --- Adhesion Layer --- p.42
Chapter 6.3.3 --- Electrode --- p.43
Chapter 6.3.4 --- Dielectric Layer --- p.43
Chapter 6.4 --- Fabrication of the MicroChannel --- p.44
Chapter 7 --- EXPERIMENTAL RESULTS --- p.46
Chapter 7.1 --- ewod on pdms layer --- p.46
Chapter 7.2 --- PDMS Parallel Plate Channel --- p.48
Chapter 7.2.1 --- Contact Angle --- p.49
Chapter 7.3 --- Parylene C Parallel Plate Channel --- p.52
Chapter 7.4 --- Sealed pdms MicroChannel --- p.54
Chapter 7.5 --- Driving Pressure --- p.55
Chapter 7.6 --- microchannel in the vertical position --- p.57
Chapter 8 --- FUTURE WORK --- p.60
Chapter 8.1. --- Digital Microfluidic Circuit Design --- p.60
Chapter 8.1.1. --- Electrodes Design --- p.61
Chapter 8.2. --- Fabrication Process --- p.63
Chapter 9 --- SUMMARY --- p.64
APPENDIX A --- p.67
BIBLIOGRAPHY --- p.74
Books on the topic "Microfluidics. Fluidic devices. Mixing"
Gomez, Frank A. Biological applications of microfluidics. Hoboken, N.J: Wiley-Interscience, 2008.
Find full textGomez, Frank A. Biological applications of microfluidics. Hoboken, N.J: John Wiley, 2008.
Find full textGomez, Frank A. Biological applications of microfluidics. Hoboken, N.J: John Wiley, 2008.
Find full textKoch, Michael. Microfluidic technology and applications. Philadelphia, PA: Research Studies Press, 2000.
Find full textNguyen, Nam-Trung. Micromixers: Fundamentals, design and fabrication. Norwich, NY: William Andrew, 2008.
Find full textBook chapters on the topic "Microfluidics. Fluidic devices. Mixing"
Bobusch, Bernhard C., Phillip Berndt, Christian O. Paschereit, and Rupert Klein. "Investigation of Fluidic Devices for Mixing Enhancement for the Shockless Explosion Combustion Process." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 281–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11967-0_18.
Full textSanchez-Claros, Maria, Joaquin Ortega-Casanova, and Francisco Jose Galindo-Rosales. "2D Numerical Study of a Micromixer Based on Blowing and Vortex Shedding Mechanisms." In Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering, 79–113. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7138-4.ch003.
Full textBuranda, Tione, and Larry A. Sklar. "Flow Cytometry, Beads, and Microchannels." In Flow Cytometry for Biotechnology. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195183146.003.0010.
Full textFan, Jing, Shuaijun Li, Ziqian Wu, and Zi Chen. "Diffusion and mixing in microfluidic devices." In Microfluidics for Pharmaceutical Applications, 79–100. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-812659-2.00003-x.
Full textZhang, Yuezhou, Dongfei Liu, Hongbo Zhang, and Hélder A. Santos. "Microfluidic mixing and devices for preparing nanoparticulate drug delivery systems." In Microfluidics for Pharmaceutical Applications, 155–77. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-812659-2.00007-7.
Full textP. Fuentes, Olga, Mabel J. Noguera, Paula A. Peñaranda, Sergio L. Flores, Juan C. Cruz, and Johann F. Osma. "Micromixers for Wastewater Treatment and Their Life Cycle Assessment (LCA)." In Advances in Microfluidics and Nanofluids. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96822.
Full textFu, Anne Y., and Yohei Yokobayashi. "Elastomeric Microfabricated Fluorescence-Activated Cell Sorters." In Flow Cytometry for Biotechnology. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195183146.003.0009.
Full text"colloid mills, piston homogenizers, rotor/stator mixers, Microfluidizer™ (a registered trademark of Microfluidics International Corp.) technologies, ultrasonic mixers, and hybrid devices. Each uses a unique processing technique to shear a mixture or com-bine the flows of materials in order to form an emulsion or suspensions. Most of the time these devices are not used in a truly continuous process. Rather, after the compo-nents of a dispersed delivery system are combined and blended in a batch vessel, the components in the mixture are passed through the device, and the shearing and mixing that take place inside the device affect particle size reduction, dispersion, and emulsi-fication. 1. Rotor/Stator Mixer Disperser Emulsifiers "All mixers pump and all pumps mix." This is reflected in the earlier-shown power equation, Eq. (3). A type of in-line device that is very similar to a rotor/stator batch mixer is the rotor/stator continuous mixer disperser emulsifier. Indeed, most of the designs of this type of in-line high-shear device are essentially identical to the batch equipment designs of a given manufacturer. Since rotor/stator batch mixers are acting as submerged pumps, a design can be made that places the rotor/stator in a pump hous-ing and allows for product to be pumped through itself (Fig. 27). During the time the product is inside the rotor/stator mixing pump, the droplets and particles are subjected to a wide variety of high shear rates. All pumps of any kind impart some level of shear to the product that passes through the pump. Rotor/stator mixing pumps are designed with fine tolerance rotor/stator gaps that promote the high shear rates and high amounts of shear per pass through. Shear rates in a rotor/stator in-line mixer are equal to those in rotor/stator batch mixers. The maximum shear rates occur in the gap between the high-speed rotating Fig. 27 Rotor/stator in-line mixer disperser emulsifier. (From Ref. 31.)." In Pharmaceutical Dosage Forms, 356. CRC Press, 1998. http://dx.doi.org/10.1201/9781420000955-49.
Full textConference papers on the topic "Microfluidics. Fluidic devices. Mixing"
Barona, David, and A. Amirfazli. "A Robust Superhydrophobic Surface for Digital Microfluidics." In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58159.
Full textSurendran, Athira N., and Ran Zhou. "Active High-Throughput Micromixer Using Injected Magnetic Mixture Underneath Microfluidic Channel." In ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icnmm2020-1018.
Full textDankovic, Tatjana, Gareth Hatch, and Alan Feinerman. "Fabrication of Plastic Micro-Channels for Microfluidics Solvent Extraction." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53526.
Full textGuduru, Rakesh, and Nazmul Islam. "Electrokinetic Driven Micro-Mixing of Fluids in a Circular Electrode Pattern." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72209.
Full textFadl, Ahmed, Stefanie Demming, Zongqin Zhang, Bjo¨rn Hoxhold, Stephanus Bu¨ttgenbach, Manfred Krafczyk, and Donna M. L. Meyer. "A Multifunctional Microfluidic Device Based on Bifurcation Geometry." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30950.
Full textMorales, Mercedes C., and Jeffrey D. Zahn. "Development of a Diffusion Limited Microfluidic Module for DNA Purification via Phenol Extraction." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68086.
Full textLoire, Sophie, Paul Kauffmann, Paul Gimenez, Igor Mezić, and Carl Meinhart. "Electrothermal Blinking Vortices for Chaotic Mixing." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88269.
Full textO¨zdemir, Mehmed Rafet, Ali Kos¸ar, Orc¸un Demir, Cemre O¨zenel, and Og˘uzhan Bahc¸ivan. "Thermal Hydraulic, Exergy and Exergy-Economic Analysis of Micro Heat Sinks at High Flow Rates." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-25239.
Full textCetin, Barbaros, Serdar Taze, Mehmet D. Asik, and S. Ali Tuncel. "Microfluidic Device for Synthesis of Chitosan Nanoparticles." In ASME 2013 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fedsm2013-16349.
Full textKongthon, Jiradech, Jae-Hyun Chung, James Riley, and Santosh Devasia. "Dynamics of Cilia-Based Microfluidic Devices." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-5936.
Full text