Journal articles on the topic 'Microfluidics. Fluidic devices. Mixing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microfluidics. Fluidic devices. Mixing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Grimmer, Andreas, Philipp Frank, Philipp Ebner, Sebastian Häfner, Andreas Richter, and Robert Wille. "Meander Designer: Automatically Generating Meander Channel Designs." Micromachines 9, no. 12 (November 27, 2018): 625. http://dx.doi.org/10.3390/mi9120625.
Full textWu, J. W., H. M. Xia, Y. Y. Zhang, and P. Zhu. "Microfluidic mixing through oscillatory transverse perturbations." Modern Physics Letters B 32, no. 12n13 (May 10, 2018): 1840030. http://dx.doi.org/10.1142/s0217984918400304.
Full textSu, Liang Yao, Yue Yang, and Zhong Bin Xu. "Numerical Simulation of Micromixing with Isolate Bubbles in Microfluidic Flow-Focusing Devices." Advanced Materials Research 781-784 (September 2013): 2876–80. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.2876.
Full textBoutiette, Amber L., Cristoffer Toothaker, Bailey Corless, Chouaib Boukaftane, and Caitlin Howell. "3D printing direct to industrial roll-to-roll casting for fast prototyping of scalable microfluidic systems." PLOS ONE 15, no. 12 (December 28, 2020): e0244324. http://dx.doi.org/10.1371/journal.pone.0244324.
Full textYuen, Po Ki, Guangshan Li, Yijia Bao, and Uwe R. Müller. "Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays." Lab Chip 3, no. 1 (2003): 46–50. http://dx.doi.org/10.1039/b210274a.
Full textYao, Ping, Ronghui Wang, Xinge Xi, Yanbin Li, and Steve Tung. "3D-Printed Pneumatic Microfluidic Mixer for Colorimetric Detection of Listeria monocytogenes." Transactions of the ASABE 62, no. 3 (2019): 841–50. http://dx.doi.org/10.13031/trans.13245.
Full textWang, Anyang, Domin Koh, Philip Schneider, Evan Breloff, and Kwang W. Oh. "A Compact, Syringe-Assisted, Vacuum-Driven Micropumping Device." Micromachines 10, no. 8 (August 17, 2019): 543. http://dx.doi.org/10.3390/mi10080543.
Full textZoupanou, Sofia, Maria Serena Chiriacò, Iolena Tarantini, and Francesco Ferrara. "Innovative 3D Microfluidic Tools for On-Chip Fluids and Particles Manipulation: From Design to Experimental Validation." Micromachines 12, no. 2 (January 21, 2021): 104. http://dx.doi.org/10.3390/mi12020104.
Full textMukherjee, Siddhartha, Jayabrata Dhar, Sunando DasGupta, and Suman Chakraborty. "Patterned surface charges coupled with thermal gradients may create giant augmentations of solute dispersion in electro-osmosis of viscoelastic fluids." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, no. 2221 (January 2019): 20180522. http://dx.doi.org/10.1098/rspa.2018.0522.
Full textZhang, Peiran, Hunter Bachman, Adem Ozcelik, and Tony Jun Huang. "Acoustic Microfluidics." Annual Review of Analytical Chemistry 13, no. 1 (June 12, 2020): 17–43. http://dx.doi.org/10.1146/annurev-anchem-090919-102205.
Full textNielsen, Anna V., Michael J. Beauchamp, Gregory P. Nordin, and Adam T. Woolley. "3D Printed Microfluidics." Annual Review of Analytical Chemistry 13, no. 1 (June 12, 2020): 45–65. http://dx.doi.org/10.1146/annurev-anchem-091619-102649.
Full textJia, Xiaoyu, Bingchen Che, Guangyin Jing, and Ce Zhang. "Air-Bubble Induced Mixing: A Fluidic Mixer Chip." Micromachines 11, no. 2 (February 14, 2020): 195. http://dx.doi.org/10.3390/mi11020195.
Full textAhmadi, Fatemeh, Kenza Samlali, Philippe Q. N. Vo, and Steve C. C. Shih. "An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting." Lab on a Chip 19, no. 3 (2019): 524–35. http://dx.doi.org/10.1039/c8lc01170b.
Full textPal, Debashis, and Suman Chakraborty. "New regimes of dispersion in microfluidics as mediated by travelling temperature waves." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, no. 2230 (October 2019): 20190382. http://dx.doi.org/10.1098/rspa.2019.0382.
Full textAdamovic, Nadja, Ioanna Giouroudi, Jovan Matovic, Zoran Djinovic, and Ulrich Schmid. "Microactuators for Fluidic Applications: Principles, Devices, and Systems." Journal of Microelectronics and Electronic Packaging 6, no. 4 (October 1, 2009): 250–64. http://dx.doi.org/10.4071/1551-4897-6.4.250.
Full textHejazian, Majid, Eugeniu Balaur, and Brian Abbey. "A Numerical Study of Sub-Millisecond Integrated Mix-and-Inject Microfluidic Devices for Sample Delivery at Synchrotron and XFELs." Applied Sciences 11, no. 8 (April 10, 2021): 3404. http://dx.doi.org/10.3390/app11083404.
Full textLafleur, Josiane P., Detlef Snakenborg, Søren S. Nielsen, Magda Møller, Katrine N. Toft, Andreas Menzel, Jes K. Jacobsen, Bente Vestergaard, Lise Arleth, and Jörg P. Kutter. "Automated microfluidic sample-preparation platform for high-throughput structural investigation of proteins by small-angle X-ray scattering." Journal of Applied Crystallography 44, no. 5 (August 18, 2011): 1090–99. http://dx.doi.org/10.1107/s0021889811030068.
Full textHuang, Q., B. Jones, and N. J. Leighton. "Hybrid Solid State Fluidic Technique in Engine Fuel Injection Systems." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 207, no. 1 (January 1993): 35–41. http://dx.doi.org/10.1243/pime_proc_1993_207_157_02.
Full textShih, Chih Hsin, Chien Hsing Lu, Chia Hui Lin, and Hou Jin Wu. "Design and Analysis of Micromixers on a Centrifugal Platform." Advanced Materials Research 74 (June 2009): 203–6. http://dx.doi.org/10.4028/www.scientific.net/amr.74.203.
Full textHassan, Sammer-ul, Aamira Tariq, Zobia Noreen, Ahmed Donia, Syed Z. J. Zaidi, Habib Bokhari, and Xunli Zhang. "Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics." Diagnostics 10, no. 8 (July 22, 2020): 509. http://dx.doi.org/10.3390/diagnostics10080509.
Full textRaman, G., S. Packiarajan, G. Papadopoulos, C. Weissman, and S. Raghu. "Jet thrust vectoring using a miniature fluidic oscillator." Aeronautical Journal 109, no. 1093 (March 2005): 129–38. http://dx.doi.org/10.1017/s0001924000000634.
Full textGreen, James, Arne Holdø, and Aman Khan. "A review of passive and active mixing systems in microfluidic devices." International Journal of Multiphysics 1, no. 1 (January 2007): 1–32. http://dx.doi.org/10.1260/175095407780130544.
Full textKim, Byoung Jae, Sang Youl Yoon, Kyung Heon Lee, and Hyung Jin Sung. "Development of a microfluidic device for simultaneous mixing and pumping." Experiments in Fluids 46, no. 1 (August 20, 2008): 85–95. http://dx.doi.org/10.1007/s00348-008-0541-1.
Full textWEIß, DENNIS, ANDREAS GREINER, JAN LIENEMANN, and JAN G. KORVINK. "SPH BASED OPTIMIZATION OF ELECTROWETTING-DRIVEN DIGITAL MICROFLUIDICS WITH ADVANCED ACTUATION PATTERNS." International Journal of Modern Physics C 24, no. 12 (November 13, 2013): 1340012. http://dx.doi.org/10.1142/s0129183113400123.
Full textPaoli, Roberto, Davide Di Giuseppe, Maider Badiola-Mateos, Eugenio Martinelli, Maria Jose Lopez-Martinez, and Josep Samitier. "Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications." Sensors 21, no. 4 (February 16, 2021): 1382. http://dx.doi.org/10.3390/s21041382.
Full textHuang, Q., and D. P. Sansum. "An Experimental Study of a Fluidic Type Fuel Injector in Comparison With a Solenoid Type Injector." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 210, no. 2 (April 1996): 131–47. http://dx.doi.org/10.1243/pime_proc_1996_210_254_02.
Full textSharma, Smriti, and Vinayak Bhatia. "Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal." Nanomedicine 16, no. 15 (June 2021): 1329–42. http://dx.doi.org/10.2217/nnm-2021-0007.
Full textWhitlow, Harry J., Li Ping Wang, and Leona Gilbert. "Transport of Water and Particles in Microfluidics Devices Lithographically Fabricated Using Proton Beam Writing (PBW)." Advanced Materials Research 74 (June 2009): 129–32. http://dx.doi.org/10.4028/www.scientific.net/amr.74.129.
Full textBalaji, Vidhya, Kurt Castro, and Albert Folch. "A Laser-Engraving Technique for Portable Micropneumatic Oscillators." Micromachines 9, no. 9 (August 24, 2018): 426. http://dx.doi.org/10.3390/mi9090426.
Full textDhayal, Marshal, Chealho So, Jeong Sik Choi, and Jin Jun. "Control of Bio-MEMS Surface Chemical Properties in Micro Fluidic Devices for Biological Applications." Journal of Nanoscience and Nanotechnology 6, no. 11 (November 1, 2006): 3494–98. http://dx.doi.org/10.1166/jnn.2006.17968.
Full textBox, Finn, Gunnar G. Peng, Draga Pihler-Puzović, and Anne Juel. "Flow-induced choking of a compliant Hele-Shaw cell." Proceedings of the National Academy of Sciences 117, no. 48 (November 16, 2020): 30228–33. http://dx.doi.org/10.1073/pnas.2008273117.
Full textHahn, Jaeseung, and William M. Shih. "Thermal cycling of DNA devices via associative strand displacement." Nucleic Acids Research 47, no. 20 (October 4, 2019): 10968–75. http://dx.doi.org/10.1093/nar/gkz844.
Full textBauer, Maria, Adrian Bahani, Tracy Ogata, and Marc Madou. "3D Printing of Elastic Membranes for Fluidic Pumping and Demonstration of Reciprocation Inserts on the Microfluidic Disc." Micromachines 10, no. 8 (August 19, 2019): 549. http://dx.doi.org/10.3390/mi10080549.
Full textAbdi, Mohsen, Esmail Pishbin, Alireza Karimi, and Mahdi Navidbakhsh. "A Comparative Investigation on the Performance of Different Micro Mixers: Toward Cerebral Microvascular Analysis." Journal of Multiscale Modelling 08, no. 01 (February 22, 2017): 1650008. http://dx.doi.org/10.1142/s1756973716500086.
Full textGiraldo, Kevin A., Juan Sebastian Bermudez, Carlos E. Torres, Luis H. Reyes, Johann F. Osma, and Juan C. Cruz. "Microfluidics for Multiphase Mixing and Liposomal Encapsulation of Nanobioconjugates: Passive vs. Acoustic Systems." Fluids 6, no. 9 (August 31, 2021): 309. http://dx.doi.org/10.3390/fluids6090309.
Full textOber, Thomas J., Daniele Foresti, and Jennifer A. Lewis. "Active mixing of complex fluids at the microscale." Proceedings of the National Academy of Sciences 112, no. 40 (September 22, 2015): 12293–98. http://dx.doi.org/10.1073/pnas.1509224112.
Full textFallahi, Hedieh, Jun Zhang, Hoang-Phuong Phan, and Nam-Trung Nguyen. "Flexible Microfluidics: Fundamentals, Recent Developments, and Applications." Micromachines 10, no. 12 (November 29, 2019): 830. http://dx.doi.org/10.3390/mi10120830.
Full textBaghaei, Masoud, and Josep M. Bergada. "Analysis of the Forces Driving the Oscillations in 3D Fluidic Oscillators." Energies 12, no. 24 (December 11, 2019): 4720. http://dx.doi.org/10.3390/en12244720.
Full textFurusawa, Hiroaki, Koichi Suzumori, Takefumi Kanda, Akinori Muto, and Yusaku Sakata. "Realizing Spiral Laminar Flow Interfaces with Improved Micro Rotary Reactor." Journal of Robotics and Mechatronics 21, no. 2 (April 20, 2009): 179–85. http://dx.doi.org/10.20965/jrm.2009.p0179.
Full textShah, Imran, Emad Uddin, Aamir Mubashar, Muhammad Yamin Younis, Hudair Samad, and Kyung Hyun choi. "Numerical Investigation of Surface Acoustic Wave (SAW) Interacting with a Droplet for Point-of-Care Devices." International Journal of Acoustics and Vibration 24, no. 4 (December 31, 2019): 632–37. http://dx.doi.org/10.20855/ijav.2019.24.41312.
Full textPugia, Michael J., Gert Blankenstein, Ralf-Peter Peters, James A. Profitt, Klaus Kadel, Thomas Willms, Ronald Sommer, Hai Hang Kuo, and Lloyd S. Schulman. "Microfluidic Tool Box as Technology Platform for Hand-Held Diagnostics." Clinical Chemistry 51, no. 10 (October 1, 2005): 1923–32. http://dx.doi.org/10.1373/clinchem.2005.052498.
Full textMercke, William L., Thomas Dziubla, Richard E. Eitel, and Kimberly Anderson. "Improved Trans-endothelial Electrical Resistance Sensing using Microfluidic Low-Temperature Co-fired Ceramics." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (September 1, 2013): 000162–67. http://dx.doi.org/10.4071/cicmt-wp31.
Full textMiyazaki, Celina M., Eadaoin Carthy, and David J. Kinahan. "Biosensing on the Centrifugal Microfluidic Lab-on-a-Disc Platform." Processes 8, no. 11 (October 28, 2020): 1360. http://dx.doi.org/10.3390/pr8111360.
Full textItalia, Valeria, Argyro Giakoumaki, Silvio Bonfadini, Vibhav Bharadwaj, Thien Le Phu, Shane Eaton, Roberta Ramponi, Giacomo Bergamini, Guglielmo Lanzani, and Luigino Criante. "Laser-Inscribed Glass Microfluidic Device for Non-Mixing Flow of Miscible Solvents." Micromachines 10, no. 1 (December 29, 2018): 23. http://dx.doi.org/10.3390/mi10010023.
Full textFigeys, D., and R. Aebersold. "Microfabricated Modules for Sample Handling, Sample Concentration and Flow Mixing: Application to Protein Analysis by Tandem Mass Spectrometry." Journal of Biomechanical Engineering 121, no. 1 (February 1, 1999): 7–12. http://dx.doi.org/10.1115/1.2798048.
Full textHejazian, Majid, Eugeniu Balaur, and Brian Abbey. "Recent Advances and Future Perspectives on Microfluidic Mix-and-Jet Sample Delivery Devices." Micromachines 12, no. 5 (May 7, 2021): 531. http://dx.doi.org/10.3390/mi12050531.
Full textMahmud, Fahizan, Khairul Fikri Tamrin, Shahrol Mohamaddan, and Nobuo Watanabe. "Effect of Thermal Energy and Ultrasonication on Mixing Efficiency in Passive Micromixers." Processes 9, no. 5 (May 18, 2021): 891. http://dx.doi.org/10.3390/pr9050891.
Full textMarkovic, Tomislav, Juncheng Bao, Gertjan Maenhout, Ilja Ocket, and Bart Nauwelaers. "An Interdigital Capacitor for Microwave Heating at 25 GHz and Wideband Dielectric Sensing of nL Volumes in Continuous Microfluidics." Sensors 19, no. 3 (February 10, 2019): 715. http://dx.doi.org/10.3390/s19030715.
Full textGonzález Fernández, Cristina, Jenifer Gómez Pastora, Arantza Basauri, Marcos Fallanza, Eugenio Bringas, Jeffrey J. Chalmers, and Inmaculada Ortiz. "Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?" Sensors 20, no. 11 (May 27, 2020): 3030. http://dx.doi.org/10.3390/s20113030.
Full textNoël, Florian, Christophe Serra, and Stéphane Le Calvé. "Design of a Novel Axial Gas Pulses Micromixer and Simulations of its Mixing Abilities via Computational Fluid Dynamics." Micromachines 10, no. 3 (March 23, 2019): 205. http://dx.doi.org/10.3390/mi10030205.
Full text