To see the other types of publications on this topic, follow the link: Microglie – Physiologie.

Dissertations / Theses on the topic 'Microglie – Physiologie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Microglie – Physiologie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hristovska, Ines. "Dynamique microgliale en conditions physiologiques : un mécanisme contrôlé par les états de vigilance et l’activité neuronale." Thesis, Lyon, 2019. https://n2t.net/ark:/47881/m60c4v3q.

Full text
Abstract:
Les microglies, cellules immunitaires résidentes du système nerveux central (SNC), étaient traditionnellement décrites comme ayant un rôle uniquement lors de blessures ou de maladies du SNC. De manière frappante, dans le cerveau sain, les microglies effectuent une surveillance active du parenchyme en étendant et en rétractant leurs prolongements ramifiés. Ce mouvement est connu sous le nom de motilité microgliale et peut être dirigé vers les synapses. La régulation de ces mouvements et le but des contacts microglie-épines dendritiques restent inconnus. Nous avons examiné l'influence de l'activité neuronale sur la motilité et la morphologie microgliale ainsi que sur les interactions microglies-épines pendant l’éveil et le sommeil. Nous avons observé que les propriétés morpho-dynamiques des microglies sont modulées par les états de vigilance. Les prolongements microgliaux sont attirés par les synapses actives, particulièrement lors de l’éveil, alors que le sommeil régule négativement la proximité des prolongements microgliaux ainsi que les contacts dépendant de l’activité qui lient les prolongements microgliaux aux épines. Le contact des épines avec les prolongements microgliaux entraîne une augmentation de l’activité des épines, principalement observée pendant le sommeil lent. Pour conclure, ces résultats montrent un contrôle complexe de la morpho-dynamique microgliale par l’activité et les états de vigilance. Appréhender les mécanismes régulant la dynamique microgliale et les interactions microglie-épines dendritiques pendant les états de vigilance permettra de mieux comprendre comment les cellules microgliales sont impliquées dans la régulation de l'homéostasie synaptique, l'apprentissage et de la mémoire, des fonctions associées au sommeil. La compréhension des interactions microglies-neurones dans des conditions physiologiques est cruciale pour élucider le fonctionnement synaptique et ses altérations lorsque la microglie est impliquée dans ses fonctions immunes, une caractéristique commune à la plupart des pathologies cérébrales
Microglia, the resident immune cells of the central nervous system (CNS), were traditionally believed to be set into action only by injury or diseases. Strikingly, in the healthy brain, microglia actively carry out parenchyma patrolling by extending and retracting their ramified processes. These movements are referred to as microglial motility and may be to some extent directed toward synapses. However, motility regulation and the purpose of microglia-spine contacts remain elusive. We thus examined the influence of neuronal activity on microglial motility, morphology and microglia-spine interactions during sleep and wakefulness. We found that microglial motility and morphology are modulated by vigilance states. Microglial processes were found to be attracted by active synapses particularly during wake, whereas sleep downregulates microglial proximity and activity-dependent contact with spines. Microglial contact resulted in increased spine activity which was mainly observed during sleep. Understanding the mechanisms regulating microglial dynamics and microglia-spine interactions across the vigilance states will provide further insights into how microglial cells may be involved in sleep- associated functions such as synaptic homeostasis, learning and memory. Grasping these cellular interactions in physiological conditions is crucial to understand synaptic functioning and alterations when microglia are engaged into their immune functions, a hallmark of most brain pathologies
APA, Harvard, Vancouver, ISO, and other styles
2

Richard, Karine. "Étude de l'activation microgliale via les récepteurs TLR dans le contexte de la maladie d'Alzheimer." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/26955/26955.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simard, Alain. "Le rôle des cellules microgliales and les maladies neurodégénératives = : The role of microglia in neurodegenerative disease." Doctoral thesis, Université Laval, 2006. http://hdl.handle.net/20.500.11794/18341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Macouillard-Poulletier, de Gannes Florence. "Caractérisation fonctionnelle de cellules microgliales immortalisées lors de situations de stress thermique et apoptotique." Bordeaux 2, 1998. http://www.theses.fr/1998BOR28602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Houalla, Tarek. "Isolation of microglia from goldfish brain." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=31238.

Full text
Abstract:
This study aims at providing a new technique for the isolation and culture of goldfish microglial cells. So far no protocol has been designed for the growth of these cells in vitro, despite the growing interest in the remarkable capacity of goldfish central nervous system (CNS) for regenerating severed axons. This newly developed technique has little or no similarity to those used in the isolation of mammalian microglia, and is distinguished by its simple setup and its fast yield for microglial cells. In addition, a virtually pure population of microglia was generated when plated on untreated plastic dishes, eliminating further need for purification. This technique may thus provide a starting point for future characterization of the microglial cells in vitro, which may eventually help toward building a better understanding of the function and biology of these cells. A preliminary morphological characterization of the cells has also been conducted, in addition to groundwork experiments on the phagocytic activity of these cells in vitro, using myelin to stimulate phagocytosis. These assays were oriented toward providing a comparison to the mammalian cultures of microglia, and so far, displayed several similarities in morphologies and phagocytosis.
APA, Harvard, Vancouver, ISO, and other styles
6

Marcaggi, Païkan. "Capture de NH4+ dans les cellules gliales de rétine d'abeille par un transporteur membranaire spécifique." Bordeaux 2, 1999. http://www.theses.fr/1999BOR28698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Girolami, Elizabeth. "Regulation of microglial phagocytosis in the regenerating CNS of the goldfish." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80276.

Full text
Abstract:
Teleost retinal ganglion cells can regenerate severed axons following injury, something their mammalian counterparts cannot do. In the teleost, successful regeneration has been attributed in part to microglial cell activities including the phagocytosis of myelin. Although the regulation of microglial phagocytosis has been studied in mammals, in the teleost it is largely unexamined. The present study was designed to identify mediators of microglial phagocytosis released by injured goldfish optic nerve during the course of regeneration. We found that microglial phagocytosis was significantly enhanced in the presence of a 7 day regenerating nerve or medium conditioned by the nerve (CM). When either nerve or CM was incubated with microglia along with an antibody against tumour necrosis factor alpha (TNFalpha), this effect was neutralized. The L929 cell cytotoxicity assay further demonstrated TNFalpha activity in the CM. However, Western blot analysis did not confirm this result. Therefore, further work is necessary to clearly establish the presence of TNFalpha.
APA, Harvard, Vancouver, ISO, and other styles
8

Larke, Vollmer Lauren. "Microglial acid-sensing T Cell Death Associated Gene-8 (TDAG8) Receptor in CO2-Evoked Behavior and Physiology: Relevance to Panic." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1397235858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cao, Tuoxin. "Hydrogen Peroxide and Pharmacological Agent Modulation of TRPV2 Channel Gating." VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/4848.

Full text
Abstract:
Transient receptor potential vanilloid 2 channel (TRPV2) is a Ca2+-permeable ion channel that is highly expressed in leukocytes but is also present in skeletal and cardiac muscle and endocrine cells. The TRPV2 function is implicated in a number of physiological processes, including bacterial phagocytosis, pro-inflammatory cytokine production, cardiac hypertrophy, and cancer development. TRPV2 knockout mice exhibit a high incidence of perinatal mortality, arguing that the channel plays essential roles in physiology. Despite the importance of TRPV2 for normal homeostasis, the mechanisms that control TRPV2 gating in response to pharmacological agonists, heating, membrane stretch, bioactive lipids and reactive oxygen species (ROS) remain poorly understood. Here we demonstrate that TRPV2 is functionally expressed in microglia (i.e., ‘brain macrophages’) and the microglia-like BV-2 cell line, and demonstrate that the gating of an endogenous TRPV2-like conductance is positively modulated by the bacterial toxin lipopolysaccharide (LPS), which is known to cause pro-inflammatory (M1) activation and increase ROS production by NADPH oxidase. To determine how TRPV2 gating is modulated by ROS, we recorded single channel activity in inside-out patches excised from HEK-293 cells expressing GFP-rTRPV2. Unitary currents elicited by the TRPV2 agonist 2-aminophenyl borinate (2-APB) or cannabidiol (CBD) are linear in monovalent recording solutions and give rise to an estimated unitary conductance of ~100pS, which is similar to TRPV1 but significantly smaller than TRPV3. Intriguingly, we find that although TRPV2 is insensitive to ROS (in the form of exogenously applied H2O2) alone, apparent open probability is synergistically enhanced when H2O2 is applied together with CBD. We identify two intracellular Cys residues that are necessary for TRPV2 responses to H2O2 sensitivity and find that these residues are located close to one another, albeit in different subunits, in the TRPV2 structure, suggesting that ROS promote the formation of an inter-subunit disulfide bond that alters sensitivity to pharmacological agonists. We hypothesize that ROS-dependent modulation of TRPV2 activity may be an important contributor to pro-inflammatory activation of microglia underline central nervous system diseases and that TRPV2 antagonism could be a useful therapeutic strategy in the treatment of neuroinflammation.
APA, Harvard, Vancouver, ISO, and other styles
10

Bolton, Hall Amanda Nicholle. "HISTOLOGICAL AND BEHAVIORAL CONSEQUENCES OF REPEATED MILD TRAUMATIC BRAIN INJURY IN MICE." UKnowledge, 2016. http://uknowledge.uky.edu/physiology_etds/26.

Full text
Abstract:
The majority of the estimated three million traumatic brain injuries that occur each year are classified as “mild” and do not require surgical intervention. However, debilitating symptoms such as difficulties focusing on tasks, anxiety, depression, and visual deficits can persist chronically after a mild traumatic brain injury (TBI) even if an individual appears “fine”. These symptoms have been observed to worsen or be prolonged when an individual has suffered multiple mild TBIs. To test the hypothesis that increasing the amount of time between head injuries can reduce the histopathological and behavioral consequences of repeated mild TBI, a mouse model of closed head injury (CHI) was developed. A pneumatically controlled device with a silicone tip was used to deliver a diffuse, midline impact directly onto the mouse skull. A 2.0mm intended depth of injury caused a brief period of apnea and increased righting reflex response with minimal astrogliosis and axonal injury bilaterally in the entorhinal cortex, optic tract, and cerebellum. When five CHIs were repeated at 24h inter-injury intervals, astrogliosis was exacerbated acutely in the hippocampus and entorhinal cortex compared to a single mild TBI. Additionally, in the entorhinal cortex, hemorrhagic lesions developed along with increased neurodegeneration and microgliosis. Axonal injury was observed bilaterally in the white matter tracts of the cerebellum and brainstem. When the inter-injury interval was extended to 48h, the extent of inflammation and cell death was similar to that caused by a single CHI suggesting that, in our mouse model, extending the inter-injury interval from 24h to 48h reduced the acute effects of repeated head injuries. The behavioral consequences of repeated CHI at 24h or 48h inter-injury intervals were evaluated in a ten week longitudinal study followed by histological analyses. Five CHI repeated at 24h inter-injury intervals produced motor and cognitive deficits that persisted throughout the ten week study period. Based upon histological analyses, the acute inflammation, axonal injury, and cell death observed acutely in the entorhinal cortex had resolved by ten weeks after injury. However, axonal degeneration and gliosis were present in the optic tract, optic nerve, and corticospinal tract. Extending the inter-injury interval to 48h did not significantly reduce motor and cognitive deficits, nor did it protect against chronic microgliosis and neurodegeneration in the visual pathway. Together these data suggested that some white matter areas may be more susceptible to our model of repeated mild TBI causing persistent neuropathology and behavioral deficits which were not substantially reduced with a 48h inter-injury interval. In many forms of TBI, microgliosis persists chronically and is believed to contribute to the cascade of neurodegeneration. To test the hypothesis that post-traumatic microgliosis contributes to mild TBI-related neuropathology, mice deficient in the growth factor progranulin (Grn-/-) received repeated CHI and were compared to wildtype, C57BL/6 mice. Penetrating head injury was previously reported to amplify the acute microglial response in Grn-/- mice. In our studies, repeated CHI induced an increased microglial response in Grn-/- mice compared to C57BL/6 mice at 48h, 7d, and 7mo after injury. However, no differences were observed between Grn-/- and WT mice with respect to their behavioral responses or amount of axonal injury or ongoing neurodegeneration at 7 months despite the robust differences in microgliosis. Dietary administration of ibuprofen initiated after the first injury reduced microglial activation within the optic tract of WT mice 7d after repeated mild TBI. However, a two week ibuprofen treatment regimen failed to affect the extent of behavioral dysfunction over 7mo or decrease chronic neurodegeneration, axon loss, or microgliosis in brain-injured Grn-.- mice when compared to standard diet. Together these studies underscore that mild TBIs, when repeated, can result in long lasting behavioral deficits accompanied by neurodegeneration within vulnerable brain regions. Our studies on the time interval between repeated head injuries suggest that a 48h inter-injury interval is within the window of mouse brain vulnerability to chronic motor and cognitive dysfunction and white matter injury. Data from our microglia modulation studies suggest that a chronically heightened microglial response following repeated mild TBI in progranulin deficient mice does not worsen chronic behavioral dysfunction or neurodegeneration. In addition, a two week ibuprofen treatment is not effective in reducing the microglial response, chronic behavioral dysfunction, or chronic neurodegeneration in progranulin deficient mice. Our data suggests that microglia are not a favorable target for the treatment of TBI.
APA, Harvard, Vancouver, ISO, and other styles
11

Patel, Ankita Anil. "Examination Of A Post-Stroke Drug Treatment For Its Effect On Blood Brain Barrier Permeability, And Gene Expression Changes In The Peri-Infarct Region." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1472131819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lowe, Patrick P. "Inebriated Immunity: Alcohol Affects Innate Immune Signaling in the Gut-Liver-Brain Axis." eScholarship@UMMS, 2018. https://escholarship.umassmed.edu/gsbs_diss/987.

Full text
Abstract:
Alcohol is a commonly consumed beverage, a drug of abuse and an important molecule affecting nearly every organ-system in the body. This project seeks to investigate the interplay between alcohol’s effects on critical organ-systems making up gut-liver-brain axis. Alcohol initially interacts with the gastrointestinal tract. Our research describes the alterations seen in intestinal microbiota following alcohol consumption in an acute-on-chronic model of alcoholic hepatitis and indicates that reducing intestinal bacteria using antibiotics protects from alcohol-induced intestinal cytokine expression, alcoholic liver disease and from inflammation in the brain. Alcohol-induced liver injury can occur due to direct hepatocyte metabolic dysregulation and from leakage of bacterial products from the intestine that initiates an immune response. Here, we will highlight the importance of this immune response, focusing on the role of infiltrating immune cells in human patients with alcoholic hepatitis and alcoholic cirrhosis. Using a small molecule inhibitor of CCR2/CCR5 chemokine receptor signaling in mice, we can protect the liver from damage and alcohol-induced inflammation. In the brain, we observe that chronic alcohol leads to the infiltration of macrophages in a region-specific manner. CCR2/CCR5 inhibition reduced macrophage infiltration, alcohol-induced inflammation and microglial changes. We also report that chronic alcohol shifts excitatory/inhibitory synapses in the hippocampus, possibly through complement-mediated remodeling. Finally, we show that anti-inflammasome inhibitors altered behavior by reducing alcohol consumption in female mice. Together, these data advance our understanding of the gut-liver-brain axis in alcoholism and suggest novel avenues of therapeutic intervention to inhibit organ pathology associated with alcohol consumption and reduce drinking.
APA, Harvard, Vancouver, ISO, and other styles
13

Ragas, Moner A. "Refining a Post-Stroke Pharmacological and Physical Treatment to Reduce Infarct Volume or Improve Functional Recovery, Using Gene Expression Changes in the Peri-Infarct Region to Examine Potential Mechanisms in Male and Female Rats." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1470395029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Litvin, David Gregory Litvin. "Immune-to-brain communication driven by sterile lung injury." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1528469492924001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Talbot, Sébastien. "Localisation, mécanisme d’induction et rôle physiopathologique du récepteur B1 des kinines dans de modèles expérimentaux de douleur chez le rat." Thèse, 2012. http://hdl.handle.net/1866/8501.

Full text
Abstract:
Les kinines sont des peptides neuro- et vaso- actifs impliqués dans les processus hémodynamiques, inflammatoires et douloureux. Leurs effets biologiques sont produits par l’entremise de deux types de récepteurs couplés aux protéines G, soit B1 (B1R) et B2 (B2R). Le B1R est inductible, son expression est augmentée à la suite d’un dommage tissulaire ou de l’exposition à des endotoxines bactériennes (lipopolysaccharide bactérien (LPS)), à des cytokines pro-inflammatoires (interleukine-1β (IL-1β), facteur de nécrose tumorale-α (TNF-α)) ou à des espèces réactives oxygénées (ROS). Les travaux présentés dans cette thèse avaient pour objectif d’élucider et/ou de raffiner les connaissances sur 1) la localisation, 2) le mécanisme d’induction et 3) le rôle physiopathologique du B1R dans des modèles expérimentaux de douleur chez le rat. Nos données ont permis de démontrer pour la première fois que le B1R est augmenté de façon significative dans la moelle épinière du rat diabétique de type 1 où il est localisé sur les fibres sensorielles de type C, les astrocytes et les cellules de la microglie (1er article). Également, l’inhibition de l’activation des cellules de la microglie supprime les neuropathies diabétiques, l’expression de médiateurs pro-inflammatoires ainsi que l’activité pro-nociceptive du B1R (2e et 3e articles). Finalement, nous avons démontré que la stimulation systémique du TRPV1 par la capsaïcine induit une surexpression du B1R au niveau microgliale, via un mécanisme impliquant l’augmentation de la production de ROS et possiblement de cytokines (4e article). Ces données nous permettent de mieux comprendre les mécanismes impliqués dans l’expression et l’activité du B1R. Aussi, elles nous permettent d’imaginer de nouvelles stratégies pour prévenir l’induction du B1R (inhibition du TRPV1) ou son activité délétère (inhibition de l’activation des cellules de la microglie) dans la douleur inflammatoire et neuropathique.
Kinins are vaso- and neuro-active peptides involved in hemodynamic, inflammatory and pain processes. Their biological effects are mediated by two G Protein Coupled Receptors (GPCR), termed B2R (constitutive) and B1R (inducible). B1R is expressed following tissue damage or exposure to bacterial endotoxin (LPS), pro-inflammatory cytokines (IL-1β, TNF-α) and increased reactive oxygen species (ROS) levels. The objectives of this doctoral thesis were to define 1) the localisation, 2) the mechanism of induction and 3) the pathophysiological role of B1R in experimental models of pain in rat. Our data showed that B1R is significantly upregulated on sensory C fibers, astrocytes and microglia in spinal cord of type 1 diabetic rat (paper #1). Moreover, pharmacological inhibition of microglia reversed diabetic pain neuropathy, reduced levels of pro-inflammatory mediators and prevented B1R pro-nociceptive activity (papers #2 and 3). Finally, our data showed that systemic stimulation of TRPV1 with capsaicin upregulated B1R expression, mainly on microglia, through the increase of ROS and possibly cytokines (paper #4). Altogether, these data increased our knowledge related to B1R mechanism of induction and B1R activity. Also, these data shed light on new strategies to prevent B1R expression (TRPV1 blockade) and B1R deleterious activity (inhibition of microglia activation) in inflammatory and neuropathic pain.
APA, Harvard, Vancouver, ISO, and other styles
16

Hachana, Soumaya. "Expression, distribution et fonction du récepteur B1 des kinines dans la rétine lors du diabète et de la néovascularisation choroïdienne chez le rat." Thèse, 2018. http://hdl.handle.net/1866/22596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Chahmi, Emna. "Rôle et localisation intraspinale du récepteur B1 des kinines dans la douleur neuropathique." Thèse, 2010. http://hdl.handle.net/1866/5036.

Full text
Abstract:
Le récepteur B1 des kinines (RB1) joue un rôle important dans l'inflammation et la nociception. Les sites de liaison du RB1 sont augmentés dans la moelle épinière et le ganglion de la racine dorsale (GRD) chez le rat après la ligature partielle du nerf sciatique (LPNS). Dans ce modèle classique de douleur neuropathique, le traitement aigu avec des antagonistes sélectifs du RB1 renverse l'hyperalgésie thermique mais non pas l’allodynie. Cette étude vise à définir dans ce modèle de LPNS: 1- les effets de traitements aigu et chronique avec des antagonistes du RB1 sur l’hyperalgésie thermique et les allodynies tactile et au froid; 2- la contribution du TRPV1 et du stress oxydatif dans la composante de la douleur neuropathique associée au RB1; 3- l’expression du RB1 au niveau de la moelle épinière lombaire, le GRD et le nerf sciatique par RT-PCR quantitatif (Reverse transcriptase-polymerase chain reaction); 4- la localisation cellulaire du RB1 dans la moelle épinière lombaire par microscopie confocale. L’hyperalgésie thermique et les allodynies tactile et au froid ont été mesurées par le réflexe de retrait de la patte arrière après l’application à la surface plantaire d’une source radiante de chaleur (méthode Hargreaves), de filaments de Von Frey et d’une goutte d’acétone qui produit une sensation de froid par évaporation. Nous avons montré, dans un premier temps, que l'hyperalgésie thermique et les allodynies tactile et au froid sont renversées par un traitement chronique avec l’antagoniste du RB1, SSR240612, administré par gavage à raison de 10 mg /kg/jr entre le 15 e et le 20 e jour après la ligature du nerf sciatique et par un traitement antioxydant, la N-acétyl-L-cystéine, administrée par gavage à la dose de 1g/kg/jr, 4jours précédant la ligature et pendant les 2 semaines après la ligature. Un traitement aigu avec le ii SSR240612 (10 mg/kg) ou avec un antagoniste du RB1 qui ne traverse pas la barrière hémato-encéphalique, le R-954 (2mg/kg, s.c.), n’a bloqué que l’hyperalgésie thermique. Dans un second temps, l’antagoniste du TRPV1, le SB366791, administré à raison de 1 mg/kg/jr par voie sous-cutanée du j-1 au j-14 a renversé l’allodynie tactile et l’hyperalgésie thermique. De plus, nous avons noté deux semaines après la LPNS, des augmentations significatives des niveaux d'ARNm du RB1 dans la moelle épinière lombaire, le nerf sciatique et le GRD du côté ipsilatéral à la ligature. Ces augmentations ont été renversées par le traitement avec la N-acétyl-L-cystéine et l’antagoniste du TRPV1. Le RB1 a été localisé au niveau des fibres de type C avec le marquage au CGRP (Calcitonin Gene-Related Peptide) et au niveau de la microglie utilisant le marquage au Iba-1 dans la moelle épinière lombaire des rats ayant subi une LPNS, 2 semaines plus tôt. Au terme de cette étude, nous avons suggéré que la surexpression du RB1 sur les fibres de type C contribuerait à l’hyperalgésie thermique alors que le RB1 sur la microglie dans la moelle épinière contribuerait aux allodynies tactile et au froid dans le modèle LPNS chez le rat. Le stress oxydatif pourrait être impliqué dans l’induction du RB1. Bien que le rôle du TRPV1 semble plutôt limité à la douleur thermique, il pourrait cependant agir via le RB1 sur les fibres de type C.
The kinin B1 receptor (B1R) plays an important role in inflammation and nociception. B1R binding sites are increased in the spinal cord and dorsal root ganglion (DRG) in rats after partial sciatic nerve ligation (PSNL). In this classic model of neuropathic pain, acute treatment with selective B1R antagonists reversed thermal hyperalgesia but not allodynia. This study aims at determining in this model of PSNL: 1- the acute and chronic effects of B1R antagonists on thermal hyperalgesia and tactile and cold allodynia; 2- the contribution of TRPV1 and the oxidative stress in the component of neuropathic pain associated to B1R; 3 - the expression of B1R in the lumbar spinal cord, the DRG and the sciatic nerve by quantitative RT-PCR (Reverse transcriptase-polymerase chain reaction); 4 - the cellular localization of B1R in the lumbar spinal cord by confocal microscopy. Thermal hyperalgesia and tactile and cold allodynia were measured by the reflex withdrawal of the hindpaw after application to the plantar surface of a radiant heat source (Hargreaves method), Von Frey filaments and a drop of acetone that produces a sensation of cold by evaporation. We have shown, firstly, that the thermal hyperalgesia and tactile and cold allodynia are reversed by chronic treatment with the B1R antagonist, SSR240612, administered by gavage at a dose of 10 mg/ kg / day from day 15 to day 20 after sciatic nerve ligation and with antioxidant treatment, N-acetyl-L-cysteine, administered by gavage at a dose of 1g /kg/ day, four days before ligation and for two weeks after ligation. Acute treatment with SSR240612 (10 mg/kg) or with the B1R antagonist R-954 (2 mg/kg, s.c.) which does not pass the blood-brain barrier blocked thermal hyperalgesia only.
APA, Harvard, Vancouver, ISO, and other styles
18

Moreira, Jesse Daniel. "Neural mechanisms promoting G-alpha-i2 protein dependent salt sensitive hypertension in the Sprague-Dawley rat." Thesis, 2021. https://hdl.handle.net/2144/42560.

Full text
Abstract:
Hypertension (HTN) is a critical public health issue estimated to contribute to 10% of deaths worldwide. Additionally, the salt sensitivity of blood pressure, an exaggerated pressor response to elevated dietary sodium intake, is estimated to be present in approximately 50% of the hypertensive population and 25% of the normotensive population. This is a critical problem as the average American consumes roughly three times the daily sodium intake recommended by the American Heart Association. Our laboratory has previously identified a critical role of Hypothalamic Paraventricular Nucleus (PVN) Gαi2 proteins in the maintenance of salt resistance and normotension in the rat. Salt resistant rats such as the Sprague-Dawley (SD) rat site- specifically upregulate these proteins in response to elevated dietary sodium intake to facilitate sympathoinhibition, natriuresis, and normotension. In contrast, in the Dahl Salt Sensitive (DSS) rat, and in salt resistant rats in which this protein is experimentally downregulated, our laboratory has identified the development of renal nerve-dependent sympathoexcitation and salt-sensitive hypertension (ssHTN). However, the neural mechanisms whereby PVN Gαi2 proteins facilitate salt resistance are unclear. In addition, there is a robust literature in other rat models of HTN suggesting that both neuroinflammation in the PVN as well as an imbalance between PVN inhibitory GABAergic and excitatory glutamatergic signaling contribute to elevations in sympathetic outflow to promote HTN. In this study, SD rats infused chronically with either targeted Gαi2 oligodeoxynucleotides (ODNs) or control scrambled (SCR) ODNs and challenged with either normal (0.6% NaCl) or high-salt (4% NaCl) diets were used to demonstrate that 1) PVN microglial activation and associated pro-inflammatory cytokine production contribute to the development of Gαi2 protein dependent ssHTN, 2) sex-dependent PVN microglial-mediated neuroinflammation precedes and likely drives the development of sympathoexcitation following high dietary sodium administration in male but not female Gαi2 protein dependent ssHTN, and 3) PVN GABAergic and glutamatergic signaling is disrupted and imbalanced, favoring excitation over inhibition, following elevated dietary sodium intake in Gαi2 protein dependent ssHTN. Together, these findings shed light on the pathological neural processes that occur in the absence of PVN Gαi2 protein upregulation and reveal potential mechanistic targets in the management of ssHTN.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography