Journal articles on the topic 'Microglie – Physiologie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microglie – Physiologie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lyons, Susan A., Andrea Pastor, Carsten Ohlemeyer, Oliver Kann, Frank Wiegand, Konstantin Prass, Felix Knapp, Helmut Kettenmann, and Ulrich Dirnagl. "Distinct Physiologic Properties of Microglia and Blood-Borne Cells in Rat Brain Slices After Permanent Middle Cerebral Artery Occlusion." Journal of Cerebral Blood Flow & Metabolism 20, no. 11 (November 2000): 1537–49. http://dx.doi.org/10.1097/00004647-200011000-00003.
Full textEyo, Ukpong B., and Long-Jun Wu. "Bidirectional Microglia-Neuron Communication in the Healthy Brain." Neural Plasticity 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/456857.
Full textWong, Wai T., Minhua Wang, and Wei Li. "Regulation of microglia by ionotropic glutamatergic and GABAergic neurotransmission." Neuron Glia Biology 7, no. 1 (February 2011): 41–46. http://dx.doi.org/10.1017/s1740925x11000123.
Full textPeggion, Caterina, Roberto Stella, Paolo Lorenzon, Enzo Spisni, Alessandro Bertoli, and Maria Lina Massimino. "Microglia in Prion Diseases: Angels or Demons?" International Journal of Molecular Sciences 21, no. 20 (October 20, 2020): 7765. http://dx.doi.org/10.3390/ijms21207765.
Full textAbdul, Yasir, Sarah Jamil, Lianying He, Weiguo Li, and Adviye Ergul. "Endothelin-1 (ET-1) promotes a proinflammatory microglia phenotype in diabetic conditions." Canadian Journal of Physiology and Pharmacology 98, no. 9 (September 2020): 596–603. http://dx.doi.org/10.1139/cjpp-2019-0679.
Full textEder, Claudia. "Ion channels in microglia (brain macrophages)." American Journal of Physiology-Cell Physiology 275, no. 2 (August 1, 1998): C327—C342. http://dx.doi.org/10.1152/ajpcell.1998.275.2.c327.
Full textZhang, Xiang, Yiming Wang, Hongquan Dong, Ying Xu, and Shu Zhang. "Induction of Microglial Activation by Mediators Released from Mast Cells." Cellular Physiology and Biochemistry 38, no. 4 (2016): 1520–31. http://dx.doi.org/10.1159/000443093.
Full textLopez-Lopez, Andrea, Begoña Villar-Cheda, Aloia Quijano, Pablo Garrido-Gil, María Garcia-Garrote, Carmen Díaz-Ruiz, Ana Muñoz, and José L. Labandeira-Garcia. "NADPH-Oxidase, Rho-Kinase and Autophagy Mediate the (Pro)renin-Induced Pro-Inflammatory Microglial Response and Enhancement of Dopaminergic Neuron Death." Antioxidants 10, no. 9 (August 25, 2021): 1340. http://dx.doi.org/10.3390/antiox10091340.
Full textHe, Mingfeng, Hongquan Dong, Yahui Huang, Shunmei Lu, Shu Zhang, Yanning Qian, and Wenjie Jin. "Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells." Cellular Physiology and Biochemistry 38, no. 3 (2016): 859–70. http://dx.doi.org/10.1159/000443040.
Full textLai, Aaron Y., and Kathryn G. Todd. "Microglia in cerebral ischemia: molecular actions and interactionsThis paper is one of a selection of papers published in this Special Issue, entitled Young Investigator's Forum." Canadian Journal of Physiology and Pharmacology 84, no. 1 (January 2006): 49–59. http://dx.doi.org/10.1139/y05-143.
Full textZhang, Yu, Weida Gao, Kongbin Yang, Haiquan Tao, and Haicheng Yang. "Salt-Inducible Kinase 1 (SIK1) is Induced by Alcohol and Suppresses Microglia Inflammation via NF-κB Signaling." Cellular Physiology and Biochemistry 47, no. 4 (2018): 1411–21. http://dx.doi.org/10.1159/000490831.
Full textCarey, Sean David, Sarah Alshawi, Mondona McCann, and Kathleen Maguire-Zeiss. "4395 alpha-Synuclein Induced Reactive Gliosis." Journal of Clinical and Translational Science 4, s1 (June 2020): 2. http://dx.doi.org/10.1017/cts.2020.52.
Full textNam, Kyong Nyon, Hoon-Ji Jung, Mi-Hyun Kim, Chulhun Kang, Woo-Sang Jung, Ki-Ho Cho, and Eunjoo H. Lee. "Chunghyuldan attenuates brain microglial inflammatory response." Canadian Journal of Physiology and Pharmacology 87, no. 6 (June 2009): 448–54. http://dx.doi.org/10.1139/y09-028.
Full textNikodemova, Maria, Alissa L. Small, Rebecca S. Kimyon, and Jyoti J. Watters. "Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age." Physiological Genomics 48, no. 5 (May 2016): 336–44. http://dx.doi.org/10.1152/physiolgenomics.00129.2015.
Full textLi, Xuepei, Junwen Guan, Zhou Jiang, Shuting Cheng, Wang Hou, Junjie Yao, and Zhengrong Wang. "Microglial Exosome miR-7239-3p Promotes Glioma Progression by Regulating Circadian Genes." Neuroscience Bulletin 37, no. 4 (February 2, 2021): 497–510. http://dx.doi.org/10.1007/s12264-020-00626-z.
Full textChagas, Luana da Silva, Poliana Capucho Sandre, Natalia Cristina Aparecida Ribeiro e Ribeiro, Henrique Marcondes, Priscilla Oliveira Silva, Wilson Savino, and Claudio A. Serfaty. "Environmental Signals on Microglial Function during Brain Development, Neuroplasticity, and Disease." International Journal of Molecular Sciences 21, no. 6 (March 19, 2020): 2111. http://dx.doi.org/10.3390/ijms21062111.
Full textColton, C. A., M. Jia, M. X. Li, and D. L. Gilbert. "K+ modulation of microglial superoxide production: involvement of voltage-gated Ca2+ channels." American Journal of Physiology-Cell Physiology 266, no. 6 (June 1, 1994): C1650—C1655. http://dx.doi.org/10.1152/ajpcell.1994.266.6.c1650.
Full textSchilling, Tom, Fred N. Quandt, Vladimir V. Cherny, Wei Zhou, Uwe Heinemann, Thomas E. Decoursey, and Claudia Eder. "Upregulation of Kv1.3 K+ channels in microglia deactivated by TGF-β." American Journal of Physiology-Cell Physiology 279, no. 4 (October 1, 2000): C1123—C1134. http://dx.doi.org/10.1152/ajpcell.2000.279.4.c1123.
Full textAzam, Shofiul, Md Ezazul Haque, In-Su Kim, and Dong-Kug Choi. "Microglial Turnover in Ageing-Related Neurodegeneration: Therapeutic Avenue to Intervene in Disease Progression." Cells 10, no. 1 (January 14, 2021): 150. http://dx.doi.org/10.3390/cells10010150.
Full textvon Maydell, Djuna, and Mehdi Jorfi. "The interplay between microglial states and major risk factors in Alzheimer’s disease through the eyes of single-cell RNA-sequencing: beyond black and white." Journal of Neurophysiology 122, no. 4 (October 1, 2019): 1291–96. http://dx.doi.org/10.1152/jn.00395.2019.
Full textWu, Long-Jun, and Min Zhuo. "Resting Microglial Motility Is Independent of Synaptic Plasticity in Mammalian Brain." Journal of Neurophysiology 99, no. 4 (April 2008): 2026–32. http://dx.doi.org/10.1152/jn.01210.2007.
Full textKettenmann, Helmut, Uwe-Karsten Hanisch, Mami Noda, and Alexei Verkhratsky. "Physiology of Microglia." Physiological Reviews 91, no. 2 (April 2011): 461–553. http://dx.doi.org/10.1152/physrev.00011.2010.
Full textWang, Hong-Mei, Ting Zhang, Jian-Kang Huang, Jing-Yan Xiang, Jing-jiong Chen, Jian-Liang Fu, and Yu-Wu Zhao. "Edaravone Attenuates the Proinflammatory Response in Amyloid-β-Treated Microglia by Inhibiting NLRP3 Inflammasome-Mediated IL-1β Secretion." Cellular Physiology and Biochemistry 43, no. 3 (2017): 1113–25. http://dx.doi.org/10.1159/000481753.
Full textOsipova, Elena D., Oxana V. Semyachkina-Glushkovskaya, Andrey V. Morgun, Natalia V. Pisareva, Natalia A. Malinovskaya, Elizaveta B. Boitsova, Elena A. Pozhilenkova, et al. "Gliotransmitters and cytokines in the control of blood-brain barrier permeability." Reviews in the Neurosciences 29, no. 5 (July 26, 2018): 567–91. http://dx.doi.org/10.1515/revneuro-2017-0092.
Full textTwig, Gilad, Solomon A. Graf, Mark A. Messerli, Peter J. S. Smith, Seung H. Yoo, and Orian S. Shirihai. "Synergistic amplification of β-amyloid- and interferon-γ-induced microglial neurotoxic response by the senile plaque component chromogranin A." American Journal of Physiology-Cell Physiology 288, no. 1 (January 2005): C169—C175. http://dx.doi.org/10.1152/ajpcell.00308.2004.
Full textFernández-Mendívil, Cristina, Miguel A. Arreola, Lindsay A. Hohsfield, Kim N. Green, and Manuela G. Lopez. "Aging and Progression of Beta-Amyloid Pathology in Alzheimer’s Disease Correlates with Microglial Heme-Oxygenase-1 Overexpression." Antioxidants 9, no. 7 (July 21, 2020): 644. http://dx.doi.org/10.3390/antiox9070644.
Full textBrawek, Bianca, Maryna Skok, and Olga Garaschuk. "Changing Functional Signatures of Microglia along the Axis of Brain Aging." International Journal of Molecular Sciences 22, no. 3 (January 22, 2021): 1091. http://dx.doi.org/10.3390/ijms22031091.
Full textSamuels, Stuart E., Jeffrey B. Lipitz, Gerhard Dahl, and Kenneth J. Muller. "Neuroglial ATP release through innexin channels controls microglial cell movement to a nerve injury." Journal of General Physiology 136, no. 4 (September 27, 2010): 425–42. http://dx.doi.org/10.1085/jgp.201010476.
Full textAshwell, K. W. S., H. Holländer, W. Streit, and J. Stone. "The appearance and distribution of microglia in the developing retina of the rat." Visual Neuroscience 2, no. 5 (May 1989): 437–48. http://dx.doi.org/10.1017/s0952523800012335.
Full textMiao, Hongsheng, Runming Li, Cong Han, Xiuzhen Lu, and Hang Zhang. "Minocycline promotes posthemorrhagic neurogenesis via M2 microglia polarization via upregulation of the TrkB/BDNF pathway in rats." Journal of Neurophysiology 120, no. 3 (September 1, 2018): 1307–17. http://dx.doi.org/10.1152/jn.00234.2018.
Full textRonaldson, Patrick T., and Thomas P. Davis. "Regulation of blood–brain barrier integrity by microglia in health and disease: A therapeutic opportunity." Journal of Cerebral Blood Flow & Metabolism 40, no. 1_suppl (September 14, 2020): S6—S24. http://dx.doi.org/10.1177/0271678x20951995.
Full textZhang, Ying, Jia Yan, Rong Hu, Yu Sun, Yiwen Ma, Zhifeng Chen, and Hong Jiang. "Microglia are Involved in Pruritus Induced by DNFB via the CX3CR1/p38 MAPK Pathway." Cellular Physiology and Biochemistry 35, no. 3 (2015): 1023–33. http://dx.doi.org/10.1159/000373929.
Full textZhang, Xiang, Hongquan Dong, Susu Zhang, Shunmei Lu, Jie Sun, and Yanning Qian. "Enhancement of LPS-Induced Microglial Inflammation Response via TLR4 Under High Glucose Conditions." Cellular Physiology and Biochemistry 35, no. 4 (2015): 1571–81. http://dx.doi.org/10.1159/000373972.
Full textZeng, Xianzhang, Hongliang Ren, Yana Zhu, Ruru Zhang, Xinxin Xue, Tao Tao, and Hongjie Xi. "Gp91phox (NOX2) in Activated Microglia Exacerbates Neuronal Damage Induced by Oxygen Glucose Deprivation and Hyperglycemia in an in Vitro Model." Cellular Physiology and Biochemistry 50, no. 2 (2018): 783–97. http://dx.doi.org/10.1159/000494243.
Full textBernhardi, R. V., and J. G. Nicholls. "Transformation of leech microglial cell morphology and properties following co-culture with injured central nervous system tissue." Journal of Experimental Biology 202, no. 6 (March 15, 1999): 723–28. http://dx.doi.org/10.1242/jeb.202.6.723.
Full textZhang, Jianfeng, Junfeng Wu, Weichen Zeng, Kai Yao, Hengbing Zu, and Yongfei Zhao. "Function of Thymosin Beta-4 in Ethanol-Induced Microglial Activation." Cellular Physiology and Biochemistry 38, no. 6 (2016): 2230–38. http://dx.doi.org/10.1159/000445578.
Full textYu, Yong-Peng, Xiang-Lin Chi, and Li-Jun Liu. "Corrigendum to “A Hypothesis: Hydrogen Sulfide Might Be Neuroprotective against Subarachnoid Hemorrhage Induced Brain Injury”." Scientific World Journal 2020 (September 27, 2020): 1–11. http://dx.doi.org/10.1155/2020/8364250.
Full textYu, Yong-Peng, Xiang-Lin Chi, and Li-Jun Liu. "A Hypothesis: Hydrogen Sulfide Might Be Neuroprotective against Subarachnoid Hemorrhage Induced Brain Injury." Scientific World Journal 2014 (February 23, 2014): 1–9. http://dx.doi.org/10.1155/2014/432318.
Full textTuan, L., C. Tsao, and L. Lee. "0285 Preventative Voluntary Exercise Ameliorate Synaptic-Pruning Defects on Sleep-Deprived Adolescent." Sleep 43, Supplement_1 (April 2020): A108. http://dx.doi.org/10.1093/sleep/zsaa056.283.
Full textKaiser, Sandra, Sibylle Frase, Lisa Selzner, Judith-Lisa Lieberum, Jakob Wollborn, Wolf-Dirk Niesen, Niels Alexander Foit, Dieter Henrik Heiland, and Nils Schallner. "Neuroprotection after Hemorrhagic Stroke Depends on Cerebral Heme Oxygenase-1." Antioxidants 8, no. 10 (October 19, 2019): 496. http://dx.doi.org/10.3390/antiox8100496.
Full textAlves, C. Henrique, Rosa Fernandes, Ana Raquel Santiago, and António Francisco Ambrósio. "Microglia Contribution to the Regulation of the Retinal and Choroidal Vasculature in Age-Related Macular Degeneration." Cells 9, no. 5 (May 14, 2020): 1217. http://dx.doi.org/10.3390/cells9051217.
Full textKim, Hyo Geun, Ji-Young Kim, Wei-Wan Whang, and Myung Sook Oh. "Neuroprotective effect of Chunghyuldan from amyloid beta oligomer induced neuroinflammation in vitro and in vivo." Canadian Journal of Physiology and Pharmacology 92, no. 6 (June 2014): 429–37. http://dx.doi.org/10.1139/cjpp-2013-0229.
Full textWang, Yanhe, Zhiyuan Yin, Lixiong Gao, Dayu Sun, Xisu Hu, Langyue Xue, Jiaman Dai, et al. "Curcumin Delays Retinal Degeneration by Regulating Microglia Activation in the Retina of rd1 Mice." Cellular Physiology and Biochemistry 44, no. 2 (2017): 479–93. http://dx.doi.org/10.1159/000485085.
Full textKumar, Sanjay, Brennetta J. Crenshaw, Sparkle D. Williams, Courtnee’ R. Bell, Qiana L. Matthews, and Brian Sims. "Cocaine‐Specific Effects on Exosome Biogenesis in Microglial Cells." Neurochemical Research 46, no. 4 (February 8, 2021): 1006–18. http://dx.doi.org/10.1007/s11064-021-03231-2.
Full textJiang, Mei, Hairong Wang, Mingming Jin, Xuelian Yang, Haifeng Ji, Yufeng Jiang, Hanwen Zhang, et al. "Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization." Cellular Physiology and Biochemistry 47, no. 2 (2018): 864–78. http://dx.doi.org/10.1159/000490078.
Full textJung, Yieun, So-Hee Ahn, Hyunju Park, Sang Hui Park, Kyungsun Choi, Chulhee Choi, Jihee Lee Kang, and Youn-Hee Choi. "MCP-1 and MIP-3α Secreted from Necrotic Cell-Treated Glioblastoma Cells Promote Migration/Infiltration of Microglia." Cellular Physiology and Biochemistry 48, no. 3 (2018): 1332–46. http://dx.doi.org/10.1159/000492092.
Full textSummy-Long, Joan Y., and Sanmei Hu. "Peripheral osmotic stimulation inhibits the brain's innate immune response to microdialysis of acidic perfusion fluid adjacent to supraoptic nucleus." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 297, no. 5 (November 2009): R1532—R1545. http://dx.doi.org/10.1152/ajpregu.00340.2009.
Full textGallenga, Carla Enrica, Maria Lonardi, Sofia Pacetti, Sara Silvia Violanti, Paolo Tassinari, Francesco Di Virgilio, Mauro Tognon, and Paolo Perri. "Molecular Mechanisms Related to Oxidative Stress in Retinitis Pigmentosa." Antioxidants 10, no. 6 (May 26, 2021): 848. http://dx.doi.org/10.3390/antiox10060848.
Full textLim, Ji-Youn, Donggeun Sul, Bang Yeon Hwang, Kwang Woo Hwang, Ki-Yeol Yoo, and So-Young Park. "Suppression of LPS-induced inflammatory responses by inflexanin B in BV2 microglial cells." Canadian Journal of Physiology and Pharmacology 91, no. 2 (February 2013): 141–48. http://dx.doi.org/10.1139/cjpp-2012-0242.
Full textStokes, Jennifer A., Tara E. Arbogast, Esteban A. Moya, Zhenxing Fu, and Frank L. Powell. "Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia." Journal of Neurophysiology 117, no. 4 (April 1, 2017): 1625–35. http://dx.doi.org/10.1152/jn.00525.2016.
Full text