Journal articles on the topic 'Microheaters'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microheaters.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kharbanda, D. K., N. Suri, and P. K. Khanna. "Design, Fabrication and Characterization of Inter-Layer Microheaters Using LTCC Technology." ECS Journal of Solid State Science and Technology 11, no. 3 (March 1, 2022): 037002. http://dx.doi.org/10.1149/2162-8777/ac5a70.
Full textLi, Dezhao, Yangtao Ruan, Chuangang Chen, Wenfeng He, Cheng Chi, and Qiang Lin. "Design and Thermal Analysis of Flexible Microheaters." Micromachines 13, no. 7 (June 29, 2022): 1037. http://dx.doi.org/10.3390/mi13071037.
Full textZhang, Lunjia, Pan Zhang, Ronghang Wang, Renchang Zhang, Zhenming Li, Wei Liu, Qifu Wang, Meng Gao, and Lin Gui. "A Performance-Enhanced Liquid Metal-Based Microheater with Parallel Ventilating Side-Channels." Micromachines 11, no. 2 (January 24, 2020): 133. http://dx.doi.org/10.3390/mi11020133.
Full textYang, Tzu-Sen, and Jin-Chern Chiou. "A High-Efficiency Driver Circuit for a Gas-Sensor Microheater Based on a Switch-Mode DC-to-DC Converter." Sensors 20, no. 18 (September 19, 2020): 5367. http://dx.doi.org/10.3390/s20185367.
Full textPartridge, P. G., G. Meaden, E. D. Nicholson, J. A. Nicholson, and M. N. R. Ashfold. "Diamond fibre microheaters." Materials Science and Technology 13, no. 7 (July 1997): 551–54. http://dx.doi.org/10.1179/mst.1997.13.7.551.
Full textSingh, Surinder, Alok Jejusaria, Jaspreet Singh, Munish Vashishath, and Dinesh Kumar. "Comparative study of titanium, platinum, and titanium nitride thin films for micro-elecrto mechanical systems (MEMS) based micro-heaters." AIP Advances 12, no. 9 (September 1, 2022): 095202. http://dx.doi.org/10.1063/6.0001892.
Full textGaiardo, Andrea, David Novel, Elia Scattolo, Michele Crivellari, Antonino Picciotto, Francesco Ficorella, Erica Iacob, et al. "Optimization of a Low-Power Chemoresistive Gas Sensor: Predictive Thermal Modelling and Mechanical Failure Analysis." Sensors 21, no. 3 (January 25, 2021): 783. http://dx.doi.org/10.3390/s21030783.
Full textXu, Ruijia, and Yu-Sheng Lin. "Tunable Infrared Metamaterial Emitter for Gas Sensing Application." Nanomaterials 10, no. 8 (July 24, 2020): 1442. http://dx.doi.org/10.3390/nano10081442.
Full textZhao, Yiyuan, Henk-Willem Veltkamp, Thomas V. P. Schut, Remco G. P. Sanders, Bogdan Breazu, Jarno Groenesteijn, Meint J. de Boer, Remco J. Wiegerink, and Joost C. Lötters. "Heavily-Doped Bulk Silicon Sidewall Electrodes Embedded between Free-Hanging Microfluidic Channels by Modified Surface Channel Technology." Micromachines 11, no. 6 (May 31, 2020): 561. http://dx.doi.org/10.3390/mi11060561.
Full textKalinin, Ivan A., Ilya V. Roslyakov, Dmitry N. Khmelenin, and Kirill S. Napolskii. "Long-Term Operational Stability of Ta/Pt Thin-Film Microheaters: Impact of the Ta Adhesion Layer." Nanomaterials 13, no. 1 (December 25, 2022): 94. http://dx.doi.org/10.3390/nano13010094.
Full textChen, Tailian, and Jacob N. Chung. "An Experimental Study of Miniature-Scale Pool Boiling." Journal of Heat Transfer 125, no. 6 (November 19, 2003): 1074–86. http://dx.doi.org/10.1115/1.1603773.
Full textErickson, John R., Nicholas A. Nobile, Daniel Vaz, Gouri Vinod, Carlos A. Ríos Ocampo, Yifei Zhang, Juejun Hu, Steven A. Vitale, Feng Xiong, and Nathan Youngblood. "Comparing the thermal performance and endurance of resistive and PIN silicon microheaters for phase-change photonic applications." Optical Materials Express 13, no. 6 (May 17, 2023): 1677. http://dx.doi.org/10.1364/ome.488564.
Full textHintermüller, Marcus A., Christina Offenzeller, Marcel Knoll, Andreas Tröls, and Bernhard Jakoby. "Parallel Droplet Deposition via a Superhydrophobic Plate with Integrated Heater and Temperature Sensors." Micromachines 11, no. 4 (March 28, 2020): 354. http://dx.doi.org/10.3390/mi11040354.
Full textShen, Yigang, Yaxiaer Yalikun, Yusufu Aishan, Nobuyuki Tanaka, Asako Sato, and Yo Tanaka. "Area cooling enables thermal positioning and manipulation of single cells." Lab on a Chip 20, no. 20 (2020): 3733–43. http://dx.doi.org/10.1039/d0lc00523a.
Full textByers, Kristin M., Li-Kai Lin, Taylor J. Moehling, Lia Stanciu, and Jacqueline C. Linnes. "Versatile printed microheaters to enable low-power thermal control in paper diagnostics." Analyst 145, no. 1 (2020): 184–96. http://dx.doi.org/10.1039/c9an01546a.
Full textLiu, Liyu, Suili Peng, Xize Niu, and Weijia Wen. "Microheaters fabricated from a conducting composite." Applied Physics Letters 89, no. 22 (November 27, 2006): 223521. http://dx.doi.org/10.1063/1.2400065.
Full textSingh, Avneet, Anjali Sharma, Nidhi Dhull, Anil Arora, Monika Tomar, and Vinay Gupta. "MEMS-based microheaters integrated gas sensors." Integrated Ferroelectrics 193, no. 1 (October 13, 2018): 72–87. http://dx.doi.org/10.1080/10584587.2018.1514877.
Full textKhan, Usman, Tae-Ho Kim, Kang Hyuck Lee, Ju-Hyuck Lee, Hong-Joon Yoon, Ravi Bhatia, Ivaturi Sameera, et al. "Self-powered transparent flexible graphene microheaters." Nano Energy 17 (October 2015): 356–65. http://dx.doi.org/10.1016/j.nanoen.2015.09.007.
Full textVenediktov, I. O., M. S. Elezov, A. I. Prokhodtsov, V. V. Kovalyuk, P. P. An, A. D. Golikov, M. L. Shcherbatenko, D. V. Sych, and G. N. Goltsman. "Performance of microheaters for tunable on-chip interferometer." Journal of Physics: Conference Series 2086, no. 1 (December 1, 2021): 012173. http://dx.doi.org/10.1088/1742-6596/2086/1/012173.
Full textVolkov, Ivan A., Nikolay P. Simonenko, Alexey A. Efimov, Tatiana L. Simonenko, Ivan S. Vlasov, Vladislav I. Borisov, Pavel V. Arsenov, et al. "Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors." Applied Sciences 11, no. 2 (January 7, 2021): 526. http://dx.doi.org/10.3390/app11020526.
Full textVolkov, Ivan A., Nikolay P. Simonenko, Alexey A. Efimov, Tatiana L. Simonenko, Ivan S. Vlasov, Vladislav I. Borisov, Pavel V. Arsenov, et al. "Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors." Applied Sciences 11, no. 2 (January 7, 2021): 526. http://dx.doi.org/10.3390/app11020526.
Full textCardiel, Joshua J., Ya Zhao, Pablo De La Iglesia, Lilo D. Pozzo, and Amy Q. Shen. "Turning up the heat on wormlike micelles with a hydrotopic salt in microfluidics." Soft Matter 10, no. 46 (2014): 9300–9312. http://dx.doi.org/10.1039/c4sm01920b.
Full textChen, Tao, Zhangqi Dang, Zeyu Deng, Zhenming Ding, and Ziyang Zhang. "Micro Light Flow Controller on a Programmable Waveguide Engine." Micromachines 13, no. 11 (November 16, 2022): 1990. http://dx.doi.org/10.3390/mi13111990.
Full textChen, Jyh Jian, Tsung Sheng Sheu, and Yuan Jyun Wang. "Continuous-Flow DNA Amplification Device Employing Microheaters." Defect and Diffusion Forum 366 (April 2016): 17–30. http://dx.doi.org/10.4028/www.scientific.net/ddf.366.17.
Full textSwart, N. R., and A. Nathan. "Coupled electrothermal modeling of microheaters using SPICE." IEEE Transactions on Electron Devices 41, no. 6 (June 1994): 920–25. http://dx.doi.org/10.1109/16.293302.
Full textAbel, Mark R., Samuel Graham, Justin R. Serrano, Sean P. Kearney, and Leslie M. Phinney. "Raman Thermometry of Polysilicon Microelectro-mechanical Systems in the Presence of an Evolving Stress." Journal of Heat Transfer 129, no. 3 (May 31, 2006): 329–34. http://dx.doi.org/10.1115/1.2409996.
Full textFalco, Aniello, Francisco J. Romero, Florin C. Loghin, Alina Lyuleeva, Markus Becherer, Paolo Lugli, Diego P. Morales, Noel Rodriguez, Jose F. Salmerón, and Almudena Rivadeneyra. "Printed and Flexible Microheaters Based on Carbon Nanotubes." Nanomaterials 10, no. 9 (September 19, 2020): 1879. http://dx.doi.org/10.3390/nano10091879.
Full textChen, Tailian, and J. N. Chung. "Coalescence of bubbles in nucleate boiling on microheaters." International Journal of Heat and Mass Transfer 45, no. 11 (May 2002): 2329–41. http://dx.doi.org/10.1016/s0017-9310(01)00334-9.
Full textJinsol Je and Jungchul Lee. "Design, Fabrication, and Characterization of Liquid Metal Microheaters." Journal of Microelectromechanical Systems 23, no. 5 (October 2014): 1156–63. http://dx.doi.org/10.1109/jmems.2014.2307358.
Full textJayaraman, Balaji, Navakanta Bhat, and Rudra Pratap. "Thermal characterization of microheaters from the dynamic response." Journal of Micromechanics and Microengineering 19, no. 8 (July 9, 2009): 085006. http://dx.doi.org/10.1088/0960-1317/19/8/085006.
Full textVisvanathan, Karthik, and Yogesh B. Gianchandani. "Microheaters based on ultrasonic actuation of piezoceramic elements." Journal of Micromechanics and Microengineering 21, no. 8 (July 19, 2011): 085030. http://dx.doi.org/10.1088/0960-1317/21/8/085030.
Full textFilipovic, Lado. "Theoretical examination of thermo-migration in novel platinum microheaters." Microelectronics Reliability 123 (August 2021): 114219. http://dx.doi.org/10.1016/j.microrel.2021.114219.
Full textLu, Jingyu, Ting Xu, and Jianmin Miao. "Temperature Control of Microheaters for Localized Carbon Nanotube Synthesis." Journal of Nanoscience and Nanotechnology 11, no. 12 (December 1, 2011): 10498–502. http://dx.doi.org/10.1166/jnn.2011.4024.
Full textArmstrong, Philip R., Merlin L. Mah, Kyle D. Olson, Lucas N. Taylor, and Joseph J. Talghader. "Reduction of thermal emission background in high temperature microheaters." Journal of Micromechanics and Microengineering 26, no. 5 (April 5, 2016): 055004. http://dx.doi.org/10.1088/0960-1317/26/5/055004.
Full textTian, W. C., and S. W. Pang. "Freestanding microheaters in Si with high aspect ratio microstructures." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 20, no. 3 (2002): 1008. http://dx.doi.org/10.1116/1.1479363.
Full textTian, W. C., and S. W. Pang. "Thick and thermally isolated Si microheaters for microfabricated preconcentrators." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, no. 1 (2003): 274. http://dx.doi.org/10.1116/1.1539065.
Full textJia, Qiannan, Weiwei Tang, Wei Yan, and Min Qiu. "Fibre tapering using plasmonic microheaters and deformation-induced pull." Light: Advanced Manufacturing 4, no. 1 (2023): 1. http://dx.doi.org/10.37188/lam.2023.005.
Full textRoy, Avisek, Mehdi Azadmehr, Bao Q. Ta, Philipp Häfliger, and Knut E. Aasmundtveit. "Design and Fabrication of CMOS Microstructures to Locally Synthesize Carbon Nanotubes for Gas Sensing." Sensors 19, no. 19 (October 8, 2019): 4340. http://dx.doi.org/10.3390/s19194340.
Full textCheng, Ping, Hui-Ying Wu, and Fang-Jun Hong. "Phase-Change Heat Transfer in Microsystems." Journal of Heat Transfer 129, no. 2 (September 20, 2006): 101–8. http://dx.doi.org/10.1115/1.2410008.
Full textKociubiński, Andrzej, Dawid Zarzeczny, Mariusz Duk, and Tomasz Bieniek. "Analysis of Heat Flow for In Vitro Culture Monitored by Impedance Measurement." Energies 15, no. 21 (November 4, 2022): 8231. http://dx.doi.org/10.3390/en15218231.
Full textJithin, M. A., K. L. Ganapathi, M. Ambresh, Pavan Nukala, N. K. Udayashankar, and S. Mohan. "Development of titanium nitride thin film microheaters using laser micromachining." Vacuum 197 (March 2022): 110795. http://dx.doi.org/10.1016/j.vacuum.2021.110795.
Full textSoo Kim, Min, Bang Weon Lee, Yong Soo Lee, Dong Sik Shim, and Keon Kuk. "Effects of Thin Film Layers on Actuating Performance of Microheaters." Journal of Imaging Science and Technology 51, no. 5 (2007): 445. http://dx.doi.org/10.2352/j.imagingsci.technol.(2007)51:5(445).
Full textLin, Wei-Chih, Yu-Ching Lin, Masayoshi Esashi, and Ashwin A. Seshia. "In-Situ Hydrothermal Synthesis of Zinc Oxide Nanostructures Using Microheaters." IEEE Transactions on Nanotechnology 14, no. 6 (November 2015): 1046–53. http://dx.doi.org/10.1109/tnano.2015.2468076.
Full textAtabaki, A. H., E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi. "Optimization of metallic microheaters for high-speed reconfigurable silicon photonics." Optics Express 18, no. 17 (August 11, 2010): 18312. http://dx.doi.org/10.1364/oe.18.018312.
Full textPimentel-Domínguez, Reinher, Paola Moreno-Álvarez, Mathieu Hautefeuille, Anahí Chavarría, and Juan Hernández-Cordero. "Photothermal lesions in soft tissue induced by optical fiber microheaters." Biomedical Optics Express 7, no. 4 (March 3, 2016): 1138. http://dx.doi.org/10.1364/boe.7.001138.
Full textBi, Jingliang, Xipeng Lin, David M. Christopher, and Xuefang Li. "Analysis of coalescence phenomena on microheaters at two surface superheats." International Journal of Heat and Mass Transfer 67 (December 2013): 798–809. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.082.
Full textVasiliev, Alexey A., Vitaliy P. Kim, Sergey V. Tkachev, Denis Yu Kornilov, Sergey P. Gubin, Ivan S. Vlasov, Igor E. Jahatspanian, and Alexy S. Sizov. "Platinum Based Material for Additive Technology of Gas Sensors." Proceedings 2, no. 13 (December 20, 2018): 738. http://dx.doi.org/10.3390/proceedings2130738.
Full textShin, Sanghun, Heewon Lee, and Hongyun So. "Photocurrents Recovery in GaN UV Sensors Using Microheaters at Low Temperatures." IEEE Access 9 (2021): 54184–89. http://dx.doi.org/10.1109/access.2021.3070916.
Full textLin, Wei-Chih, Chin-Jui Shih, Ching-Chen Wu, and Ashwin A. Seshia. "Synthesis of Zinc Oxide Nanostructures by Microheaters in the Ambient Environment." IEEE Transactions on Nanotechnology 12, no. 1 (January 2013): 21–28. http://dx.doi.org/10.1109/tnano.2012.2225070.
Full textZhou, Qin, Allen Sussman, Jiyoung Chang, Jeffrey Dong, Alex Zettl, and William Mickelson. "Fast response integrated MEMS microheaters for ultra low power gas detection." Sensors and Actuators A: Physical 223 (March 2015): 67–75. http://dx.doi.org/10.1016/j.sna.2014.12.005.
Full text