Journal articles on the topic 'Microneedle technology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microneedle technology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pavan, Khomane Reshma Mirajkar* Ashwini Madgulkar Mrunmayee Velapure. "Microneedle Technology: Advancements, Applications, and Future Different Directions." International Journal of Pharmaceutical Sciences 3, no. 5 (2025): 3412–22. https://doi.org/10.5281/zenodo.15473291.
Full textKadam, Snehal Kasu Daniya Momin Ishrat Shaikh Shama* Khan Sharina Poonam Patil. "Microneedle Technology: A Revolutionary Approach to Drug Delivery." International Journal of Pharmaceutical Sciences 3, no. 4 (2025): 106–39. https://doi.org/10.5281/zenodo.15119727.
Full textRizwan, Boyeekati Mohammad, Nawaz Mahammed, Shaik Farheen Taj, V. Sivasai Bharath Kumar, and B. Yamuna. "A Review on Puncturing Potential: Microneedles' Present Landscape And Prospective Horizons." Jordan Journal of Pharmaceutical Sciences 18, no. 2 (2025): 566–85. https://doi.org/10.35516/jjps.v18i2.2763.
Full textAlfisha Khan, Pragati Mishra, Deepika Gupta, and Poonam Kumari. "Advances in Transdermal Drug Delivery Systems: From Patches to Microneedles." Journal of Drug Discovery and Health Sciences 1, no. 02 (2024): 105–12. https://doi.org/10.21590/jddhs.01.02.06.
Full textNguyen, Hiep X., and Chien N. Nguyen. "Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals." Pharmaceutics 15, no. 1 (2023): 277. http://dx.doi.org/10.3390/pharmaceutics15010277.
Full textXu, Jie, Danfeng Xu, Xuan Xuan, and Huacheng He. "Advances of Microneedles in Biomedical Applications." Molecules 26, no. 19 (2021): 5912. http://dx.doi.org/10.3390/molecules26195912.
Full textKang, Seongsu, Ji Eun Song, Seung-Hyun Jun, Sun-Gyoo Park, and Nae-Gyu Kang. "Sugar-Triggered Burst Drug Releasing Poly-Lactic Acid (PLA) Microneedles and Its Fabrication Based on Solvent-Casting Approach." Pharmaceutics 14, no. 9 (2022): 1758. http://dx.doi.org/10.3390/pharmaceutics14091758.
Full textChoo, Sangmin, SungGiu Jin, and JaeHwan Jung. "Fabricating High-Resolution and High-Dimensional Microneedle Mold through the Resolution Improvement of Stereolithography 3D Printing." Pharmaceutics 14, no. 4 (2022): 766. http://dx.doi.org/10.3390/pharmaceutics14040766.
Full textAmato, Camilla, Daria Cermola, Raffaele Vecchione, and Carla Langella. "Design for optimisation of drug administration." Journal of Health Design 9, no. 1 (2024): 605–10. http://dx.doi.org/10.21853/jhd.2024.224.
Full textGaurav P. Aswar, Pooja R. Hatwar, Ravindra L. Bakal, Vaishnavi S. Kalamb, and Ishar K. Thak. "Microneedles: An efficient technique to enhance Transdermal Drug Delivery System." GSC Biological and Pharmaceutical Sciences 29, no. 3 (2024): 256–66. https://doi.org/10.30574/gscbps.2024.29.3.0480.
Full textGaurav, P. Aswar, R. Hatwar Pooja, L. Bakal Ravindra, S. Kalamb Vaishnavi, and K. Thak Ishar. "Microneedles: An efficient technique to enhance Transdermal Drug Delivery System." GSC Biological and Pharmaceutical Sciences 29, no. 3 (2024): 256–66. https://doi.org/10.5281/zenodo.14915541.
Full textYu, Ketian, Yukun Ma, Yiming Wei, et al. "Individually Modified Microneedle Array for Minimal Invasive Multi-Electrolyte Monitoring." Biosensors 15, no. 5 (2025): 310. https://doi.org/10.3390/bios15050310.
Full textChaiprateep, Em-on, Soma Sengupta, and Cornelia M. Keck. "Microneedle-Assisted Delivery of Curcumin: Evaluating the Effects of Needle Length and Formulation." Micromachines 16, no. 2 (2025): 155. https://doi.org/10.3390/mi16020155.
Full textJu, Sanghwi, Seung-hyun Im, Kyungsun Seo, et al. "Parametric Rule-Based Intelligent System (PRISM) for Design and Analysis of High-Strength Separable Microneedles." Micromachines 16, no. 7 (2025): 726. https://doi.org/10.3390/mi16070726.
Full textSianipar, Christoforus, Erline Yosida, and Sari Wangi. "Optimization of geometry and building orientation on the accuracy of dissolving microneedle masters using stereolithography." Journal of Applied Engineering Science 23, no. 2 (2025): 291–302. https://doi.org/10.5937/jaes0-55337.
Full textRahman, Aqila Che Ab, and Sooman Lim. "Development of Cone-Type Stretchable Transdermal Drug Delivery Microneedle Patch Based on 3D Printing Technology." Journal of Flexible and Printed Electronics 3, no. 1 (2024): 85–94. http://dx.doi.org/10.56767/jfpe.2024.3.1.85.
Full textWang, Wenkai, Yanhong Liang, Xiaoxiao Yan, Gang Tang, Fang Xu, and Zhibiao Li. "Based on Finite Element Simulation: Optimization of Microneedle Structure and Mechanical Performance Analysis." Journal of Physics: Conference Series 2890, no. 1 (2024): 012059. http://dx.doi.org/10.1088/1742-6596/2890/1/012059.
Full textLuo, Rui, Huihui Xu, Qiaoni Lin, et al. "Emerging Trends in Dissolving-Microneedle Technology for Antimicrobial Skin-Infection Therapies." Pharmaceutics 16, no. 9 (2024): 1188. http://dx.doi.org/10.3390/pharmaceutics16091188.
Full textArora, Monica, and Tanjima Tarique Laskar. "Microneedles: Recent advances and development in the field of transdermal drug delivery technology." Journal of Drug Delivery and Therapeutics 13, no. 3 (2023): 155–63. http://dx.doi.org/10.22270/jddt.v13i3.5967.
Full textCzarczynska-Goslinska, Beata, Tomasz Goslinski, Agata Roszak, et al. "Microneedle System Coated with Hydrogels Containing Protoporphyrin IX for Potential Application in Pharmaceutical Technology." Methods and Protocols 7, no. 5 (2024): 73. http://dx.doi.org/10.3390/mps7050073.
Full textBhadouria, Namrata, Shikha Yadav, Sarad Pawar Naik Bukke, and Bayapa Reddy Narapureddy. "Advancements in vaccine delivery: harnessing 3D printing for microneedle patch technology." Annals of Medicine & Surgery 87, no. 4 (2025): 2059–67. https://doi.org/10.1097/ms9.0000000000003060.
Full textNagrik, Shivshankar M., Vaishnavi S. Akhare, Manisha W. Bhade, et al. "Advances in Transdermal Drug Delivery: The Development of Microneedle Technology for Improved Therapeutic Outcomes." Journal for Research in Applied Sciences and Biotechnology 3, no. 5 (2024): 200–210. http://dx.doi.org/10.55544/jrasb.3.5.21.
Full textVedika N. Dafe, Pooja R. Hatwar, Ravindra L. Bakal, Jitendra A. Kubde, and Kajal S. Jumde. "Transdermal insulin delivery via microneedle technology, patches, and pumps offers a promising alternative to traditional subcutaneous injections for diabetes management." GSC Biological and Pharmaceutical Sciences 29, no. 1 (2024): 233–42. http://dx.doi.org/10.30574/gscbps.2024.29.1.0372.
Full textVedika, N. Dafe, R. Hatwar Pooja, L. Bakal Ravindra, A. Kubde Jitendra, and S. Jumde Kajal. "Transdermal insulin delivery via microneedle technology, patches, and pumps offers a promising alternative to traditional subcutaneous injections for diabetes management." GSC Biological and Pharmaceutical Sciences 29, no. 1 (2024): 233–42. https://doi.org/10.5281/zenodo.14717188.
Full textFaraji Rad, Zahra, Philip D. Prewett, and Graham J. Davies. "An overview of microneedle applications, materials, and fabrication methods." Beilstein Journal of Nanotechnology 12 (September 13, 2021): 1034–46. http://dx.doi.org/10.3762/bjnano.12.77.
Full textNarayan, Roger. "(Invited) integration of Microneedles and Electrochemical Sensors for Medical Applications." ECS Meeting Abstracts MA2023-01, no. 34 (2023): 1942. http://dx.doi.org/10.1149/ma2023-01341942mtgabs.
Full textXue, Peng, David Chen Loong Yeo, Yon Jin Chuah, Hong Liang Tey, Yuejun Kang, and Chenjie Xu. "Drug-eluting microneedles for self-administered treatment of keloids." TECHNOLOGY 02, no. 02 (2014): 144–52. http://dx.doi.org/10.1142/s2339547814500137.
Full textPundir, Gaurav, Srishti Morris, Vikash Jakhmola, and Tarun Parashar Parashar. "Microneedle Transdermal Patches- A Novel Painless Approach with Improved Bioavailability for the Treatment of Diseases with Special Prevalence to Neonatal Infection." INTERNATIONAL JOURNAL OF DRUG DELIVERY TECHNOLOGY 14, no. 03 (2024): 1749–57. http://dx.doi.org/10.25258/ijddt.14.3.71.
Full textOlowe, Michael, Santosh Kumar Parupelli, and Salil Desai. "A Review of 3D-Printing of Microneedles." Pharmaceutics 14, no. 12 (2022): 2693. http://dx.doi.org/10.3390/pharmaceutics14122693.
Full textDu, Li Qun, Zhong Zhou Wang, Xiao Peng Ruan, Sheng Li Chen, and Qing Shan. "Fabrication of SU-8 Microneedle Based on Backside Exposure Technology." Key Engineering Materials 645-646 (May 2015): 853–58. http://dx.doi.org/10.4028/www.scientific.net/kem.645-646.853.
Full textLiu, Yun, Ruiyue Mao, Shijia Han, Zhi Yu, Bin Xu, and Tiancheng Xu. "Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications—A Comprehensive Review." Polymers 16, no. 18 (2024): 2568. http://dx.doi.org/10.3390/polym16182568.
Full textDiwe, I. V., H. E. Mgbemere, O. A. Adeleye, and I. C. Ekpe. "Polymeric microneedle arrays for transdermal rapid diagnostic tests and drug delivery: a review." Nigerian Journal of Technology 43, no. 2 (2024): 279–93. http://dx.doi.org/10.4314/njt.v43i2.11.
Full textParhi, Rabinarayan, and Divya Supriya N. "Review of Microneedle based Transdermal Drug Delivery Systems." International Journal of Pharmaceutical Sciences and Nanotechnology 12, no. 3 (2019): 4511–23. http://dx.doi.org/10.37285/ijpsn.2019.12.3.1.
Full textAshraf, Muhammad Waseem, Shahzadi Tayyaba, Nitin Afzulpurkar, et al. "Optimization of Fabrication Process for MEMS Based Microneedles Using ICP Etching Technology." Advanced Materials Research 403-408 (November 2011): 4611–16. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.4611.
Full textVoelcker, Nicolas, and Muamer Dervisevic. "(Invited) Microneedle Arrays Featuring Microcavities for Electrochemical Biosensing in Sweat and Interstitial Fluid." ECS Meeting Abstracts MA2025-01, no. 60 (2025): 2852. https://doi.org/10.1149/ma2025-01602852mtgabs.
Full textKulkarni, Deepak, Dipak Gadade, Nutan Chapaitkar, et al. "Polymeric Microneedles: An Emerging Paradigm for Advanced Biomedical Applications." Scientia Pharmaceutica 91, no. 2 (2023): 27. http://dx.doi.org/10.3390/scipharm91020027.
Full textRadmard, Ariana, and Ajay K. Banga. "Microneedle-Assisted Transdermal Delivery of Lurasidone Nanoparticles." Pharmaceutics 16, no. 3 (2024): 308. http://dx.doi.org/10.3390/pharmaceutics16030308.
Full textBhumika, Patil* Suvarna Shelke. "Microneedles: A Novel Approach on Transdermal Drug Delivery." International Journal of Pharmaceutical Sciences 3, no. 5 (2025): 491–502. https://doi.org/10.5281/zenodo.15335243.
Full textKulkarni, Deepak, Fouad Damiri, Satish Rojekar, et al. "Recent Advancements in Microneedle Technology for Multifaceted Biomedical Applications." Pharmaceutics 14, no. 5 (2022): 1097. http://dx.doi.org/10.3390/pharmaceutics14051097.
Full textYan, Xiao Xiao, Jing Quan Liu, Long Fei Wang, Chun Sheng Yang, and Yi Gui Li. "Silicon-Based Microneedle Array Electrodes for Biopotential Measurement." Key Engineering Materials 483 (June 2011): 443–46. http://dx.doi.org/10.4028/www.scientific.net/kem.483.443.
Full textYu, Xueqing, Jing Zhao, and Daidi Fan. "The Progress in the Application of Dissolving Microneedles in Biomedicine." Polymers 15, no. 20 (2023): 4059. http://dx.doi.org/10.3390/polym15204059.
Full textChan, Victoria, and Steven Wong. "Microneedle patch vaccine." University of Western Ontario Medical Journal 85, no. 2 (2016): 69–71. http://dx.doi.org/10.5206/uwomj.v85i2.4149.
Full textSalih, Omar S., and Entidhar J. Al-akkam. "Microneedles as A Magical Technology to facilitate Transdermal Drug Delivery: A Review Article." INTERNATIONAL JOURNAL OF DRUG DELIVERY TECHNOLOGY 12, no. 02 (2022): 896–901. http://dx.doi.org/10.25258/ijddt.12.2.76.
Full textYamagishi, Rio, Sayaka Miura, Kana Yabu, et al. "Fabrication Technology of Self-Dissolving Sodium Hyaluronate Gels Ultrafine Microneedles for Medical Applications with UV-Curing Gas-Permeable Mold." Gels 10, no. 1 (2024): 65. http://dx.doi.org/10.3390/gels10010065.
Full textLim, Dong-Jin, and Hong-Jun Kim. "Microneedles in Action: Microneedling and Microneedles-Assisted Transdermal Delivery." Polymers 14, no. 8 (2022): 1608. http://dx.doi.org/10.3390/polym14081608.
Full textLi, Yulin. "Brief Description and Application of Microneedle Biosensors." Highlights in Science, Engineering and Technology 55 (July 9, 2023): 211–16. http://dx.doi.org/10.54097/hset.v55i.9961.
Full textQi, Zhenzhen, Jiaxin Cao, Xiaosheng Tao, Xinyi Wu, Subhas C. Kundu, and Shenzhou Lu. "Silk Fibroin Microneedle Patches for the Treatment of Insomnia." Pharmaceutics 13, no. 12 (2021): 2198. http://dx.doi.org/10.3390/pharmaceutics13122198.
Full textVijay, A. Shivnani. "The Role of Cnidocytes in Transdermal Drug Delivery: A Systematic Review." International Journal of Pharmaceutical and Clinical Research 16, no. 1 (2024): 56–62. https://doi.org/10.5281/zenodo.11091300.
Full textZhang, Lifan, Yinghong Chen, Jiayu Tan, Shuo Feng, Yeping Xie, and Li Li. "Performance Enhancement of PLA-Based Blend Microneedle Arrays through Shish-Kebab Structuring Strategy in Microinjection Molding." Polymers 15, no. 10 (2023): 2234. http://dx.doi.org/10.3390/polym15102234.
Full textQi, Zhenzhen, Zheng Yan, Guohongfang Tan, Subhas C. Kundu, and Shenzhou Lu. "Smart Responsive Microneedles for Controlled Drug Delivery." Molecules 28, no. 21 (2023): 7411. http://dx.doi.org/10.3390/molecules28217411.
Full text