To see the other types of publications on this topic, follow the link: Micropolar thermoelasticity.

Journal articles on the topic 'Micropolar thermoelasticity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Micropolar thermoelasticity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Murashkin, E. V., and Yu N. Radaev. "Coupled Thermoelasticity of Hemitropic Media. Pseudotensor Formulation." Известия Российской академии наук. Механика твердого тела, no. 3 (May 1, 2023): 163–76. http://dx.doi.org/10.31857/s0572329922600876.

Full text
Abstract:
The present paper deals with the problem of deriving the constitutive equations for the micropolar thermoelastic continuum GN-I in terms of the standard pseudotensor formalism. In most cases, the pseudotensor approach is justified in modeling hemitropic micropolar solids, the thermomechanical properties of which are sensitive to mirror reflections of three-dimensional space. The requisite equations and notions from the theory of pseudotensors are revisited. General thermodynamic approaches are used, entropy and energy balance equations are discussed. The weights of the main thermomechanical ps
APA, Harvard, Vancouver, ISO, and other styles
2

Chandrasekharaiah, D. S. "Heat-flux dependent micropolar thermoelasticity." International Journal of Engineering Science 24, no. 8 (1986): 1389–95. http://dx.doi.org/10.1016/0020-7225(86)90067-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Passarella, Francesca. "Some results in micropolar thermoelasticity." Mechanics Research Communications 23, no. 4 (1996): 349–57. http://dx.doi.org/10.1016/0093-6413(96)00032-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dehbani, Hossein, Mohsen Jabbari, Ahmad Reza Khorshidvand та Mehrdad Javadi. "Two-dimensional analytical solution of micropolar magneto-thermoelasticity FGM hollow cylinder under asymmetric load (r, θ)". Physica Scripta 96, № 12 (2021): 125720. http://dx.doi.org/10.1088/1402-4896/ac3313.

Full text
Abstract:
Abstract This paper presents a two-dimensional analytical solution (r, θ) to study micropolar magneto-thermoelasticity for a hollow cylinder, made of FGMs, under steady-state conditions. The physical properties of materials are in the form of a power function and undergo changes in the direction of the radius. To solve the heat transfer equation and Navier equations, the complex Fourier series and the power-law functions are used. By solving the equations using the general thermal and mechanical asymmetric boundary conditions on the inner and outer surface of the cylinder, radial displacement,
APA, Harvard, Vancouver, ISO, and other styles
5

Dhaliwal, Ranjit S., and Jun Wang. "Green’s Functions in Generalized Micropolar Thermoelasticity." Applied Mechanics Reviews 46, no. 11S (1993): S316—S326. http://dx.doi.org/10.1115/1.3122653.

Full text
Abstract:
General solution of the generalized micropolar thermoelastic equations has been obtained for arbitrary distribution of the body couples, body forces, and heat sources in an infinite body. Short time solutions have been obtained for the cases of impulsive body force and heat source acting at a point. Numerical values of the short time solutions have been displayed graphically.
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Fuang-Yuan, and Keo-Zoo Liang. "Boundary element method for micropolar thermoelasticity." Engineering Analysis with Boundary Elements 17, no. 1 (1996): 19–26. http://dx.doi.org/10.1016/0955-7997(95)00086-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dobovšek, Igor. "Wave Dispersion Decoupling in Micropolar Thermoelasticity." PAMM 6, no. 1 (2006): 605–6. http://dx.doi.org/10.1002/pamm.200610283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Rajneesh, Aseem Miglani, and Rekha Rani. "Eigenvalue formulation to micropolar porous thermoelastic circular plate using dual phase lag model." Multidiscipline Modeling in Materials and Structures 13, no. 2 (2017): 347–62. http://dx.doi.org/10.1108/mmms-08-2016-0038.

Full text
Abstract:
Purpose The purpose of this paper is to study the axisymmetric problem in a micropolar porous thermoelastic circular plate with dual phase lag model by employing eigenvalue approach subjected to thermomechanical sources. Design/methodology/approach The Laplace and Hankel transforms are employed to obtain the expressions for displacements, microrotation, volume fraction field, temperature distribution and stresses in the transformed domain. A numerical inversion technique has been carried out to obtain the resulting quantities in the physical domain. Effect of porosity and phase lag on the resu
APA, Harvard, Vancouver, ISO, and other styles
9

Gupta, R. R. "Wave Propagation in a Micropolar Transversely Isotropic Generalized Thermoelastic Half-Space." International Journal of Applied Mechanics and Engineering 19, no. 2 (2014): 247–57. http://dx.doi.org/10.2478/ijame-2014-0016.

Full text
Abstract:
Abstract Rayleigh waves in a half-space exhibiting microplar transversely isotropic generalized thermoelastic properties based on the Lord-Shulman (L-S), Green and Lindsay (G-L) and Coupled thermoelasticty (C-T) theories are discussed. The phase velocity and attenuation coefficient in the previous three different theories have been obtained. A comparison is carried out of the phase velocity, attenuation coefficient and specific loss as calculated from the different theories of generalized thermoelasticity along with the comparison of anisotropy. The amplitudes of displacements, microrotation,
APA, Harvard, Vancouver, ISO, and other styles
10

Ailawalia, P., S. K. Sachdeva, and D. Pathania. "Response of Thermoelastic Micropolar Cubic Crystal under Dynamic Load at an Interface." International Journal of Applied Mechanics and Engineering 22, no. 1 (2017): 5–23. http://dx.doi.org/10.1515/ijame-2017-0001.

Full text
Abstract:
AbstractThe purpose of this paper is to study the two dimensional deformation in a thermoelastic micropolar solid with cubic symmetry. A mechanical force is applied along the interface of a thermoelastic micropolar solid with cubic symmetry (Medium I) and a thermoelastic solid with microtemperatures (Medium II). The normal mode analysis has been applied to obtain the exact expressions for components of normal displacement, temperature distribution, normal force stress and tangential coupled stress for a thermoelastic micropolar solid with cubic symmetry. The effects of anisotropy, micropolarit
APA, Harvard, Vancouver, ISO, and other styles
11

Tian-min, Dai. "Restudy of coupled field theories for micropolar continua (I)—Micropolar thermoelasticity." Applied Mathematics and Mechanics 23, no. 2 (2002): 119–26. http://dx.doi.org/10.1007/bf02436552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chandrasekharaiah, D. S. "Variational and reciprocal principles in micropolar thermoelasticity." International Journal of Engineering Science 25, no. 1 (1987): 55–63. http://dx.doi.org/10.1016/0020-7225(87)90134-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ailawalia, Praveen, Sunil Sachdeva, and Devinder Pathania. "A two dimensional fibre reinforced micropolar thermoelastic problem for a half-space subjected to mechanical force." Theoretical and Applied Mechanics 42, no. 1 (2015): 11–25. http://dx.doi.org/10.2298/tam1501011a.

Full text
Abstract:
The purpose of this paper is to study the two dimensional deformation of fibre reinforced micropolar thermoelastic medium in the context of Green-Lindsay theory of thermoelasticity. A mechanical force is applied along the interface of fluid half space and fibre reinforced micropolar thermoelastic half space. The normal mode analysis has been applied to obtain the exact expressions for displacement component, force stress, temperature distribution and tangential couple stress. The effect of anisotropy and micropolarity on the displacement component, force stress, temperature distribution and ta
APA, Harvard, Vancouver, ISO, and other styles
14

Lianngenga, Rengsi, and Sanasam S. Singh. "Reflection of coupled dilatational and shear waves in the generalized micropolar thermoelastic materials." Journal of Vibration and Control 26, no. 21-22 (2020): 1948–55. http://dx.doi.org/10.1177/1077546320908705.

Full text
Abstract:
The problem of wave propagation in the generalized theory of micropolar thermoelasticity under the Green–Lindsay model has been investigated. We have investigated the reflected dilatational and shear waves due to incident waves at a plane-free surface of generalized micropolar thermoelastic materials. The amplitude and energy ratios corresponding to the reflected coupled dilatational and coupled shear waves are derived using boundary conditions at the free surface. These ratios are also computed numerically for a particular model. Note that there are critical angles for the incident shear wave
APA, Harvard, Vancouver, ISO, and other styles
15

Marin, M., and M. Lupu. "On Harmonic Vibrations in Thermoelasticity of Micropolar Bodies." Journal of Vibration and Control 4, no. 5 (1998): 507–18. http://dx.doi.org/10.1177/107754639800400501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Murashkin, E. V., and Y. N. Radayev. "Full thermomechanical coupling in modelling of micropolar thermoelasticity." Journal of Physics: Conference Series 991 (April 2018): 012061. http://dx.doi.org/10.1088/1742-6596/991/1/012061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kovalev, Vladimir, Evgenii Murashkin, and Yuri Radayev. "On a Physical Field Theory of Micropolar Thermoelasticity." Journal of Physics: Conference Series 788 (January 2017): 012043. http://dx.doi.org/10.1088/1742-6596/788/1/012043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Marin, Marin. "Aspects of uniqueness in thermoelasticity of micropolar bodies." Mechanics Research Communications 24, no. 5 (1997): 561–68. http://dx.doi.org/10.1016/s0093-6413(97)00062-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Aslanyan, Naira S., and Samvel H. Sargsyan. "Applied theories of thermoelasticity of micropolar thin beams." Journal of Thermal Stresses 41, no. 6 (2018): 687–705. http://dx.doi.org/10.1080/01495739.2018.1426066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

leşan, D., and R. Quintanilla. "ON THE GRADE CONSISTENT THEORY OF MICROPOLAR THERMOELASTICITY." Journal of Thermal Stresses 15, no. 3 (1992): 393–417. http://dx.doi.org/10.1080/01495739208946146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ciarletta, Michele. "A THEORY OF MICROPOLAR THERMOELASTICITY WITHOUT ENERGY DISSIPATION." Journal of Thermal Stresses 22, no. 6 (1999): 581–94. http://dx.doi.org/10.1080/014957399280760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Murashkin, E. V., and Y. N. Radayev. "On Algebraic Triple Weights Formulation of Micropolar Thermoelasticity." Mechanics of Solids 59, no. 1 (2024): 555–80. http://dx.doi.org/10.1134/s0025654424700274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Radaev, Y. N. "Type-II Thermoelasticity of Linear Anisotropic Micropolar Media." Mechanics of Solids 59, no. 6 (2024): 3408–16. https://doi.org/10.1134/s0025654424700304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nikabadze, Mikhail U., Armine R. Ulukhanyan, Tamar Moseshvili, Ketevan Tskhakaia, Nodar Mardaleishvili, and Zurab Arkania. "On the Modeling of Five-Layer Thin Prismatic Bodies." Mathematical and Computational Applications 24, no. 3 (2019): 69. http://dx.doi.org/10.3390/mca24030069.

Full text
Abstract:
Proceeding from three-dimensional formulations of initial boundary value problems of the three-dimensional linear micropolar theory of thermoelasticity, similar formulations of initial boundary value problems for the theory of multilayer thermoelastic thin bodies are obtained. The initial boundary value problems for thin bodies are also obtained in the moments with respect to systems of orthogonal polynomials. We consider some particular cases of formulations of initial boundary value problems. In particular, the statements of the initial-boundary value problems of the micropolar theory of K-l
APA, Harvard, Vancouver, ISO, and other styles
25

Мурашкин, Е. В., and Ю. Н. Радаев. "Thermic and athermic plane harmonic waves in acentric isotropic solid." Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, no. 2(56) (December 26, 2023): 99–107. http://dx.doi.org/10.37972/chgpu.2023.56.2.010.

Full text
Abstract:
Настоящая статья посвящена вопросам распространения плоских термоупругих гармонических волн в ацентрическом изотропном микрополярном теле. С этой целью сначала рассматриваются динамические уравнения ацентрического изотропного тела. Определяются пространственные поляризации плоских волн трансляционных и спинорных перемещений. Обсуждается качественный характер возможных волновых решений уравнений связанной микрополярной термоупругости. Отдельно рассматривается случай атермической волны. The present paper is devoted to the propagation of plane thermoelastic harmonic waves in an acentric isotropic
APA, Harvard, Vancouver, ISO, and other styles
26

El-Karamany, Ahmed S., and Magdy A. Ezzat. "On the three-phase-lag linear micropolar thermoelasticity theory." European Journal of Mechanics - A/Solids 40 (July 2013): 198–208. http://dx.doi.org/10.1016/j.euromechsol.2013.01.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sherief, Hany H., and Amani M. El-sayed. "State space approach to two-dimensional generalized micropolar thermoelasticity." Zeitschrift für angewandte Mathematik und Physik 66, no. 3 (2014): 1249–65. http://dx.doi.org/10.1007/s00033-014-0442-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Aouadi, Moncef. "Eigenvalue Approach to Linear Micropolar Thermoelasticity Under Distributed Loading." Journal of Thermal Stresses 30, no. 5 (2007): 421–40. http://dx.doi.org/10.1080/01495730601131024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Passarella, Francesca, and Vittorio Zampoli. "On the Theory of Micropolar Thermoelasticity without Energy Dissipation." Journal of Thermal Stresses 33, no. 4 (2010): 305–17. http://dx.doi.org/10.1080/01495731003656907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Scalia, Antonio. "On some theorems in the theory of micropolar thermoelasticity." International Journal of Engineering Science 28, no. 3 (1990): 181–89. http://dx.doi.org/10.1016/0020-7225(90)90122-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kumar, R., S. Kaushal, and A. Miglani. "Disturbance due to concentrated sources in a micropolar thermodiffusive medium." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, no. 2 (2010): 437–50. http://dx.doi.org/10.1243/09544062jmes1898.

Full text
Abstract:
In the present investigation, the constitutive relations and field equations for micropolar generalized thermodiffusive are derived and deduced for the Green and Lindsay (G—L) theory, in which thermodiffusion are governed by four different relaxation times. The general solution to the field equations in micropolar generalized thermodiffusive is investigated by applying the Laplace and Fourier transforms as a result of concentrated normal force, or thermal point source or potential point source. To get the solution in the physical form, a numerical inversion technique has been applied. The comp
APA, Harvard, Vancouver, ISO, and other styles
32

Kumar, Rajneesh, K. D. Sharma, and S. K. Garg. "Effect of Two Temperatures on Reflection Coefficient in Micropolar Thermoelastic with and without Energy Dissipation Media." Advances in Acoustics and Vibration 2014 (February 16, 2014): 1–11. http://dx.doi.org/10.1155/2014/846721.

Full text
Abstract:
The reflection of plane waves at the free surface of thermally conducting micropolar elastic medium with two temperatures is studied. The theory of thermoelasticity with and without energy dissipation is used to investigate the problem. The expressions for amplitudes ratios of reflected waves at different angles of incident wave are obtained. Dissipation of energy and two-temperature effects on these amplitude ratios with angle of incidence are depicted graphically. Some special and particular cases are also deduced.
APA, Harvard, Vancouver, ISO, and other styles
33

Aslanyan, N. S., and S. H. Sargsyan. "Mathematical model of thermoelasticity of micropolar orthotropic elastic thin plates." Mechanics - Proceedings of National Academy of Sciences of Armenia 66, no. 1 (2013): 34–47. http://dx.doi.org/10.33018/66.1.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kovalev, Vladimir A., and Yuri N. Radayev. "On Wave Solutions of Dynamic Equations of Hemitropic Micropolar Thermoelasticity." Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics 19, no. 4 (2019): 454–63. http://dx.doi.org/10.18500/1816-9791-2019-19-4-454-463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sládek, J. "Boundary element method in micropolar thermoelasticity. Part III: Numerical solution." Engineering Analysis with Boundary Elements 2, no. 3 (1985): 155–62. http://dx.doi.org/10.1016/0955-7997(85)90052-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ezzat, Magdy A., and Emad S. Awad. "Micropolar generalized magneto-thermoelasticity with modified Ohm's and Fourier's laws." Journal of Mathematical Analysis and Applications 353, no. 1 (2009): 99–113. http://dx.doi.org/10.1016/j.jmaa.2008.11.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sládek, J., and V. Sládek. "Boundary element method in micropolar thermoelasticity. Part III: Numerical solution." Engineering Analysis 2, no. 3 (1985): 155–62. http://dx.doi.org/10.1016/0264-682x(85)90021-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Passarella, Francesca, Vincenzo Tibullo, and Vittorio Zampoli. "On the Heat-Flux Dependent Thermoelasticity for Micropolar Porous Media." Journal of Thermal Stresses 34, no. 8 (2011): 778–94. http://dx.doi.org/10.1080/01495739.2011.564041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Meriç, R. A. "Sensitivity analysis for a general performance criterion in micropolar thermoelasticity." International Journal of Engineering Science 25, no. 3 (1987): 265–76. http://dx.doi.org/10.1016/0020-7225(87)90035-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Passarella, Francesca, and Vittorio Zampoli. "Reciprocal and variational principles in micropolar thermoelasticity of type II." Acta Mechanica 216, no. 1-4 (2010): 29–36. http://dx.doi.org/10.1007/s00707-010-0351-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

I.A. Othman, Mohamed, W. M. Hasona, and Elsayed M. Abd-Elaziz. "The influence of thermal loading due to laser pulse on generalized micropolar thermoelastic solid with comparison of different theories." Multidiscipline Modeling in Materials and Structures 10, no. 3 (2014): 328–45. http://dx.doi.org/10.1108/mmms-07-2013-0047.

Full text
Abstract:
Purpose – The purpose of this paper is to introduce the coupled theory, Lord-Shulman theory with one relaxation time and Green-Lindsay theory with two relaxation times to study the influence of rotation on generalized micropolar thermoelasticity subject to thermal loading due to laser pulse. The bounding plane surface is heated by a non-Gaussian laser beam with pulse duration of 8 ps. Design/methodology/approach – The problem has been solved numerically by using the normal mode analysis. Findings – The thermal shock problem is studied to obtain the exact expressions for the displacement compon
APA, Harvard, Vancouver, ISO, and other styles
42

Kumar, Rajneesh, Priyanka Kaushal, and Rajni Sharma. "Eigen value approach for dual phase lag micropolar porous thermoelastic circular plate with ramp type heating." Multidiscipline Modeling in Materials and Structures 13, no. 4 (2017): 550–67. http://dx.doi.org/10.1108/mmms-12-2016-0063.

Full text
Abstract:
Purpose The purpose of this paper is to investigate a two dimensional problem of micropolar porous thermoelastic circular plate subjected to ramp type heating. Design/methodology/approach Three phase lag theory of thermoelasticity has been used to formulate the problem. A numerical inversion technique is applied to obtain the result in the physical domain. The numerical values of the resulting quantities are presented graphically to show the effect of porosity and dual phase lag model. Some particular cases are also presented. Findings The Laplace and Hankel transforms are employed followed by
APA, Harvard, Vancouver, ISO, and other styles
43

Мурашкин, Евгений Валерьевич, and Юрий Николаевич Радаев. "Plane thermoelastic harmonic waves in hemitropic micropolar media." Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, no. 3(45) (December 29, 2020): 174–79. http://dx.doi.org/10.37972/chgpu.2020.93.91.018.

Full text
Abstract:
В работе рассматривается решение задачи о распространении плоской термоупругой гармонической волны в гемитропной микрополярной среде. Приводятся два варианта динамических уравнений гемитропного микрополярного континуума. Определены пространственные поляризации волн перемещений и микровращений относительно волнового вектора плоской волны. Обсуждается качественный характер возможных волновых решений уравнений связанной термоупругости. Отдельно рассматривается случай атермической волны. Вычисление волновых чисел приводится к исследованию одного кубического уравнения с вещественными коэффициентами
APA, Harvard, Vancouver, ISO, and other styles
44

Мурашкин, Евгений Валерьевич, and Юрий Николаевич Радаев. "Plane thermoelastic harmonic waves in hemitropic micropolar media." Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, no. 3(45) (December 29, 2020): 174–79. http://dx.doi.org/10.37972/chgpu.2020.93.91.018.

Full text
Abstract:
В работе рассматривается решение задачи о распространении плоской термоупругой гармонической волны в гемитропной микрополярной среде. Приводятся два варианта динамических уравнений гемитропного микрополярного континуума. Определены пространственные поляризации волн перемещений и микровращений относительно волнового вектора плоской волны. Обсуждается качественный характер возможных волновых решений уравнений связанной термоупругости. Отдельно рассматривается случай атермической волны. Вычисление волновых чисел приводится к исследованию одного кубического уравнения с вещественными коэффициентами
APA, Harvard, Vancouver, ISO, and other styles
45

Kumar, R., and R. Gupta. "Axi-symmetric deformation in the micropolar porous generalized thermoelastic medium." Bulletin of the Polish Academy of Sciences: Technical Sciences 58, no. 1 (2010): 129–39. http://dx.doi.org/10.2478/v10175-010-0014-6.

Full text
Abstract:
Axi-symmetric deformation in the micropolar porous generalized thermoelastic mediumIn the present article we studied the thermodynamical theory of micropolar porous material and derived the equations of the linear theory of microploar porous generalized thermoelastic solid. Then the general solution to the field equations for plane axi-symmetric problem are obtained. The Laplace and Hankel transforms have been employed to study the problem, which are inverted numerically by using numerical inversion technique. An application of normal force and thermal source has been taken to show the utility
APA, Harvard, Vancouver, ISO, and other styles
46

Lianngenga, R., J. Lalvohbika, and Lalawmpuia. "Refraction of P- and S-Wave at the Interface of Micropolar Elasticity and Thermoelasticity with Voids." Journal of Molecular and Engineering Materials 06, no. 03n04 (2018): 1850005. http://dx.doi.org/10.1142/s2251237318500053.

Full text
Abstract:
The problem of incident plane waves at the interface of micropolar thermoelastic half-space with voids and micropolar elastic half-space with voids has been attempted. The amplitude and energy ratios of various reflected and refracted waves for the incident [Formula: see text]- and [Formula: see text]-waves are obtained with the help of appropriate boundary conditions at the interface. The effect of linear thermal expansion and microinertia on the amplitude and energy ratios due to the incident [Formula: see text]- and [Formula: see text]-waves are discussed. Numerically and analytically, thes
APA, Harvard, Vancouver, ISO, and other styles
47

Aslanyan, N. S., and S. H. Sargsyan. "Mathematical model of thermoelasticity of bending deformation of micropolar thin bars." Mechanics - Proceedings of National Academy of Sciences of Armenia 69, no. 4 (2016): 55–71. http://dx.doi.org/10.33018/69.4.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kovalev, V. A., and Yu N. Radaev. "Derivation of energy-momentum tensors in theories of micropolar hyperbolic thermoelasticity." Mechanics of Solids 46, no. 5 (2011): 705–20. http://dx.doi.org/10.3103/s0025654411050062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Marin, Marin, and Olivia Florea. "On Temporal Behaviour of Solutions in Thermoelasticity of Porous Micropolar Bodies." Analele Universitatii "Ovidius" Constanta - Seria Matematica 22, no. 1 (2014): 169–88. http://dx.doi.org/10.2478/auom-2014-0014.

Full text
Abstract:
AbstractWe consider a porous thermoelastic body, including voidage time derivative among the independent constitutive variables. For the initial boundary value problem of such materials, we analyze the temporal behaviour of the solutions. To this aim we use the Cesaro means for the components of energy and prove the asymptotic equipartition in mean of the kinetic and strain energies.
APA, Harvard, Vancouver, ISO, and other styles
50

Sládek, V. "Boundary element method in micropolar thermoelasticity. Part I: Boundary integral equations." Engineering Analysis with Boundary Elements 2, no. 1 (1985): 40–50. http://dx.doi.org/10.1016/0955-7997(85)90041-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!