Journal articles on the topic 'Micropump-based System'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Micropump-based System.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Khaustov, A. I., G. G. Boyarsky, and K. V. Krotov. "Designing of a Micropump System for Circulatory Support." Journal of the Russian Universities. Radioelectronics 25, no. 5 (2022): 104–12. http://dx.doi.org/10.32603/1993-8985-2022-25-5-104-112.
Full textJin, Wenzui, Yimin Guan, Qiushi Wang, et al. "A Smart Active Phase-Change Micropump Based on CMOS-MEMS Technology." Sensors 23, no. 11 (2023): 5207. http://dx.doi.org/10.3390/s23115207.
Full textWang, Bao Wei, Xiang Cheng Chua, and Long Tu Li. "A Piezoelectric Micropump Based on MEMS Fabrication." Key Engineering Materials 368-372 (February 2008): 215–17. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.215.
Full textNi, Jun Hui, Bei Zhi Li, and Jian Guo Yang. "A MEMS-Based PDMS Micropump Utilizing Electromagnetic Actuation and Planar In-Contact Check Valves." Advanced Materials Research 139-141 (October 2010): 1574–77. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.1574.
Full textWieczorek, Marcin, Paweł Kościelniak, Paweł Świt, Justyna Paluch, and Joanna Kozak. "Solenoid micropump-based flow system for generalized calibration strategy." Talanta 133 (February 2015): 21–26. http://dx.doi.org/10.1016/j.talanta.2014.04.053.
Full textParfenovich, S. E., I. K. Khmelnitskiy, V. M. Aivazyan, et al. "Influence of Geometrical Parameters of Hydraulic Drive Based on IPMC Actuator on the Performance of Valveless Membrane Micropump." Nano- i Mikrosistemnaya Tehnika 26, no. 6 (2024): 277–88. https://doi.org/10.17587/nmst.26.277-288.
Full textLeu, Tzong-Shyng, and Ruei-Hung Kao. "Design and operation of a bio-inspired micropump based on blood-sucking mechanism of mosquitoes." Modern Physics Letters B 32, no. 12n13 (2018): 1840027. http://dx.doi.org/10.1142/s0217984918400274.
Full textWang, Changhu, and Weiyun Meng. "Research on Simulation Optimization of MEMS Microfluidic Structures at the Microscale." Micromachines 16, no. 6 (2025): 695. https://doi.org/10.3390/mi16060695.
Full textChen, He, Xiaodan Miao, Hongguang Lu, Shihai Liu, and Zhuoqing Yang. "High-Efficiency 3D-Printed Three-Chamber Electromagnetic Peristaltic Micropump." Micromachines 14, no. 2 (2023): 257. http://dx.doi.org/10.3390/mi14020257.
Full textLiu, Yiqun, Qi Yu, Xiaojin Luo, Le Ye, Li Yang, and Yue Cui. "A Microtube-Based Wearable Closed-Loop Minisystem for Diabetes Management." Research 2022 (October 27, 2022): 1–14. http://dx.doi.org/10.34133/2022/9870637.
Full textHaldkar, Rakesh Kumar, Vijay Kumar Gupta, Tanuja Sheorey, and Ivan A. Parinov. "Design, Modeling, and Analysis of Piezoelectric-Actuated Device for Blood Sampling." Applied Sciences 11, no. 18 (2021): 8449. http://dx.doi.org/10.3390/app11188449.
Full textShoji, Eiichi. "Fabrication of a diaphragm micropump system utilizing the ionomer-based polymer actuator." Sensors and Actuators B: Chemical 237 (December 2016): 660–65. http://dx.doi.org/10.1016/j.snb.2016.06.153.
Full textGallah, Nader, Nizar Habbachi, and Kamel Besbes. "Design and modelling of droplet based microfluidic system enabled by electroosmotic micropump." Microsystem Technologies 23, no. 12 (2017): 5781–87. http://dx.doi.org/10.1007/s00542-017-3414-9.
Full textRodrigues, Eunice R. G. O., Rui A. S. Lapa, and José L. F. C. Lima. "A Multicommutated Flow System Based on an Opened‐Loop with Micropump Propulsion." Analytical Letters 40, no. 8 (2007): 1632–45. http://dx.doi.org/10.1080/00032710701380517.
Full textWang, Ping, Zilin Chen, and Hsueh-Chia Chang. "An integrated micropump and electrospray emitter system based on porous silica monoliths." ELECTROPHORESIS 27, no. 20 (2006): 3964–70. http://dx.doi.org/10.1002/elps.200600120.
Full textAttiguppe, Ajay Prabhakar, Dhiman Chatterjee, and Amitava DasGupta. "A Novel Integrated Transdermal Drug Delivery System with Micropump and Microneedle Made from Polymers." Micromachines 14, no. 1 (2022): 71. http://dx.doi.org/10.3390/mi14010071.
Full textLee, Jae-Won, Seoung Min Back, Tae-Won Kim, and Hyuk Choi. "Development of a microfluidic system with a bearing micropump for applying fluid shear force in an intervertebral disc degeneration model involving mechanical stimulation." Organoid 4 (October 25, 2024): e10. http://dx.doi.org/10.51335/organoid.2024.4.e10.
Full textVerma, P., D. Chatterjee, and T. Nagarajan. "Design and development of a modular valveless micropump on a printed circuit board for integrated electronic cooling." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, no. 4 (2009): 953–63. http://dx.doi.org/10.1243/09544062jmes1315.
Full textLi, Kai, Xianxin Zhou, Haoyuan Zheng, et al. "Achieving Full Forward Flow of Valveless Piezoelectric Micropump Used for Micro Analysis System." Actuators 11, no. 8 (2022): 218. http://dx.doi.org/10.3390/act11080218.
Full textVoigt, P., G. Schrag, and G. Wachutka. "Electrofluidic full-system modelling of a flap valve micropump based on Kirchhoffian network theory." Sensors and Actuators A: Physical 66, no. 1-3 (1998): 9–14. http://dx.doi.org/10.1016/s0924-4247(97)01783-4.
Full textNguyen, N. T., S. Schubert, S. Richter, and W. Dötzel. "Hybrid-assembled micro dosing system using silicon-based micropump/ valve and mass flow sensor." Sensors and Actuators A: Physical 69, no. 1 (1998): 85–91. http://dx.doi.org/10.1016/s0924-4247(98)00039-9.
Full textAxelsson, Kristjan, Mohammadhossien Sheikhsarraf, Christoph Kutter, and Martin Richter. "Self-Sensing of Piezoelectric Micropumps: Gas Bubble Detection by Artificial Intelligence Methods on Limited Embedded Systems." Sensors 25, no. 12 (2025): 3784. https://doi.org/10.3390/s25123784.
Full textHansen, Thomas Steen, Keld West, Ole Hassager, and Niels B. Larsen. "An all-polymer micropump based on the conductive polymer poly (3,4-ethylenedioxythiophene) and a polyurethane channel system." Journal of Micromechanics and Microengineering 17, no. 5 (2007): 860–66. http://dx.doi.org/10.1088/0960-1317/17/5/003.
Full textGUAN, Y., Z. XU, J. DAI, and Z. FANG. "The use of a micropump based on capillary and evaporation effects in a microfluidic flow injection chemiluminescence system." Talanta 68, no. 4 (2006): 1384–89. http://dx.doi.org/10.1016/j.talanta.2005.08.021.
Full textLiu, Guojun, Xuhao Yang, Yan Li, Zhigang Yang, Wen Hong, and JianFang Liu. "Continuous Flow Controlled Synthesis of Gold Nanoparticles Using Pulsed Mixing Microfluidic System." Advances in Materials Science and Engineering 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/160819.
Full textKudryashova, T. A., S. V. Polyakov, and E. V. Shilnikov. "Simulation of the Knudsen Pump by means of Quasi Gasdynamic Equation System." Journal of Physics: Conference Series 2701, no. 1 (2024): 012053. http://dx.doi.org/10.1088/1742-6596/2701/1/012053.
Full textHassan, Rubayet, Sevki Cesmeci, Mahmoud Baniasadi, Anthony Palacio, and Austin Robbins. "A Magnetorheological Duckbill Valve Micropump for Drug Delivery Applications." Micromachines 13, no. 5 (2022): 723. http://dx.doi.org/10.3390/mi13050723.
Full textBußmann, Agnes, Henry Leistner, Doris Zhou, et al. "Piezoelectric Silicon Micropump for Drug Delivery Applications." Applied Sciences 11, no. 17 (2021): 8008. http://dx.doi.org/10.3390/app11178008.
Full textNishikata, Kotaro, Masataka Nakamura, Yuto Arai, and Nobuyuki Futai. "An Integrated Pulsation-Free, Backflow-Free Micropump Using the Analog Waveform-Driven Braille Actuator." Micromachines 13, no. 2 (2022): 294. http://dx.doi.org/10.3390/mi13020294.
Full textSu, Y., H. Wang, and W. Chen. "Microactuator based on electroplated permanent magnets and flexible polydimethyl siloxane diaphragm." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, no. 3 (2008): 517–24. http://dx.doi.org/10.1243/09544062jmes596.
Full textVeeresha, R. K., Muralidhara, Rathnamala Rao, and Astron Manoj Tauro. "Investigation on the Performance of Valveless Pump for Microdelivery of the Fluid, Fabricated Using Tool-Based Micromachining Setup." Journal of Advanced Manufacturing Systems 16, no. 02 (2017): 145–56. http://dx.doi.org/10.1142/s0219686717500093.
Full textAndersen, Truls, Bert Scheeren, Wouter Peters, and Huilin Chen. "A UAV-based active AirCore system for measurements of greenhouse gases." Atmospheric Measurement Techniques 11, no. 5 (2018): 2683–99. http://dx.doi.org/10.5194/amt-11-2683-2018.
Full textDoms, Marco, and Jörg Müller. "Design, Fabrication, and Characterization of a Micro Vapor-Jet Vacuum Pump." Journal of Fluids Engineering 129, no. 10 (2007): 1339–45. http://dx.doi.org/10.1115/1.2776968.
Full textWang, C. T., T. S. Leu, and J. M. Sun. "Unsteady Analysis of Microvalves With No Moving Parts." Journal of Mechanics 23, no. 1 (2007): 9–14. http://dx.doi.org/10.1017/s1727719100001027.
Full textNasibullayev, I. Sh. "Reducing the systematic error of the average fluid flow rate in axisymmetric computer model of piezoelectric micropump." Multiphase Systems. 16, no. 1 (2021): 22–33. http://dx.doi.org/10.21662/mfs2021.1.004.
Full textMohamed, Youssef, and Christopher L. Passaglia. "A portable feedback-controlled pump for monitoring eye outflow facility in conscious rats." PLOS ONE 18, no. 1 (2023): e0280332. http://dx.doi.org/10.1371/journal.pone.0280332.
Full textGuo, Gang, Xuanye Wu, Demeng Liu, et al. "A Self-Regulated Microfluidic Device with Thermal Bubble Micropumps." Micromachines 13, no. 10 (2022): 1620. http://dx.doi.org/10.3390/mi13101620.
Full textDarintsev, O. V. "Synthesis of new microfluidics models in the research in the “Robotics and Control in Technical Systems” laboratory." Multiphase Systems 17, no. 1-2 (2022): 74–96. http://dx.doi.org/10.21662/mfs2022.1.007.
Full textSha, Wei, Yi Li, Jie Liang, Lei Zhang, and Jianhua Zhang. "P‐10.10: Wearable Transdermal Drug Delivery Devices based on Piezoelectric Micropumps Integrated with Microneedles Array." SID Symposium Digest of Technical Papers 55, S1 (2024): 1271–75. http://dx.doi.org/10.1002/sdtp.17338.
Full textMamanee, W., A. Tuantranont, N. V. Afzulpurkar, N. Porntheerapat, S. Rahong, and A. Wisitsoraat. "PDMS Based Thermopnuematic Peristaltic Micropump for Microfluidic Systems." Journal of Physics: Conference Series 34 (April 1, 2006): 564–69. http://dx.doi.org/10.1088/1742-6596/34/1/093.
Full textCesmeci, Sevki, Rubayet Hassan, and Mahmoud Baniasadi. "A Comparative Evaluation of Magnetorheological Micropump Designs." Micromachines 13, no. 5 (2022): 764. http://dx.doi.org/10.3390/mi13050764.
Full textChen, Xiao-Ming, Yong-Jiang Li, Dan Han, et al. "A Capillary-Evaporation Micropump for Real-Time Sweat Rate Monitoring with an Electrochemical Sensor." Micromachines 10, no. 7 (2019): 457. http://dx.doi.org/10.3390/mi10070457.
Full textWu, Di, Bing Shi, Bin Li, and Wenming Wu. "A Novel Self-Activated Mechanism for Stable Liquid Transportation Capable of Continuous-Flow and Real-time Microfluidic PCRs." Micromachines 10, no. 6 (2019): 350. http://dx.doi.org/10.3390/mi10060350.
Full textFournier, S., and E. Chappel. "Modeling of a Piezoelectric MEMS Micropump Dedicated to Insulin Delivery and Experimental Validation Using Integrated Pressure Sensors: Application to Partial Occlusion Management." Journal of Sensors 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/3719853.
Full textNasibullayev, I. Sh, and O. V. Darintsev. "Two-dimensional dynamic model of the interaction of a fluid and a piezoelectric bending actuator in a plane channel." Multiphase Systems 14, no. 4 (2019): 220–32. http://dx.doi.org/10.21662/mfs2019.4.029.
Full textZhou, Xuyan, Meng Gao, and Lin Gui. "A Liquid-Metal Based Spiral Magnetohydrodynamic Micropump." Micromachines 8, no. 12 (2017): 365. http://dx.doi.org/10.3390/mi8120365.
Full textHong, Yiying, Misael Diaz, Ubaldo M. Córdova-Figueroa, and Ayusman Sen. "Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems." Advanced Functional Materials 20, no. 10 (2010): 1568–76. http://dx.doi.org/10.1002/adfm.201000063.
Full textFarah, Javaid, and M. El-Sheik Said. "FUZZY SIMULATION OF DRUG DELIVERY SYSTEM THROUGH VALVE-LESS MICROPUMP." PJEST 1, no. 1 (2021): 9. https://doi.org/10.5281/zenodo.4774030.
Full textUEDA, Yuki, Kenta SHINHA, Shin KOMIYAMA, and Hiroshi KIMURA. "Improvement of Perfusion Functions of the Stirrer-Based Micropump for Microphysiological Systems." Proceedings of the Conference on Information, Intelligence and Precision Equipment : IIP 2023 (2023): IIPA—3–2. http://dx.doi.org/10.1299/jsmeiip.2023.iipa-3-2.
Full textJumril Yunas, Muzalifah Mohd Said, Roer Eka Pawinanto, et al. "Magnetic Polymer Based Micropumps for Microfluidic Sample Delivery System." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 85, no. 1 (2021): 12–21. http://dx.doi.org/10.37934/arfmts.85.1.1221.
Full text