Academic literature on the topic 'MicroRNA analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MicroRNA analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MicroRNA analysis"
Qin, Li-Xuan. "An Integrative Analysis of microRNA and mRNA Expression–-A Case Study." Cancer Informatics 6 (January 2008): CIN.S633. http://dx.doi.org/10.4137/cin.s633.
Full textZou, Quan, Jinjin Li, Qingqi Hong, Ziyu Lin, Yun Wu, Hua Shi, and Ying Ju. "Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods." BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/810514.
Full textVarga, Zoltán V., Ágnes Zvara, Nóra Faragó, Gabriella F. Kocsis, Márton Pipicz, Renáta Gáspár, Péter Bencsik, et al. "MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs." American Journal of Physiology-Heart and Circulatory Physiology 307, no. 2 (July 15, 2014): H216—H227. http://dx.doi.org/10.1152/ajpheart.00812.2013.
Full textMartinez-Fierro, Margarita L., and Idalia Garza-Veloz. "Analysis of Circulating microRNA Signatures and Preeclampsia Development." Cells 10, no. 5 (April 24, 2021): 1003. http://dx.doi.org/10.3390/cells10051003.
Full textWang, Wei, Dequang Zhou, Xiaolong Shi, Chao Tang, Xueying Xie, Jing Tu, Qinyu Ge, and Zuhong Lu. "Global Egr1-miRNAs Binding Analysis in PMA-Induced K562 Cells Using ChIP-Seq." Journal of Biomedicine and Biotechnology 2010 (2010): 1–11. http://dx.doi.org/10.1155/2010/867517.
Full textAlexiou, Panagiotis, Manolis Maragkakis, and Artemis G. Hatzigeorgiou. "Online resources for microRNA analysis." Journal of Nucleic Acids Investigation 2, no. 1 (February 25, 2011): 4. http://dx.doi.org/10.4081/jnai.2011.2161.
Full textFan, Lichao, Xiaoting Yu, Ziling Huang, Shaoqiang Zheng, Yongxin Zhou, Hanjing Lv, Yu Zeng, Jin-Fu Xu, Xuyou Zhu, and Xianghua Yi. "Analysis of Microarray-Identified Genes and MicroRNAs Associated with Idiopathic Pulmonary Fibrosis." Mediators of Inflammation 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/1804240.
Full textJongen-Lavrencic, Mojca, Su Ming Sun, Menno K. Dijkstra, Peter J. M. Valk, and Bob Löwenberg. "MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia." Blood 111, no. 10 (May 15, 2008): 5078–85. http://dx.doi.org/10.1182/blood-2008-01-133355.
Full textWang, Jinfeng, Fengyuan Che, and Jinling Zhang. "Cell-free microRNAs as non-invasive biomarkers in glioma: a diagnostic meta-analysis." International Journal of Biological Markers 34, no. 3 (April 10, 2019): 232–42. http://dx.doi.org/10.1177/1724600819840033.
Full textVrahatis, Aristidis G., Konstantina Dimitrakopoulou, Panos Balomenos, Athanasios K. Tsakalidis, and Anastasios Bezerianos. "CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis." Bioinformatics 32, no. 6 (November 14, 2015): 884–92. http://dx.doi.org/10.1093/bioinformatics/btv673.
Full textDissertations / Theses on the topic "MicroRNA analysis"
Weinstein, Earl G. 1974. "MicroRNA cloning and bioinformatic analysis." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8390.
Full textIncludes bibliographical references.
Part I. Two gene-regulatory noncoding RNAs (ncRNAs), let-7 RNA and lin-4 RNA, were previously discovered in the C. elegans genome. The let-7 gene is conserved across a wide range of genomes, suggesting that these ncRNAs represent a wider class of gene-regulatory RNAs. Both lin-4 and let-7 RNAs are generated from stem-loop precursor RNAs, and share a common biochemical signature, namely 5'-terminal phosphate and 3'-terminal hydroxyl groups. We refer to ncRNAs that share the characteristic size, biochemical signature, and precursor structures of let-7 and lin-4 as microRNAs (miRNAs). The size of this class of genes, and its prevalence in other genomes, are unknown. Therefore, we developed an experimental and bioinformatics strategy to identify novel miRNA genes. We discovered a total of 75 miRNA genes in the C. elegans genome, and orthologues for a majority of these were computationally identified in the C. briggsae, D. melanogaster or H. sapiens genomes. Northern analysis was used to confirm and analyze the expression of these miRNAs. The data set has implications for understanding miRNA gene regulation, miRNA processing, and regulation of miRNA genes. Part II. Directed molecular evolution has previously been applied to generate RNAs with novel structures and functions. This method works because nucleic acids can be selected, randomized, amplified and characterized using polymerase chain reaction (PCR)-based methods. Here we present a novel method for extending directed molecular evolution to the realm of peptide selections by linking a peptide to its encoding mRNA.
(cont.) A proof of principle selection for two different peptides indicates that this tRNA should prove useful in discovering more complex protein molecules using directed molecular evolution.
by Earl G. Weinstein.
Ph.D.
Wang, Qi. "Using Imputed Microrna Regulation Based on Weighted Ranked Expression and Putative Microrna Targets and Analysis of Variance to Select Micrornas for Predicting Prostate Cancer Recurrence." Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27341.
Full textGoldstein, L. D. "Statistical analysis of microRNA expression and related data." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599479.
Full textAlvarez-Saavedra, Ezequiel (Ezequiel Andrès). "Functional analysis of the microRNA genes of C. elegans." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/42948.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 231-252).
MicroRNAs (miRNAs) were discovered in C. elegans during studies of the control of developmental timing. MicroRNAs are a large class of short non-coding RNAs found in many viruses, plants and animals that regulate gene expression through sequence-specific base-pairing with target mRNAs. Initial studies since the identification of many miRNAs only six years ago, have revealed their very diverse roles in biology. Yet, few miRNAs have been studied using loss-of-function mutations. We have generated deletion mutations in 87 miRNA genes in C. elegans, and performed an initial characterization of the 95 miRNA mutants available (86% of known C. elegans miRNAs). We found that the majority of miRNAs are not essential for the viability or development of C. elegans, and mutations in most miRNA genes do not result in grossly abnormal phenotypes. Within species, many miRNAs can be grouped into families according to their sequence similarities. We generated a collection of 12 multiply mutant C. elegans strains that each lacks an entire miRNA family. We found that at least four families display synthetic abnormalities, indicating that miRNAs within a family can have redundant functions. While single mutants are superficially wild-type, mutants deleted for all members of the mir-35 or the mir-51 families show embryonic or early larval lethality, mutants deleted for all members of the mir-58 family show an egglaying defect, and mutants deleted for some members of the let-7 family show defects in developmental timing. We developed a microarray technology suitable for detecting microRNAs and used this microarray to determine the profile of microRNAs expressed in the developing mouse brain. We observed a temporal wave of expression of microRNAs, suggesting that microRNAs play important roles in the development of the mammalian brain.
(cont.) We also performed a systematic expression analysis of 334 samples covering diverse human cancers, using a bead-based flow cytometric miRNA expression profiling method we developed. The miRNA profiles reflect the developmental lineage and differentiation state of the tumors, and reveal a general down-regulation of miRNAs in tumors compared to normal tissues.
by Ezequiel Alvarez-Saavedra.
Ph.D.
Bexon, Kimerley Jane. "Forensic microRNA analysis of body fluids relating to sexual assaults." Thesis, University of Huddersfield, 2017. http://eprints.hud.ac.uk/id/eprint/34347/.
Full textLehrbach, Nicolas John. "Genetic analysis of microRNA mechanisms and functions in C. elegans." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609195.
Full textMoriarty, Charlotte M. Harwood. "Functional Analysis of MicroRNA-10b in Breast Carcinoma: A Dissertation." eScholarship@UMMS, 2009. https://escholarship.umassmed.edu/gsbs_diss/426.
Full textWoodcock, M. Ryan. "Network Analysis and Comparative Phylogenomics of MicroRNAs and their Respective Messenger RNA Targets Using Twelve Drosophila species." VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/155.
Full textBracht, John Russell. "Analysis of lin-4 microRNA biogenesis and function in C. elegans." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3378519.
Full textTitle from first page of PDF file (viewed Oct. 21, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 139-150).
Lopes, Ivani de Oliveira Negrão. "Analysis of microRNA precursors in multiple species by data mining techniques." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19092014-155038/.
Full textO sequenciamento de pequenos RNAs surgiu recentemente como uma tecnologia inovadora na descoberta de microRNAs (miRNA). Essa tecnologia tem facilitado a descoberta de milhares de miRNAs em um grande número de espécies. No entanto, apesar dos benefícios dessa tecnologia, ela apresenta desafios, como a necessidade de construir uma biblioteca de pequenos RNAs, além do genoma. Diferentemente, métodos computacionais ab initio buscam diretamente no genoma regiões prováveis de conter miRNAs. A maioria desses métodos usam modelos preditivos capazes de distinguir entre os verdadeiros (positivos) e pseudo precursores de miRNA - pre-miRNA - (negativos), os quais são induzidos utilizando técnicas de mineração de dados. No entanto, a aplicabilidade de métodos ab initio da literatura atual é limitada pelas altas taxas de falsos positivos e/ou por outras dificuldades computacionais, como o elevado tempo necessário para calcular um conjunto de atributos. Neste trabalho, investigamos como os principais aspectos envolvidos na indução de modelos preditivos de pre-miRNA afetam o desempenho preditivo. Particularmente, avaliamos a capacidade discriminatória de conjuntos de atributos propostos na literatura, cujos custos computacionais e a composição variam amplamente. Os experimentos computacionais foram realizados utilizando dados de sequências positivas e negativas de 45 espécies, cobrindo espécies de oito filos. Os resultados mostraram que o desempenho preditivo de classificadores induzidos utilizando conjuntos de treinamento com 1608 ou mais vetores de atributos calculados de sequências humanas não diferiram significativamente, entre os conjuntos de atributos que produziram as maiores acurácias. Além disso, as diferenças entre os desempenhos preditivos de classificadores induzidos por diferentes algoritmos de aprendizado, utilizando um mesmo conjunto de atributos, foram pequenas ou não significantes. Esses resultados inspiraram a obtenção de um conjunto de atributos menor e que pode ser calculado até 34 vezes mais rapidamente do que o conjunto de atributos menos custoso produzindo máxima acurácia, embora a acurácia produzida pelo conjunto proposto não difere em mais de 0.1% das acurácias máximas. Quando esses experimentos foram executados utilizando vetores de atributos calculados de sequências de outras 44 espécies, os resultados mostraram que os conjuntos de atributos que produziram modelos com as maiores acurácias utilizando vetores calculados de sequências humanas também produziram as maiores acurácias quando pequenos conjuntos de treinamento (120) calculados de exemplos de outras espécies foram utilizadas. No entanto, a análise destes modelos mostrou que a complexidade de aprendizado varia amplamente entre as espécies, mesmo entre aquelas pertencentes a um mesmo filo. Esses resultados mostram que a existência de características espécificas em pre-miRNAs de certas espécies sugerida em estudos anteriores pode estar correlacionada com a complexidade de aprendizado. Consequentemente, a acurácia de modelos induzidos utilizando um mesmo conjunto de atributos e um mesmo algoritmo de aprendizado varia amplamente entre as espécies. i Os resultados também mostraram que o uso de exemplos de espécies filogeneticamente mais complexas pode aumentar o desempenho preditivo de espécies menos complexas. Por último, experimentos computacionais utilizando técnicas de ensemble mostraram estratégias alternativas para o desenvolvimento de novos modelos para predição de pre-miRNA com maior probabilidade de obter maior desempenho preditivo do que estratégias atuais, embora o custo computacional dos atributos seja inferior. Uma vez que a descoberta de miRNAs envolve a análise de milhares de regiões genômicas, a aplicação prática de modelos preditivos de baixa acurácia e/ou que dependem de atributos computacionalmente custosos pode ser inviável em análises de grandes genomas. Neste trabalho, apresentamos e discutimos os resultados de experimentos computacionais investigando o potencial de diversas estratégias utilizadas na indução de modelos preditivos para predição ab initio de pre-miRNAs, que podem levar ao desenvolvimento de ferramentas ab initio de maior aplicabilidade prática
Books on the topic "MicroRNA analysis"
Yousef, Malik, and Jens Allmer, eds. miRNomics: MicroRNA Biology and Computational Analysis. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-748-8.
Full textRNAi and microRNA-mediated gene regulation in stem cells: Methods, protocols, and applications. New York: Humana Press, 2010.
Find full textChen, Pinhong. Static crosstalk-noise analysis: For deep sub-micron digital designs. Norwell, MA: Kluwer Academic Publishers, 2004.
Find full textDahiya, Neetu. MicroRNA Let-7: Role in Human Diseases and Drug Discovery. Nova Science Publishers, Incorporated, 2012.
Find full textSingh, Shree Ram, and Pranela Rameshwar. MicroRNA in Development and in the Progression of Cancer. Springer, 2016.
Find full textSingh, Shree Ram, and Pranela Rameshwar. MicroRNA in Development and in the Progression of Cancer. Springer, 2014.
Find full textCenter, Ames Research, ed. High resolution surface analysis by Microarea Auger analysis: Computerization and characterization. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1985.
Find full textChen, Pinhong. Static Crosstalk-Noise Analysis: For Deep Sub-Micron Digital Designs. Springer, 2013.
Find full textBook chapters on the topic "MicroRNA analysis"
Xu, Jianzhen, and Chi-Wai Wong. "Enrichment Analysis of miRNA Targets." In MicroRNA Protocols, 91–103. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-083-0_8.
Full textMuiwo, Pamchui, Priyatama Pandey, and Alok Bhattacharya. "Computational Analysis of miRNAs, Their Target Sequences and Their Role in Gene Regulatory Networks." In MicroRNA, 21–38. Boca Raton : Taylor & Francis, 2018. | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.”: CRC Press, 2018. http://dx.doi.org/10.1201/b22195-2.
Full textKim, Ju Han. "MicroRNA Data Analysis." In Genome Data Analysis, 159–72. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1942-6_9.
Full textMegraw, Molly, and Artemis G. Hatzigeorgiou. "MicroRNA Promoter Analysis." In Methods in Molecular Biology, 149–61. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-005-2_11.
Full textIsik, Meltem, and Eugene Berezikov. "Expression Pattern Analysis of MicroRNAs in Caenorhabditis elegans." In MicroRNA Protocols, 129–41. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-083-0_11.
Full textPrévot, Pierre-Paul, Marie-Laure Volvert, Alexander Deiters, and Laurent Nguyen. "Functional Analysis of Cortical Neuron Migration Using miRNA Silencing." In MicroRNA Technologies, 73–88. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/7657_2016_13.
Full textKim, Hak Hee, Monichan Phay, and Soonmoon Yoo. "Isolation and Quantitative Analysis of Axonal Small Noncoding RNAs." In MicroRNA Technologies, 147–59. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/7657_2016_8.
Full textDa Silveira, Juliano, Gabriella M. Andrade, Felipe Perecin, Flávio Vieira Meireles, Quinton A. Winger, and Gerrit J. Bouma. "Isolation and Analysis of Exosomal MicroRNAs from Ovarian Follicular Fluid." In MicroRNA Protocols, 53–63. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7601-0_4.
Full textStarega-Roslan, Julia, and Wlodzimierz J. Krzyzosiak. "Analysis of MicroRNA Length Variety Generated by Recombinant Human Dicer." In MicroRNA Protocols, 21–34. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-083-0_2.
Full textWu, Wei. "MicroRNA Sequencing Data Analysis Toolkits." In MicroRNA and Cancer, 211–15. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7435-1_16.
Full textConference papers on the topic "MicroRNA analysis"
Igdeli, Muratcan, Atif Yilmaz, and Hasan Ogul. "Sequence analysis to predict microRNA chemotherapy resistance." In 2016 IEEE 8th International Conference on Intelligent Systems (IS). IEEE, 2016. http://dx.doi.org/10.1109/is.2016.7737427.
Full textKim, Sun, Soo-Jin Kim, and Byoung-Tak Zhang. "Evolving hypernetwork classifiers for microRNA expression profile analysis." In 2007 IEEE Congress on Evolutionary Computation. IEEE, 2007. http://dx.doi.org/10.1109/cec.2007.4424487.
Full textJin, Huawei, Zhenhua Yu, Xiaodan Wang, Weian Chen, Shaolei Guo, Mohan Vamsi Kasukurthi, Glen M. Borchert, and Jingshan Huang. "Computational analysis to discover microRNA biomarkers in glioblastoma." In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8217841.
Full textSungroh Yoon and G. De Micheli. "Prediction and Analysis of Human microRNA Regulatory Modules." In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1615545.
Full textGuo, Li, and Zuhong Lu. "MicroRNA Locus Expression Analysis with Phylogenetic Relationship Based on MicroRNA Control from High Throughput Sequencing Data." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5516330.
Full textPu, Heng-Ying, Da Fu, Mei-Yin Zhang, Yin-Lian Cha, Hai-Shan Peng, Lan-Jun Zhang, Wei-Hua Jia, et al. "Abstract 5223: Prognostic value of microRNA signature in non-small-cell lung cancer: A microRNA expression analysis." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5223.
Full textSuman, Shikha, Ashutosh Mishra, and Anurag Kulshrestha. "Integrated analysis of microRNA regulation of genes in HSIL." In 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2016. http://dx.doi.org/10.1109/cibcb.2016.7758132.
Full textMeyenhofer, Felix, Olivier Schaad, Patrick Descombes, and Michel Kocher. "Automatic analysis of microRNA Microarray images using Mathematical Morphology." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353780.
Full textZeng, Zhaolei, Jiahua Lu, Zhixiang Zuo, Qi Zhao, and Ruihua Xu. "Abstract 5407: MicroRNA expression analysis of advanced colorectal cancer reveals a microRNA signature with prognostic and predictive value." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5407.
Full textZeng, Zhaolei, Jiahuan Lu, Zhixiang Zuo, and Ruihua Xu. "IDDF2018-ABS-0122 MICRORNA expression analysis of advanced colorectal cancer reveals a microrna signature with prognostic and predictive value." In International Digestive Disease Forum (IDDF) 2018, Hong Kong, 9–10 June 2018. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2018. http://dx.doi.org/10.1136/gutjnl-2018-iddfabstracts.14.
Full textReports on the topic "MicroRNA analysis"
Liu, Wenfeng, and Keshu Hu. Prognostic significance of microRNA-221 in liver cancer: A systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2021. http://dx.doi.org/10.37766/inplasy2021.3.0014.
Full textJi, Kun, Xiaohua Wang, Anqi Zhang, and Hongwei Wen. Prognostic value of microRNA-21 in epithelial ovarian carcinoma: a systematic review and meta-analysis protocol. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2020. http://dx.doi.org/10.37766/inplasy2020.11.0064.
Full textQiao, Feng. Association between microRNA 21 expression in serum and lung cancer: a protocol of systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review Protocols, April 2020. http://dx.doi.org/10.37766/inplasy2020.4.0055.
Full textQiao, Feng. Association between microRNA 25 expression in serum and lung cancer: a protocol of systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review Protocols, April 2020. http://dx.doi.org/10.37766/inplasy2020.4.0056.
Full textWang, Song, Pingping Yu, Zhen Meng, and Lin Feng. The value of microRNA-203 as a biomarker for the prognosis of esophageal cancer: A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2020. http://dx.doi.org/10.37766/inplasy2020.11.0022.
Full textJohnson, Curtis E., Stephen Fallis, Thomas J. Groshens, Kelvin T. Higa, and Ismail M. Ismail. Characterization of Nanometer- to Micron-Sized Aluminum Powders by Thermogravimetric Analysis. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada409796.
Full textGreen, Jeffrey E., and Kristin K. Deeb. Cross Species Identification and Functional Analysis of MicroRNAs in Mammary Tumorigenesis: Potential Targets for Detection, Diagnosis and Therapy. Fort Belvoir, VA: Defense Technical Information Center, July 2007. http://dx.doi.org/10.21236/ada473885.
Full textFoscolos, A. E. Mass Transfer of Elements in Middle Triassic Shale / Sandstone Sequences, Sverdrup Basin, Arctic Islands, Part 2: Mineralogy, Clay Mineralogy, Thermogravimetric Analysis and Chemistry of the Greater Than .2 Micron Fraction and Sem Studies On Thin Sections, East Drake L-06 and Sky Battle Bay M-11 Cores. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1989. http://dx.doi.org/10.4095/130812.
Full text