Academic literature on the topic 'Microscope and microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microscope and microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Microscope and microscopy"

1

Schatten, G., J. Pawley, and H. Ris. "Integrated microscopy resource for biomedical research at the university of wisconsin at madison." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 594–97. http://dx.doi.org/10.1017/s0424820100127451.

Full text
Abstract:
The High Voltage Electron Microscopy Laboratory [HVEM] at the University of Wisconsin-Madison, a National Institutes of Health Biomedical Research Technology Resource, has recently been renamed the Integrated Microscopy Resource for Biomedical Research [IMR]. This change is designed to highlight both our increasing abilities to provide sophisticated microscopes for biomedical investigators, and the expansion of our mission beyond furnishing access to a million-volt transmission electron microscope. This abstract will describe the current status of the IMR, some preliminary results, our upcoming plans, and the current procedures for applying for microscope time.The IMR has five principal facilities: 1.High Voltage Electron Microscopy2.Computer-Based Motion Analysis3.Low Voltage High-Resolution Scanning Electron Microscopy4.Tandem Scanning Reflected Light Microscopy5.Computer-Enhanced Video MicroscopyThe IMR houses an AEI-EM7 one million-volt transmission electron microscope.
APA, Harvard, Vancouver, ISO, and other styles
2

J. H., Youngblom, Wilkinson J., and Youngblom J.J. "Telepresence Confocal Microscopy." Microscopy and Microanalysis 6, S2 (2000): 1164–65. http://dx.doi.org/10.1017/s1431927600038319.

Full text
Abstract:
The advent of the Internet has allowed the development of remote access capabilities to a growing variety of microscopy systems. The Materials MicroCharacterization Collaboratory, for example, has developed an impressive facility that provides remote access to a number of highly sophisticated microscopy and microanalysis instruments. While certain types of microscopes, such as scanning electron microscopes, transmission electron microscopes, scanning probe microscopes, and others have already been established for telepresence microscopy, no one has yet reported on the development of similar capabilities for the confocal laser scanning microscope.At California State University-Stanislaus, home of the CSUPERB (California State University Program for Education and Research in Biotechnology) Confocal Microscope Core Facility, we have established a remote access confocal laser scanning microscope facility that allows users with virtually any type of computer platform to connect to our system. Our Leica TCS NT confocal system, with an interchangeable upright (DMRXE) and inverted microscope (DMIRBE) set up,
APA, Harvard, Vancouver, ISO, and other styles
3

Youngblom, J. H., J. Wilkinson, and J. J. Youngblom. "Telepresence Confocal Microscopy." Microscopy Today 8, no. 10 (2000): 20–21. http://dx.doi.org/10.1017/s1551929500054146.

Full text
Abstract:
The advent of the Internet has allowed the development of remote access capabilities to a growing variety of microscopy systems. The Materials MicroCharacterization Collaboratory, for example, has developed an impressive facility that provides remote access to a number of highly sophisticated microscopy and microanalysis instruments, While certain types of microscopes, such as scanning electron microscopes, transmission electron microscopes, scanning probe microscopes, and others have already been established for telepresence microscopy, no one has yet reported on the development of similar capabilities for the confocal laser scanning microscope.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Xiaodong, Bin Zheng, and Hong Liu. "Optical and Digital Microscopic Imaging Techniques and Applications in Pathology." Analytical Cellular Pathology 34, no. 1-2 (2011): 5–18. http://dx.doi.org/10.1155/2011/150563.

Full text
Abstract:
The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials.
APA, Harvard, Vancouver, ISO, and other styles
5

Graef, M. De, N. T. Nuhfer, and N. J. Cleary. "Implementation Of A Digital Microscopy Teaching Environment." Microscopy and Microanalysis 5, S2 (1999): 4–5. http://dx.doi.org/10.1017/s1431927600013349.

Full text
Abstract:
The steady evolution of computer controlled electron microscopes is dramatically changing the way we teach microscopy. For today’s microscopy student, an electron microscope may be just another program on the desktop of whatever computer platform he or she uses. This is reflected in the use of the term Desktop Microscopy. The SEM in particular has become a mouse and keyboard controlled machine, and running the microscope is not very different from using a drawing program or a word processor. Transmission electron microscopes are headed in the same direction.While one can debate whether or not it is wise to treat an SEM or a TEM as just another black-box computer program, it is a fact that these machines are here to stay, which means that microscopy educators must adapt their traditional didactic tools and methods. One way to bring electron microscopes into the classroom is through the use of remote control software packages, such as Timbuktu Pro or PC-Anywhere. The remote user essentially opens a window containing the desktop of the microscope control computer and has all functions available. On microscopes with specialized graphics boards, integration of the image and control display for remote operation may not be straightforward, and often requires the purchase of additional graphics boards for the remote machine.
APA, Harvard, Vancouver, ISO, and other styles
6

O'Keefe, Michael A., John H. Turner, John A. Musante, et al. "Laboratory Design for High-Performance Electron Microscopy." Microscopy Today 12, no. 3 (2004): 8–17. http://dx.doi.org/10.1017/s1551929500052093.

Full text
Abstract:
Since publication of the classic text on the electron microscope laboratory by Anderson, the proliferation of microscopes with field emission guns, imaging filters and hardware spherical aberration correctors (giving higher spatial and energy resolution) has resulted in the need to construct special laboratories. As resolutions iinprovel transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State-of-the-art electron microscopes require state-of-the-art environments, and this means careful design and implementation of microscope sites, from the microscope room to the building that surrounds it. Laboratories have been constructed to house high-sensitive instruments with resolutions ranging down to sub-Angstrom levels; we present the various design philosophies used for some of these laboratories and our experiences with them. Four facilities are described: the National Center for Electron Microscopy OAM Laboratory at LBNL; the FEGTEM Facility at the University of Sheffield; the Center for Integrative Molecular Biosciences at TSRI; and the Advanced Microscopy Laboratory at ORNL.
APA, Harvard, Vancouver, ISO, and other styles
7

Youngblom, J. H., J. Wilkinson, and J. J. Youngblom. "Confocal Laser Scanning Microscopy By Remote Access." Microscopy Today 7, no. 7 (1999): 32–33. http://dx.doi.org/10.1017/s1551929500064798.

Full text
Abstract:
In recent years there have been a growing number of facilities interested in developing remote access capabilities to a variety of microscopy systems. While certain types of microscopes, such as electron microscopes and scanning probe microscopes have been well established for telepresence microscopy, no one has yet reported on the development of similar capabilities for the confocal microscope.At California State University, home to the CSUPERB (California State University Program for Education and Research in Biotechnology) Confocal Microscope Core Facility, we have established a remote access confocal laser scanning microscope facility that allows users with virtually any type of computer platform to connect to our system.
APA, Harvard, Vancouver, ISO, and other styles
8

Möller, Lars, Gudrun Holland, and Michael Laue. "Diagnostic Electron Microscopy of Viruses With Low-voltage Electron Microscopes." Journal of Histochemistry & Cytochemistry 68, no. 6 (2020): 389–402. http://dx.doi.org/10.1369/0022155420929438.

Full text
Abstract:
Diagnostic electron microscopy is a useful technique for the identification of viruses associated with human, animal, or plant diseases. The size of virus structures requires a high optical resolution (i.e., about 1 nm), which, for a long time, was only provided by transmission electron microscopes operated at 60 kV and above. During the last decade, low-voltage electron microscopy has been improved and potentially provides an alternative to the use of high-voltage electron microscopy for diagnostic electron microscopy of viruses. Therefore, we have compared the imaging capabilities of three low-voltage electron microscopes, a scanning electron microscope equipped with a scanning transmission detector and two low-voltage transmission electron microscopes, operated at 25 kV, with the imaging capabilities of a high-voltage transmission electron microscope using different viruses in samples prepared by negative staining and ultrathin sectioning. All of the microscopes provided sufficient optical resolution for a recognition of the viruses tested. In ultrathin sections, ultrastructural details of virus genesis could be revealed. Speed of imaging was fast enough to allow rapid screening of diagnostic samples at a reasonable throughput. In summary, the results suggest that low-voltage microscopes are a suitable alternative to high-voltage transmission electron microscopes for diagnostic electron microscopy of viruses.
APA, Harvard, Vancouver, ISO, and other styles
9

Davidson, Michael W. "50 Most Frequently Asked Questions About Optical Microscopy." Microscopy Today 8, no. 6 (2000): 12–19. http://dx.doi.org/10.1017/s1551929500052780.

Full text
Abstract:
A significant percentage of technical experts who employ optical microscopes have had little or no formal training in optical microscope basics. Some, typically, were required to use microscopes during their technical education but, in general, microscope terminology and technology was a sideline to their major training. As a result, many useful basic microscope technical details were not learned because they were not necessary to accomplish what was needed in order to survive their major class work. At Florida State University, we try to make the [earning of microscope technology an inherent part of the students training. An important part of this training is this compendium of 50 of the most frequently asked questions about Optical Microscopy.
APA, Harvard, Vancouver, ISO, and other styles
10

Madrid-Wolff, Jorge, and Manu Forero-Shelton. "Protocol for the Design and Assembly of a Light Sheet Light Field Microscope." Methods and Protocols 2, no. 3 (2019): 56. http://dx.doi.org/10.3390/mps2030056.

Full text
Abstract:
Light field microscopy is a recent development that makes it possible to obtain images of volumes with a single camera exposure, enabling studies of fast processes such as neural activity in zebrafish brains at high temporal resolution, at the expense of spatial resolution. Light sheet microscopy is also a recent method that reduces illumination intensity while increasing the signal-to-noise ratio with respect to confocal microscopes. While faster and gentler to samples than confocals for a similar resolution, light sheet microscopy is still slower than light field microscopy since it must collect volume slices sequentially. Nonetheless, the combination of the two methods, i.e., light field microscopes that have light sheet illumination, can help to improve the signal-to-noise ratio of light field microscopes and potentially improve their resolution. Building these microscopes requires much expertise, and the resources for doing so are limited. Here, we present a protocol to build a light field microscope with light sheet illumination. This protocol is also useful to build a light sheet microscope.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Microscope and microscopy"

1

Payton, Oliver David. "High-speed atomic force microscopy under the microscope." Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.574416.

Full text
Abstract:
SINCE its invention in 1986, the atomic force microscope (AFM) has revolutionised the field of nanotechnology and nanoscience. It is a tool that has enabled research into areas of medicine, advanced materials, biology, chemistry and physics. However due to its low frame rate it is a tool that has been limited to imaging small areas using a time lapse technique. It has only been in recent years that the frame rate of the device has been increased in a tool known as high-speed AFM (HSAFM). This increased frame rate allows, for the first time, biological processes to be viewed in real time or macro sized areas to be imaged with nanoscale resolution. The research presented here concentrates on a specific type of high-speed AFM developed at the University of Bristol called contact mode HSAFM. This thesis explains how the microscope is able to function, and presents a leap in image quality due to an increased understanding of the dynamics of the system. The future of the device is also discussed. III
APA, Harvard, Vancouver, ISO, and other styles
2

Franklin, Thomas. "Scanning ionoluminescence microscopy with a helium ion microscope." Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/352281/.

Full text
Abstract:
The ORIONR PLUS scanning helium ion microscope (HIM) images at sub nanometer resolution. Images of the secondary electron emission have superior resolution and depth of field compared to a scanning electron microscope (SEM). Ionoluminescent imaging is not an area that has been extensively explored by typical ion beam systems as they have large spot sizes in the region of microns, leading to poor spatial resolution. This thesis confirms that the ORIONR PLUS can form images from the ionoluminescent signal, resolutions of 20nm can be obtained for images of bright nanoparticles. Ionoluminescence spectra can also be obtained from some samples. The position of emission peaks in samples under the ORIONR PLUS does not deviate significantly from cathodoluminescence (CL) peaks under SEM. However, the relative heights of the emission peaks in a sample can vary between ionoluminescence (IL) and CL. In addition, It is found that there exists a proportional relationship between acceleration voltage and ionoluminescent signal in the ORIONR PLUS, this relationship is also exhibited in CL. However, when normalised for current and acceleration voltage there appears to be no samples that show greater luminescence under ionoluminescence than cathodoluminescence, with ionoluminescent intensities up to an order of magnitude lower. Ionoluminescence under the ORIONR PLUS is found to be a poor candidate for the analysis of direct band gap semiconductors, this is attributed to the smaller interaction volumes and achievable beam current of the ORIONR PLUS. It is also found that some direct band gap materials are very susceptible to beam damage under the ion beam at beam doses typically used for secondary electron (SE) imaging. It is possible to obtain simultaneous IL and SE images of organic fluorospores in a biological sample. However, the luminescence of the fluorospores was only just sufficient to form images with a 200nm resolution. Rare earth based nanoparticles show brighter luminescence and greater resistance to beam damage than organic fluorospores. If such particles could be utilised for immunofluorescence it would make combined secondary electron and immunofluorescence imaging under the ORIONR PLUS a viable technique.
APA, Harvard, Vancouver, ISO, and other styles
3

Szelc, Jedrzej. "THz imaging and microscopy : a multiplexed near-field TeraHertz microscope." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/209643/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wright, Adele Hart. "Design, development, and application of an automated precision scanning microscope stage with a controlled environment." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/16409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Battistella, Eliana. "Towards an improved photonic force microscope: a novel technique for biological microscopy." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14864/.

Full text
Abstract:
Una delle tecniche più note nello studio topografico di campioni biologici è l’AFM. Ci sono però limitazioni dovute alla presenza del cantilever, il quale pone un limite nella forza minima applicabile su un campione per ottenere un’immagine topografica. Questa forza (ordine dei 10 pN) può essere sufficiente a danneggiare il campione e a deformare i dettagli topografici che si vorrebbero evidenziare. Per superare questo problema si può usare un Photonic Force Microscope, dove il cantilever è sostituito da Optical Tweezers. Questa tecnica permette di effettuare scansioni di campioni biologici applicando forze dell’ordine dei 100 fN. All’interno della trappola ottica viene posizionata una microparticella che agisce da sonda, attraverso la quale possono essere rilevati dettagli topografici del campione. La differenza rispetto al PFM tradizionale si trova proprio nel tipo di sonda utilizzata durante la scansione. Lo standard prevede l’utilizzo di una sonda sferica, di dimensioni dell’ordine dei 100 nm mentre l’ipotesi è che si possano utilizzare delle sonde cilindriche con alla base un dettaglio acuminato che richiama la punta dell’AFM. Questo tipo di sonda consentirebbe di raggiungere una risoluzione maggiore, rispetto al PFM tradizionale, che risente del limite dato dal diametro della sfera. Due differenti setup per la PFM sono stati costruiti e testati durante questo periodo di tesi. Sono state testate diverse microparticelle cilindriche, di dimensioni differenti in termini di aspect ratio con lo scopo di osservare la stabilità di questo tipo di sonda. Nei risultati viene proposto un metodo per controllare la stabilità e l’orientazione della microparticella cilindrica all’interno della trappola ottica. Viene inoltre fatta un’ipotesi su un metodo per stimare la lunghezza della punta che dovrà essere verificata da una misura sistematica. I risultati preliminari riguardanti la scansione di strutture note suggeriscono la validità dell’uso di questo nuovo tipo di sonda.
APA, Harvard, Vancouver, ISO, and other styles
6

Bethge, Philipp. "Development of a two-photon excitation STED microscope and its application to neuroscience." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0018/document.

Full text
Abstract:
L’avènement de la microscopie STED (Stimulated Emission Depletion) a bouleversé le domaine desneurosciences du au fait que beaucoup de structures neuronale, tels que les épines dendritiques, lesaxones ou les processus astrocytaires, ne peuvent pas être correctement résolu en microscopiephotonique classique. La microscopie 2-photon est une technique d’imagerie photonique très largement utilisée dans le domaine des neurosciences car elle permet d’imager les événements dynamique en profondeur dans le tissu cérébral, offrant un excellent sectionnement optique et une meilleure profondeur de pénétration. Cependant, la résolution spatiale de cette approche est limitée autour de 0.5 μm, la rendant inappropriée pour étudier les détails morphologiques des neurones et synapses. Le but de mon travail de thèse était à A) développer un microscope qui permet d'améliorer l'imagerie 2-photon en la combinant avec la microscopie STED et B) démontrer son potentiel pour l'imagerie à l'échelle nanométrique de processus neuronaux dynamiques dans des tranches de cerveau aigus et in vivo. Le nouveau microscope permet d'obtenir une résolution spatiale latérale de ~ 50 nm à des profondeurs d'imagerie de ~ 50 μm dans du tissu cérébral vivant. Il fonctionne avec des fluorophores verts, y compris les protéines fluorescentes communes telles que la GFP et YFP, offrant le contraste de deux couleurs basé sur la détection spectrale et linéaire ‘unmixing’. S’agissant d’un microscope droit, utilisant un objectif à immersion ayant une grande distance de travail, nous avons pu incorporer des techniques électrophysiologiques comme patch-clamp et ajouter une plateforme pour l'imagerie in vivo. J’ai utilise ce nouveau microscope pour imager des processus neuronaux fins et leur dynamique à l’échelle nanométrique dans différent types de préparations et des régions différentes du cerveau. J’ai pu révéler des nouvelles caractéristiques morphologique des dendrites et épines. En outre, j'ai exploré différentes stratégies de marquage pour pouvoir utiliser la microscopie STED pour imager le trafic des protéines et de leur dynamique à l'échelle nanométrique dans des tranches de cerveau<br>The advent of STED microscopy has created a lot of excitement in the field of neuroscience becausemany important neuronal structures, such as dendritic spines, axonal shafts or astroglial processes,cannot be properly resolved by regular light microscopy techniques. Two-photon fluorescence microscopy is a widely used imaging technique in neuroscience because it permits imaging dynamic events deep inside light-scattering brain tissue, providing high optical sectioning and depth penetration. However, the spatial resolution of this approach is limited to around half a micron, and hence is inadequate for revealing many morphological details of neurons and synapses. The aim of my PhD work was to A) develop a microscope that improves on two-photon imaging by combining it with STED microscopy and to B) demonstrate its potential for nanoscale imaging of dynamic neural processes in acute brain slices and in vivo. The new microscope achieves a lateral spatial resolution of ~50 nm at imaging depths of ~50 μm in living brain slices. It works with green fluorophores, including common fluorescent proteins like GFP and YFP, offering two-color contrast based on spectral detection and linear unmixing. Because of its upright design using a long working distance water-immersion objective, it was possible to incorporate electrophysiological techniques like patch-clamping or to add a stage for in vivo imaging. I have used the new microscope to image fine neural processes and their nanoscale dynamics in different experimental preparations and brain regions, revealing new and interesting morphological features of dendrites and spines. In addition, I have explored different labeling strategies to be able to use STED microscopy for visualizing protein trafficking and dynamics at the nanoscale in brain slices
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Enhua. "Crossed and uncrossed retinal fibres in normal and monocular hamsters : light and electron microscopic studies /." [Hong Kong : University of Hong Kong], 1990. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13014316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Konda, Pavan Chandra. "Multi-Aperture Fourier Ptychographic Microscopy : development of a high-speed gigapixel coherent computational microscope." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/9015/.

Full text
Abstract:
Medical research and clinical diagnostics require imaging of large sample areas with sub-cellular resolution. Conventional imaging techniques can provide either high-resolution or wide field-of-view (FoV) but not both. This compromise is conventionally defeated by using a high NA objective with a small FoV and then mechanically scan the sample in order to acquire separate images of its different regions. By stitching these images together, a larger effective FoV is then obtained. This procedure, however, requires precise and expensive scanning stages and prolongs the acquisition time, thus rendering the observation of fast processes/phenomena impossible. A novel imaging configuration termed Multi-Aperture Fourier Ptychographic Microscopy (MA-FPM) is proposed here based on Fourier ptychography (FP), a technique to achieve wide-FoV and high-resolution using time-sequential synthesis of a high-NA coherent illumination. MA-FPM configuration utilises an array of objective lenses coupled with detectors to increase the bandwidth of the object spatial-frequencies captured in a single snapshot. This provides high-speed data-acquisition with wide FoV, high-resolution, long working distance and extended depth-of-field. In this work, a new reconstruction method based on Fresnel diffraction forward model was developed to extend FP reconstruction to the proposed MA-FPM technique. MA-FPM was validated experimentally by synthesis of a 3x3 lens array system from a translating objective-detector system. Additionally, a calibration procedure was also developed to register dissimilar images from multiple cameras and successfully implemented on the experimental data. A nine-fold improvement in captured data-bandwidth was demonstrated. Another experimental configuration was proposed using the Scheimpflug condition to correct for the aberrations present in the off-axis imaging systems. An experimental setup was built for this new configuration using 3D printed parts to minimise the cost. The design of this setup is discussed along with robustness analysis of the low-cost detectors used in this setup. A reconstruction model for the Scheimpflug configuration FP was developed and applied to the experimental data. Preliminary experimental results were found to be in agreement with this reconstruction model. Some artefacts were observed in these results due to the calibration errors in the experiment. These can be corrected by using the self-calibration algorithm proposed in the literature, which is left as a future work. Extensions to this work can include implementing multiplexed illumination for further increasing the data acquisition speed and diffraction tomography for imaging thick samples.
APA, Harvard, Vancouver, ISO, and other styles
9

Morgan, Scott Warwick. "Gaseous secondary electron detection and cascade amplification in the environmental scanning electron microscope /." Electronic version, 2005. http://adt.lib.uts.edu.au/public/adt-NTSM20060511.115302/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Morrish, Dru, and DruMorrish@gmail com. "Morphology dependent resonance of a microscope and its application in near-field scanning optical microscopy." Swinburne University of Technology. Centre for Micro-Photonics, 2005. http://adt.lib.swin.edu.au./public/adt-VSWT20051124.121838.

Full text
Abstract:
In recent times, near-field optical microscopy has received increasing attention for its ability to obtain high-resolution images beyond the diffraction limit. Near-field optical microscopy is achieved via the positioning and manipulation of a probe on a scale less than the wavelength of the incident light. Despite many variations in the mechanical design of near-field optical microscopes almost all rely on direct mechanical access of a cantilever or a derivative form to probe the sample. This constricts the study to surface examinations in simple sample environments. Distance regulation between the sample surface and the delicate probe requires its own feedback mechanism. Determination of feedback is achieved through monitoring the shift of resonance of one arm of a 'tuning fork', which is caused by the interaction of the probes tip with the Van der Waals force. Van der Waals force emanates from atom-atom interaction at the top of the sample surface. Environmental contamination of the sample surface with additional molecules such as water makes accurate measurement of these forces particularly challenging. The near-field study of living biological material is extremely difficult as an aqueous environment is required for its extended survival. Probe-sample interactions within an aqueous environment that result in strong detectable signal is a challenging problem that receives considerable attention and is a focus of this thesis. In order to increase the detectible signal a localised field enhancement in the probing region is required. The excitation of an optically resonant probe by morphology dependent resonance (MDR) provides a strong localised field enhancement. Efficient MDR excitation requires important coupling conditions be met, of which the localisation of the incident excitation is a critical factor. Evanescent coupling by frustrated total internal reflection to a MDR microcavity provides an ideal method for localised excitation. However it has severe drawbacks if the probe is to be manipulated in a scanning process. Tightly focusing the incident illumination by a high numerical aperture objective lens provides the degree of freedom to enable both MDR excitation and remote manipulation. Two-photon nonlinear excitation is shown to couple efficiently to MDR modes due to the high spatial localisation of the incident excitation in three-dimensions. The dependence of incident excitation localisation by high numerical aperture objective on MDR efficiency is thoroughly examined in this thesis. The excitation of MDR can be enhanced by up to 10 times with the localisation of the incident illumination from the centre of the microcavity to its perimeter. Illuminating through a high numerical aperture objective enables the remote noninvasive manipulation of a microcavity probe by laser trapping. The transfer of photon momentum from the reflection and refraction of the trapping beam is sufficient enough to exert piconewtons of force on a trapped particle. This allows the particle to be held and scanned in a predictable fashion in all three-dimensions. Optical trapping removes the need for invasive mechanical access to the sample surface and provides a means of remote distance regulation between the trapped probe and the sample. The femtosecond pulsed beam utilised in this thesis allows the simultaneous induction of two-photon excitation and laser trapping. It is found in this thesis that a MDR microcavity can be excited and translated in an efficient manner. The application of this technique to laser trapped near-field microscopy and single molecule detection is of particular interest. Monitoring the response of the MDR signal as it is scanned over a sample object enables a near-field image to be built up. As the enhanced evanescent field from the propagation of MDR modes around a microcavity interacts with different parts of the sample, a measurable difference in energy leakage from the cavity modes occurs. The definitive spectral properties of MDR enables a multidimensional approach to imaging and sensing, a focus of this thesis. Examining the spectral modality of the MDR signal can lead to a contrast enhancement in laser trapped imaging. Observing a single MDR mode during the scanning process can increase the image contrast by up to 1:23 times compared to that of the integrated MDR fluorescence spectrum. The work presented in this thesis leads to the possibility of two-photon fluorescence excitation of MDR in combination with laser trapping becoming a valuable tool in near- field imaging, sensing and single molecule detection in vivo. It has been demonstrated that particle scanned, two-photon fluorescence excitation of MDR, by laser trapping 'tweezers' can provide a contrast enhancement and multiple imaging modalities. The spectral imaging modality has particular benefits for image contrast enhancements.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Microscope and microscopy"

1

Thomas, Mulvey, and Sheppard C. J. R, eds. Advances inoptical and electron microscopy. Academic, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bradbury, Savile. An introduction to the optical microscope. Bios, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bradbury, Savile. An introduction to the optical microscope. Oxford University Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burgess, Jeremy. The magnified world. Rourke Enterprises, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doane, Frances W. Canadian contributions to microscopy: An historical account of the development of the first electron microscope in North America and the first 20 years of the Microscopical Society of Canada/Société de microscopie du Canada. Microscopical Society of Canada, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

W, Doane F., Simon G. T, and Watson J. H. L, eds. Canadian contributions to microscopy: An historical account of the development of the first electron microscope in North America and the first 20 years of the Microscopical Society of Canada / Société de Microscopie du Canada. Microscopial Society of Canada, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pluta, Maksymilian. Advanced light microscopy. PWN, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reimer, Ludwig. Scanning electron microscopy: Physics of image formation and microanalysis. 2nd ed. Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

J, Cherry Richard, ed. New techniques of optical microscopy and microspectroscopy. Macmillan, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stevens, M. Brian. The microscope on a budget: A complete guide to the low cost light microscope for the laboratory, photographers, and hobbyists. Logical Image Research, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Microscope and microscopy"

1

Maddalena, Laura, Paolo Pozzi, Nicolò G. Ceffa, Bas van der Hoeven, and Elizabeth C. Carroll. "Optogenetics and Light-Sheet Microscopy." In Neuromethods. Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2764-8_8.

Full text
Abstract:
AbstractLight-sheet microscopy is a powerful method for imaging small translucent samples in vivo, owing to its unique combination of fast imaging speeds, large field of view, and low phototoxicity. This chapter briefly reviews state-of-the-art technology for variations of light-sheet microscopy. We review recent examples of optogenetics in combination with light-sheet microscopy and discuss some current bottlenecks and horizons of light sheet in all-optical physiology. We describe how 3-dimensional optogenetics can be added to an home-built light-sheet microscope, including technical notes about choices in microscope configuration to consider depending on the time and length scales of interest.
APA, Harvard, Vancouver, ISO, and other styles
2

Smailbegović, Ada. "Animalcules." In Microbium. punctum books, 2023. http://dx.doi.org/10.53288/0396.1.03.

Full text
Abstract:
This entry explores the hidden worlds of animalcules or micro-animals, such as tardigrades and mites. Such complex worlds are often inaccessible to the human sensorium due to their scale, except through the use of instruments like microscopes. With this in mind, the entry on micro-animals draws on the history of early microscopy by examining the writings and drawings of figures such as the seventeenth-century Dutch scientist Antonie van Leeuwenhoek, who was the first to observe animalcules, and the seventeenth-century English scientist Robert Hooke, who made extensive microscopic studies of matter in his book Micrographia (1665). This raises questions about the role of descriptive language in amplifying the miniature forms of micro-animals and making them discernable to humans, particularly through the use of metaphor, which often creates comparisons between these tiny creatures and more familiar macroscopic organisms and even inanimate entities that are perceptible at the human scale. In this way, metaphor acts as a kind of figurative microscope, bringing animalcules into view of human observers. At the same time, this entry attempts to look beyond the anthropocentric scales perceptible to humans and to consider the realm of “tiny perceptions,” which render the worlds of animalcules perceptible to these creatures.
APA, Harvard, Vancouver, ISO, and other styles
3

Hemsley, D. A. "Basic Light Microscopy and the Phase Contrast Microscope." In Applied Polymer Light Microscopy. Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-7474-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Inoué, Shinya, and Kenneth R. Spring. "Microscope Image Formation." In Video Microscopy. Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5859-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Inoué, Shinya. "Microscope Image Formation." In Video Microscopy. Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-6925-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sims, Paul, Ralph Albrecht, James B. Pawley, Victoria Centonze, Thomas Deerinck, and Jeff Hardin. "When Light Microscope Resolution Is Not Enough:Correlational Light Microscopy and Electron Microscopy." In Handbook Of Biological Confocal Microscopy. Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Badiye, Ashish, Anupuma Raina, Rasika Kakad, Pradnya Sulke, Rajesh Singh Yadav, and Neeti Kapoor. "Introduction to Compound Microscope." In Forensic Microscopy. CRC Press, 2022. http://dx.doi.org/10.4324/9781003120995-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bansal, Hansi, Neeti Kapoor, Ramdas Atram, and Ashish Badiye. "Introduction to Comparison Microscope." In Forensic Microscopy. CRC Press, 2022. http://dx.doi.org/10.4324/9781003120995-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mansuri, Abdulkhalik, and Ashutosh Kumar. "Introduction to Stereo Microscope." In Forensic Microscopy. CRC Press, 2022. http://dx.doi.org/10.4324/9781003120995-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yadav, Anurekha, Neeti Kapoor, and Ashish Badiye. "Introduction to Fluorescence Microscope." In Forensic Microscopy. CRC Press, 2022. http://dx.doi.org/10.4324/9781003120995-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Microscope and microscopy"

1

Incardona, Nicolo, Angel Tolosa, Gabriele Scrofani, Manuel Martinez-Corral, and Genaro Saavedra. "The Lightfield Eyepiece: an Add-on for 3D Microscopy." In 3D Image Acquisition and Display: Technology, Perception and Applications. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/3d.2022.3tu5a.6.

Full text
Abstract:
Fourier lightfield microscopy is an emerging technique for real-time acquisition of three-dimensional microscopic samples. Here, we present the lightfield eyepiece, an add-on device capable of converting any conventional microscope to a Fourier lightfield microscope.
APA, Harvard, Vancouver, ISO, and other styles
2

Masters, Barry R., and Andreas A. Thaer. "Confocal Microscopy of the Human In Vivo Cornea." In Ophthalmic and Visual Optics. Optica Publishing Group, 1993. http://dx.doi.org/10.1364/ovo.1993.osab.2.

Full text
Abstract:
The in-vivo observation of the living cornea by the technique of confocal microscopy provides en face images of high contrast and resolution1-4 . In contrast to Nipkow disk pinhole confocal microscopes,1-4 slit based confocal systems collect more light form the eye.5-6 The development of the wide-field specular microscope by Koester was limited by the low numerical aperture of the applanating cone objective7,8. Recent developments of a high numerical aperture for the wide-field specular microscope has resulted in a confocal microscope for the eye.9,10 We describe a new flying slit confocal microscope, illuminated with a halogen lamp, which has unique imaging characteristics for in vivo human confocal microscopy.
APA, Harvard, Vancouver, ISO, and other styles
3

Goodman, Douglas S. "Fiber-optic illuminators for microscopy." In OSA Annual Meeting. Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wg6.

Full text
Abstract:
Many illumination problems in microscopy can be solved easily and economically with fiber optics. Modes of illumination not provided by the designers of a microscope can be added. A modular illumination system involving a number of microscopes and sources can be assembled. Various types of illumination can be used simultaneously, e.g., bright field and dark field, transmitted and reflected. Realignment on changing lamps is simplified, since it is merely necessary to align the lamp relative to the fiber input end. Older microscopes with small lamps can be upgraded by using a fiber bundle terminated at the lamp filament location.
APA, Harvard, Vancouver, ISO, and other styles
4

Wegscheider, S., A. Georgi, V. Sandoghdar, G. Krausch, and J. Mlynek. "Scanning near-field optical lithography." In The European Conference on Lasers and Electro-Optics. Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.cfa4.

Full text
Abstract:
The resolution of various scanning probe microscopy methods can be applied to the fabrication of nanostructures. Various methods of local material modification based on different microscopic mechanisms have been proposed, examples of which are : material transfer between a scanning tunneling microscope (STM) tip and a substrate, local oxidation of silicon using atomic force microscope (AFM). Scanning near-field optical microscopy (SNOM) is also an attractive candidate for nanofabrication. Here the optical spot size in the near-field is given by the resolution of the SNOM which in turn is determined by the details of the tip geometry and is typically between 50 and 100 nanometers.
APA, Harvard, Vancouver, ISO, and other styles
5

Conchello, Jose A., J. Peter Zelten, Frank C. Miele, Bruce H. Davis, and Eric W. Hansen. "Enhanced 3-D reconstruction from confocal microscope images." In OSA Annual Meeting. Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.thff1.

Full text
Abstract:
Confocal scanning microscopes are known to possess superior optical sectioning capabilities compared to conventional microscopes. Out-of-focus contributions in a through-focus series of images are significantly reduced by the confocal geometry but not completely removed. This paper reports our initial investigations Into a posterioriimage processing (i.e., deconvolution) for further improvement of depth resolution in confocal microscopy. This project is part of a larger effort In laser scanning fluorescence microscopy for biological and biophysical analyses in living cells. The instrument is built around a standard inverted microscope stand, enabling the use of standard optics, micromanipulation apparatus, and conventional (including video) microscopy in conjunction with laser scanning. The beam is scanned across the specimen by a pair of galvanometer-mounted mirrors driven by a programmable controller which can operate In three modes: full raster scan; region of interest; and random-access (point-hopping). After taking a scout image with laser scanning or video, the user will select isolated points or regions of interest for further analysis via a graphic user interface implemented on the system’s host computer. Experimental parameters such as detector integration times are set up with a window-style menu.
APA, Harvard, Vancouver, ISO, and other styles
6

Chmelik, Radim. "Advances in digital holographic microscopy: coherence-controlled microscope." In SPIE Optics + Optoelectronics, edited by Miroslav Hrabovský, Miroslav Miler, and John T. Sheridan. SPIE, 2011. http://dx.doi.org/10.1117/12.888733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lima, Rui, Takuji Ishikawa, Motohiro Takeda, et al. "Measurement of Erythrocyte Motions in Microchannels by Using a Confocal Micro-PTV System." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-175969.

Full text
Abstract:
Detailed knowledge on the motion of individual red blood cells (RBCs) flowing in microchannels is essential to provide a better understanding on the blood rheological properties and disorders in microvessels. Several studies on both individual and concentrated RBCs have already been performed in the past [1, 2]. However, all studies used conventional microscopes and also ghost cells to obtain visible trace RBCs through the microchannel. Recently, considerable progress in the development of confocal microscopy and consequent advantages of this microscope over the conventional microscopes have led to a new technique known as confocal micro-PIV [3, 4]. This technique combines the conventional PIV system with a spinning disk confocal microscope (SDCM). Due to its outstanding spatial filtering technique together with the multiple point light illumination system, this kind of microscope has the ability to obtain in-focus images with optical thickness less than 1 μm, a task extremely difficult to be achieved by using a conventional microscope.
APA, Harvard, Vancouver, ISO, and other styles
8

Weinbrenner, Paul, Stefan Ernst, Dominik M. Irber, and Friedemann Reinhard. "A planar scanning probe microscope for near-field microscopy." In Quantum Nanophotonic Materials, Devices, and Systems 2020, edited by Mario Agio, Cesare Soci, and Matthew T. Sheldon. SPIE, 2020. http://dx.doi.org/10.1117/12.2568029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Herath, Kithmini, Udith Haputhanthri, Ramith Hettiarachchi, et al. "All-optical phase retrieval microscope designed using differentiable microscopy." In Computational Optical Imaging and Artificial Intelligence in Biomedical Sciences, edited by Liang Gao, Guoan Zheng, and Seung Ah Lee. SPIE, 2024. http://dx.doi.org/10.1117/12.3002933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Trovatello, C., A. Genco, C. Cruciano, et al. "Hyperspectral microscopy of two-dimensional semiconductors." In Latin America Optics and Photonics Conference. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.th1d.7.

Full text
Abstract:
We present wide-field hyperspectral microscopy images of photoluminescence from two-dimensional semiconductors. The microscope exploits Fourier-transform spectroscopy and uses a common-path birefringent interferometer. Our hyperspectral microscope is a fast tool to characterize 2D materials.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Microscope and microscopy"

1

Hammel, P. Microscopic subsurface characterization of layered magnetic materials using magnetic resonance force microscopy. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1580650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, X. C. Terahertz Microscope. Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada533321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Snyder, Shelly R., and Henry S. White. Scanning Tunneling Microscopy, Atomic Force Microscopy, and Related Techniques. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada246852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Catalyurek, Umit, Michael D. Beynon, Chialin Chang, Tahsin Kurc, Alan Sussman, and Joel Saltz. The Virtual Microscope. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada440466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Crewe, A. V., and O. H. Kapp. Electron microscope studies. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/6000131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crewe, A. V., and O. H. Kapp. Electron microscope studies. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/7015892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dow, John D. Scanning Tunneling Microscopy. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada249262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Day, R. D., and P. E. Russell. Atomic Force Microscope. Office of Scientific and Technical Information (OSTI), 1988. http://dx.doi.org/10.2172/476627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Melloch, Michael R. Scanning Probe Microscope. Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada388569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Legg, Keith O., and Douglas N. Rose. Ion Acoustic Microscopy. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada169492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography