Journal articles on the topic 'Microswimmers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microswimmers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chennaram, S. Sharanya, and T. Sonamani Singh. "Bidirectional Propulsion of Bioinspired Microswimmer in Microchannel at Low Reynolds Number." Journal of Physics: Conference Series 2663, no. 1 (2023): 012035. http://dx.doi.org/10.1088/1742-6596/2663/1/012035.
Full textDetholia, Krunal K. "Advancements in Micro-Swimmers: Transforming Drug Delivery and Exploring Novel Pharmaceutical Applications." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 06 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem36151.
Full textBunea, Ada-Ioana, and Rafael Taboryski. "Recent Advances in Microswimmers for Biomedical Applications." Micromachines 11, no. 12 (2020): 1048. http://dx.doi.org/10.3390/mi11121048.
Full textXiong, Junfeng, Xiaoxia Song, Yuhang Cai, et al. "Stop-Flow Lithography for the Continuous Production of Degradable Hydrogel Achiral Crescent Microswimmers." Micromachines 13, no. 5 (2022): 798. http://dx.doi.org/10.3390/mi13050798.
Full textSun, Zhiyong, Philipp F. Popp, Christoph Loderer, and Ainhoa Revilla-Guarinos. "Genetically Engineered Bacterial Biohybrid Microswimmers for Sensing Applications." Sensors 20, no. 1 (2019): 180. http://dx.doi.org/10.3390/s20010180.
Full textTan, Liyuan, Zihan Wang, Zhi Chen, Xiangcheng Shi, and U. Kei Cheang. "Improving Swimming Performance of Photolithography-Based Microswimmers Using Curvature Structures." Micromachines 13, no. 11 (2022): 1965. http://dx.doi.org/10.3390/mi13111965.
Full textHartl, Benedikt, Maximilian Hübl, Gerhard Kahl, and Andreas Zöttl. "Microswimmers learning chemotaxis with genetic algorithms." Proceedings of the National Academy of Sciences 118, no. 19 (2021): e2019683118. http://dx.doi.org/10.1073/pnas.2019683118.
Full textKroy, Klaus, Dipanjan Chakraborty, and Frank Cichos. "Hot microswimmers." European Physical Journal Special Topics 225, no. 11-12 (2016): 2207–25. http://dx.doi.org/10.1140/epjst/e2016-60098-6.
Full textSingh, Dhruv P., William E. Uspal, Mihail N. Popescu, Laurence G. Wilson, and Peer Fischer. "Photogravitactic Microswimmers." Advanced Functional Materials 28, no. 25 (2018): 1706660. http://dx.doi.org/10.1002/adfm.201706660.
Full textQiu, Jingran, Zhiwen Cui, Eric Climent, and Lihao Zhao. "Clustering of settling microswimmers in turbulence." Nonlinear Processes in Geophysics 31, no. 2 (2024): 229–36. http://dx.doi.org/10.5194/npg-31-229-2024.
Full textTan, Liyuan, Jamel Ali, U. Kei Cheang, Xiangcheng Shi, Dalhyung Kim, and Min Jun Kim. "µ-PIV Measurements of Flows Generated by Photolithography-Fabricated Achiral Microswimmers." Micromachines 10, no. 12 (2019): 865. http://dx.doi.org/10.3390/mi10120865.
Full textGiri, Pritam, and Ratnesh K. Shukla. "Optimal transport of surface-actuated microswimmers." Physics of Fluids 34, no. 4 (2022): 043604. http://dx.doi.org/10.1063/5.0083277.
Full textLiu, Jia, Tiantian Xu, Chenyang Huang, and Xinyu Wu. "Automatic Manipulation of Magnetically Actuated Helical Microswimmers in Static Environments." Micromachines 9, no. 10 (2018): 524. http://dx.doi.org/10.3390/mi9100524.
Full textJin, Zigan. "A Macroscale Model Approach to Studying Microswimmer Locomotion at Low Reynolds Numbers." Theoretical and Natural Science 106, no. 1 (2025): 64–71. https://doi.org/10.54254/2753-8818/2025.23051.
Full textKrüger, Timothy, and Markus Engstler. "Trypanosomes – versatile microswimmers." European Physical Journal Special Topics 225, no. 11-12 (2016): 2157–72. http://dx.doi.org/10.1140/epjst/e2016-60063-5.
Full textElgeti, Jens, and Gerhard Gompper. "Microswimmers near surfaces." European Physical Journal Special Topics 225, no. 11-12 (2016): 2333–52. http://dx.doi.org/10.1140/epjst/e2016-60070-6.
Full textAi, Bao-quan, Ya-feng He, and Wei-rong Zhong. "Chirality separation of mixed chiral microswimmers in a periodic channel." Soft Matter 11, no. 19 (2015): 3852–59. http://dx.doi.org/10.1039/c5sm00651a.
Full textRen, Liqiang, Nitesh Nama, Jeffrey M. McNeill, et al. "3D steerable, acoustically powered microswimmers for single-particle manipulation." Science Advances 5, no. 10 (2019): eaax3084. http://dx.doi.org/10.1126/sciadv.aax3084.
Full textStark, Holger. "Artificial microswimmers get smart." Science Robotics 6, no. 52 (2021): eabh1977. http://dx.doi.org/10.1126/scirobotics.abh1977.
Full textSun, Ho Cheung Michael, Pan Liao, Tanyong Wei, Li Zhang, and Dong Sun. "Magnetically Powered Biodegradable Microswimmers." Micromachines 11, no. 4 (2020): 404. http://dx.doi.org/10.3390/mi11040404.
Full textLauga, Eric, and Raymond E. Goldstein. "Dance of the microswimmers." Physics Today 65, no. 9 (2012): 30–35. http://dx.doi.org/10.1063/pt.3.1715.
Full textTierno, Pietro, Ramin Golestanian, Ignacio Pagonabarraga, and Francesc Sagués. "Magnetically Actuated Colloidal Microswimmers." Journal of Physical Chemistry B 112, no. 51 (2008): 16525–28. http://dx.doi.org/10.1021/jp808354n.
Full textGilbert, A. D., F. Y. Ogrin, P. G. Petrov, and C. P. Winlove. "Theory of Ferromagnetic Microswimmers." Quarterly Journal of Mechanics and Applied Mathematics 64, no. 3 (2011): 239–63. http://dx.doi.org/10.1093/qjmam/hbr012.
Full textDebnath, Debajyoti, Pulak K. Ghosh, Yunyun Li, Fabio Marchesoni, and Baowen Li. "Diffusion of eccentric microswimmers." Soft Matter 12, no. 7 (2016): 2017–24. http://dx.doi.org/10.1039/c5sm02811f.
Full textBuss, Nicole, Oncay Yasa, Yunus Alapan, Mukrime Birgul Akolpoglu, and Metin Sitti. "Nanoerythrosome-functionalized biohybrid microswimmers." APL Bioengineering 4, no. 2 (2020): 026103. http://dx.doi.org/10.1063/1.5130670.
Full textVolpe, Giovanni, Ivo Buttinoni, Dominik Vogt, Hans-Jürgen Kümmerer, and Clemens Bechinger. "Microswimmers in patterned environments." Soft Matter 7, no. 19 (2011): 8810. http://dx.doi.org/10.1039/c1sm05960b.
Full textMijalkov, Mite, and Giovanni Volpe. "Sorting of chiral microswimmers." Soft Matter 9, no. 28 (2013): 6376. http://dx.doi.org/10.1039/c3sm27923e.
Full textKósa, Gábor, Péter Jakab, Gábor Székely, and Nobuhiko Hata. "MRI driven magnetic microswimmers." Biomedical Microdevices 14, no. 1 (2011): 165–78. http://dx.doi.org/10.1007/s10544-011-9594-7.
Full textYuan, Jinzhou, David M. Raizen, and Haim H. Bau. "A hydrodynamic mechanism for attraction of undulatory microswimmers to surfaces (bordertaxis)." Journal of The Royal Society Interface 12, no. 109 (2015): 20150227. http://dx.doi.org/10.1098/rsif.2015.0227.
Full textGuan, Geng, Yuxiang Ying, and Jianzhong Lin. "Effect of the shape of microswimmers and slip boundary conditions on the dynamic characteristics of near-wall microswimmers." Journal of Fluid Mechanics 999 (November 14, 2024). http://dx.doi.org/10.1017/jfm.2024.570.
Full textChi, Hai, Mykhailo Potomkin, Lei Zhang, Leonid Berlyand, and Igor S. Aranson. "Surface anchoring controls orientation of a microswimmer in nematic liquid crystal." Communications Physics 3, no. 1 (2020). http://dx.doi.org/10.1038/s42005-020-00432-z.
Full textTan, Liyuan, Yang Yang, Li Fang, and David J. Cappelleri. "Shape‐Programmable Adaptive Multi‐Material Microswimmers for Biomedical Applications." Advanced Functional Materials, April 17, 2024. http://dx.doi.org/10.1002/adfm.202401876.
Full textGupta, Akanksha, Jaya Kumar Alageshan, Kiran Venkata Kolluru, and Rahul Pandit. "Can flocking aid the path planning of microswimmers in turbulent flows?" Physics of Fluids 37, no. 4 (2025). https://doi.org/10.1063/5.0254816.
Full textKatsamba, Panayiota, Matthew Butler, Lyndon Koens, and Thomas Douglas Montenegro-Johnson. "Chemically active filaments: Analysis and extensions of Slender Phoretic Theory." Soft Matter, 2022. http://dx.doi.org/10.1039/d2sm00942k.
Full textGuo, Hanliang, Hai Zhu, Ruowen Liu, Marc Bonnet, and Shravan Veerapaneni. "Optimal ciliary locomotion of axisymmetric microswimmers." Journal of Fluid Mechanics 927 (September 28, 2021). http://dx.doi.org/10.1017/jfm.2021.744.
Full textZayed, Rafe Md Abu, Arezoo M. Ardekani, and Amir Nourhani. "Swimmer types of optimum surface-driven active particles." Journal of Fluid Mechanics 1009 (April 10, 2025). https://doi.org/10.1017/jfm.2025.58.
Full textCastañeda, John, Blake Rogers, Ysaris Sosa, et al. "Atomically Precise Nanoclusters as Co‐Catalysts for Light‐Activated Microswimmer Motility." Small, May 16, 2025. https://doi.org/10.1002/smll.202411517.
Full textLiu, Baopi, Lu Chen, and Wenjun Xu. "Effects of flagellar morphology on swimming performance and directional control in microswimmers." Physics of Fluids 37, no. 4 (2025). https://doi.org/10.1063/5.0264456.
Full textDuygu, Yasin Cagatay, U. Kei Cheang, Alexander M. Leshansky, and Min Jun Kim. "Propulsion of Planar V‐Shaped Microswimmers in a Conically Rotating Magnetic Field." Advanced Intelligent Systems, November 12, 2023. http://dx.doi.org/10.1002/aisy.202300496.
Full textLin, Li-Shing, Kento Yasuda, Kenta Ishimoto, and Shigeyuki Komura. "Emergence of odd elasticity in a microswimmer using deep reinforcement learning." Physical Review Research 6, no. 3 (2024). http://dx.doi.org/10.1103/physrevresearch.6.033016.
Full textLi, Siwen, and Deming Nie. "Study on the effect of geometric shape on microswimmer upstream motion." Physics of Fluids 36, no. 10 (2024). http://dx.doi.org/10.1063/5.0233257.
Full textBárdfalvy, Dóra, Viktor Škultéty, Cesare Nardini, Alexander Morozov, and Joakim Stenhammar. "Collective motion in a sheet of microswimmers." Communications Physics 7, no. 1 (2024). http://dx.doi.org/10.1038/s42005-024-01587-9.
Full textLi, Siwen, Yuxiang Ying, Tongxiao Jiang, and Deming Nie. "Flow features induced by a rod-shaped microswimmer and its swimming efficiency: a two-dimensional numerical study." Chinese Physics B, October 9, 2024. http://dx.doi.org/10.1088/1674-1056/ad84c3.
Full textNordanger, Henrik, Alexander Morozov, and Joakim Stenhammar. "Interplay between Brownian and hydrodynamic tracer diffusion in suspensions of swimming microorganisms." Journal of Fluid Mechanics 974 (October 31, 2023). http://dx.doi.org/10.1017/jfm.2023.850.
Full textSprenger, Alexander R., and Andreas M. Menzel. "Microswimming under a wedge-shaped confinement." Physics of Fluids 35, no. 12 (2023). http://dx.doi.org/10.1063/5.0176269.
Full textvon Rüling, Florian, Liubov Bakhchova, Ulrike Steinmann, and Alexey Eremin. "Permeation Dynamics of Active Swimmers Through Anisotropic Porous Walls." Advanced Physics Research, October 25, 2023. http://dx.doi.org/10.1002/apxr.202300047.
Full textKubo, Kiyoto, Toshihiro Omori, and Takuji Ishikawa. "Microstructure and deformation in suspensions of soft microswimmers." Journal of Fluid Mechanics 1011 (May 13, 2025). https://doi.org/10.1017/jfm.2025.7.
Full textSridhar, Varun, Filip Podjaski, Yunus Alapan, et al. "Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery." Science Robotics 7, no. 62 (2022). http://dx.doi.org/10.1126/scirobotics.abm1421.
Full textGhosh, Soumyajit, and Antarip Poddar. "Slippery rheotaxis: new regimes for guiding wall-bound microswimmers." Journal of Fluid Mechanics 967 (July 17, 2023). http://dx.doi.org/10.1017/jfm.2023.490.
Full textDaddi-Moussa-Ider, Abdallah, Ramin Golestanian, and Andrej Vilfan. "Minimum entropy production by microswimmers with internal dissipation." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-41280-z.
Full text