Dissertations / Theses on the topic 'Microtubules. Mitosis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Microtubules. Mitosis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gallaud, Emmanuel. "Caractérisation du rôle d'Ensconsine / MAP7 dans la dynamique des microtubules et des centrosomes." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S004/document.
Full textMitosis is a key step of the cell cycle that allows the mother cell to segregate its replicated genome equally into the two daughter cells. To do so, the cell assembles a highly dynamic structure composed of microtubules called the mitotic spindle. Additionally to its role in the faithful segregation of chromosomes, the mitotic spindle defines the axis of cell division. This phenomenon is particularly important for the asymmetric cell division in which cell fate determinants have to be unequally distributed between the two daughter cells. Spindle assembly and dynamics are subtly regulated by numerous microtubules-associated proteins. During my PhD, we identified using mass spectrometry, 855 proteins establishing the Drosophila embryo microtubule interactome. An RNAi screen was performed in the larval central nervous system for 96 poorly described genes, in order to identify new mitotic regulators. Based on microtubule interaction and mitotic phenotype, among 18 candidates we focused on Ensconsin/MAP7. We have shown that Ensconsin is associated with spindle microtubules and promotes their polymerization. Neuroblasts from mutant larvae display shorter spindles and a longer mitosis duration. This mitotic delay is a consequence of an extended activation of the spindle assembly checkpoint, which is essential for the proper chromosome segregation in the absence of Ensconsin. This study also showed that, in association with its interphase partner Kinesin-1, Ensconsin is involved in centrosome separation during interphase. As a result, mother and daughter centrosomes are randomly distributed between the daughter cells. In conclusion, we highlighted two news functions of Ensconsin : first, this protein promotes microtubule polymerization and is involved in spindle assembly ; second, Ensconsin and its partner Kinesin-1 regulate centrosome dynamics
Barton, Richard Christopher. "Microtubules, mitosis and chromosome segregation in Candida albicans." Thesis, University of Kent, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.256985.
Full textBouguenina, Mohammed El Habib. "La protéine SMYLE (Short MYomegalin Like EB1 binding protein) dans l'organisation d'un complexe centrosomal, la régulation de la nucléation et la stabilisation des microtubules : conséquences sur la migration et la division des cellules cancéreuses." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5060.
Full textMicrotubules (MT) are dynamic polymers anchored by their minus ends at the MT organizing centers while their highly dynamic plus end explores the cytoplasm until it get stabilized. This plus end capture allows the organization of the MT network. +TIPs are a group of proteins that share the commonality to associate either directly or indirectly to MT plus ends. EB1 is a central protein of the +TIP network that regulates MT dynamics and their interactions with plus end anchoring structures. Using targeted proteomics, we have characterized the EB1 interactome and revealed a set of protein previously shown to associate with the nucleating centers that included AKAP9 an anchoring protein for protein kinase A (PKA), the pericentriolar matrix protein CDK5RAP2 and a short Myomegalin isoform that we named SMYLE (Short MYomegalin Like EB1 binding protein). Molecular mapping revealed that the proteins formed a hierarchically organized complex. We have observed that the transient association of SMYLE to the newly nucleated MTs at the centrosome favored the nucleation and acetylation. Interestingly, SMYLE depletion led to MT nucleation defects, but also a disruption of cortical MT capture. These defects in the MT network were associated with a steep fall in the migratory potential of breast cancer cells and mitotic abnormalities. Our results allow proposing that SMYLE belongs to centrosomal supramolecular complex that favors the assembly and stability of newly nucleated MTs, thus contributing to major processes in tumor development
Vasileva, Vanya. "Kinetochore-derived microtubules : from molecular regulation to their role in mitosis." Thesis, University of Dundee, 2015. https://discovery.dundee.ac.uk/en/studentTheses/7fc60a5c-2fc1-43ef-87ca-4dc20de2200b.
Full textFarrell, Megan Christine. "Deciphering the Role of Kinetochores and Microtubules During Interphase and Mitosis in Toxoplasma Gondii." Thesis, Boston College, 2014. http://hdl.handle.net/2345/3824.
Full textThe obligate intracellular parasite Toxoplasma gondii exhibits closed mitosis, as chromosome segregation occurs with the confines of the nuclear envelope. Distinct structural changes are absent during mitosis, as the nucleolus is maintained and condensation of chromosomes is largely restricted. Moreover, the centromeres are clustered and remain persistently associated with the centrocone (spindle pole). To elucidate the process of chromosome segregation during mitosis in the parasite, the role of kinetochores and microtubules was examined. Localization studies of the functionally conserved kinetochore proteins TgNuf2 and TgNdc80 revealed that clustered kinetochores colocalize with clustered centromeres at the centrocone throughout the cell cycle. Pharmacological disruption of microtubules resulted in partial loss of clustering, which indicates spindle microtubules are necessary, but not strictly required for this process. Furthermore, the generation of a conditional TgNuf2 knockdown revealed this kinetochore protein is essential for chromosome segregation but dispensable for clustering of centromeres, which remain associated with the centrocone. Moreover, in the absence of TgNuf2 the centrosome behaves normally, but looses its association with the centrocone. Further analysis of this phenotype revealed that the centrocone is devoid of spindle microtubules following depletion of this essential kinetochore protein. Examination of tubulin localization dynamics through parasite development showed that the initiation of spindle microtubules occurs at the basal region of the nucleus prior to centrosome duplication. Furthermore, acetylation of α-tubulin, a posttranslational modification associated with microtubule stability, was confirmed to be specifically associated with stabilization of the spindle microtubules following comigration of the centrocone and centrosome to the apical end of the nucleus. Collectively, these data demonstrate that the persistent association of clustered centromeres with the centrocone is independent of spindle microtubules. These discoveries are contributing unprecedented details to chromosome anchoring and segregation during the cell cycle in this protozoan parasite
Thesis (PhD) — Boston College, 2014
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Ramírez, Cota Rosa María. "Dissecting the function of γTuRC subunits in microtubule nucleation and organization." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/398851.
Full textEn las células humanas la depleción de MZT1 provoca graves defectos del huso mitótico. Las células deplecionadas carecen de γ-tubulina centrosomal y presentan una detención de la mitosis con una configuración monopolar del huso mitótico. Del mismo modo, mutantes de deleción dobles de planta MZT1 con sus ortólogos GIP1a y GIP1b son letales para los embriones debido a la anormal distribución de los microtúbulos del huso mitótico y la mala segregación del cromosoma. Además, GIP1a y GIP1b localizan en sitios de nucleación activos de los microtúbulos corticales. La función de MZT1 se conserva en la levadura de fisión, donde interactúa con GCP3, y es un componente esencial para el reclutamiento del complejo de γ-tubulina en el huso polar del cuerpo apical, el equivalente al centrosoma, pero no para el montaje de la γ-tubulina compleja. Sin embargo, los mecanismos moleculares que subyacen a estos efectos siguen siendo desconocidos. El objetivo principal de este proyecto es estudiar cómo MZT1 regula la actividad del γTuRC en la nucleación y organización de los microtúbulos. En este trabajo encontré que MZT1 es necesaria para todas las funciones γTuRC-dependientes, como la duplicación de centríolos. MZT1 se une a un motivo conservado presente en la N-terminales extendida de GCP2, GCP3, GCP5 y GCP6, lo que permite el reconocimiento específico de γTuRC totalmente ensamblado. La unión de MZT1 al γTuRC “prepara” al complejo para la interacción con el adaptador NEDD1/GCP-WD para la orientación γTuRC a los centrosomas. Además, se requieren esta “preparación” para activar la actividad nucleadora del γTuRC mediada por CDK5RAP2 CM1. Por lo tanto, al permitir el reconocimiento específico de γTuRC por los factores de reclutamiento y los factores de activación, se observa que la MZT1 controla espacialmente la nucleación de microtúbulos.
Kuhnert, Oliver. "Charakterisierung der neuen centrosomalen Proteine CP148 und CP55 in Dictyostelium discoideum." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5994/.
Full textThe Dictyostelium centrosome consists of a layered core structure surrounded by a microtubule-nucleating corona. A tight linkage through the nuclear envelope connects the cytosolic centrosome with the clustered centromeres within the nuclear matrix. At G2/M the corona dissociates, and the core structure duplicates yielding two spindle poles. The two proteins CP148 and CP55 were discovered in a proteomic analysis of Dictyostelium centrosomes. CP148 is a novel coiled-coil protein of the centrosomal corona. GFP-CP148 exhibited cell cycle dependent presence and absence at the centrosome, which correlates with dissociation of the corona in prophase and its reformation in late telophase. During telophase, GFP-CP148 formed cytosolic foci, which coalesced and joined the centrosome. This explains the hypertrophic appearance of the corona upon strong overexpression of GFP-CP148. Depletion of CP148 by RNAi caused virtual loss of the corona and disorganization of interphase microtubules. Surprisingly, formation of the mitotic spindle and astral microtubules was unaffected. Thus, microtubule nucleation complexes associate with centrosomal core components through different means during interphase and mitosis. Furthermore, CP148 RNAi caused dispersal of centromeres and altered Sun1 distribution at the nuclear envelope, suggesting a role of CP148 in the linkage between centrosomes and centromeres. Taken together, CP148 is an essential factor for the formation of the centrosomal corona, which in turn is required for centrosome/centromere linkage. As CP148, CP55 was also identified in a centrosomal proteome analysis. It is a component of the centrosomal core structure, and persists at the centrosome throughout the entire cell cycle. FRAP experiments revealed the majority of centrosomal GFP-CP55 is immobile indicating a structural task of CP55 at the centrosome. GFP-CP55 overexpression elicits supernumerary centrosomes containing the usual set of corona and core marker proteins. The CP55 null mutant is characterized by increased ploidy, a less structured, slightly enlarged corona, and by supernumerary, cytosolic MTOCs, containing only corona proteins and lacking a core structure. Live cell imaging showed that supernumerary MTOCs arise in telophase. Lack of CP55 also caused premature recruitment of the corona organizer CP148 to mitotic spindle poles, already in metaphase instead of telophase. Forces transmitted through astral microtubules may expel prematurely acquired or loosely attached corona fragments into the cytosol, where they act as independent MTOCs. CP55null cells were also impaired in growth, most probably due to difficulties in centrosome splitting during prophase. Furthermore, although they were still capable of phagocytosis, they appeared unable to utilize phagocytosed nutrients. This inability may be attributed to their disorganized Golgi apparatus.
Guieu, Benjamin. "Synthèse de pyrroles polysubstitués par cyclisation à l'or : évaluation de l'activité de 3-arylpyrroles sur les microtubules." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S084/document.
Full textA family of 3-arylpyrroles named pyakols have shown antimitotic properties on murine cell lines, displaying in particular an effect on microtubules. Given the interest of these properties in cancerology, this work is focused on these heterocycles. The objective of the first part was to develop a synthetic strategy based on the gold-catalysed cyclisation of α-amino-ynols intermediates in order to access the lead (Pyakol I). Then, the evaluation of the biological activity of this molecule on the cell cycle and on the cytoskeleton of various human tumoral cell lines was carried out. The first results revealed an original effect on the organization of the microtubules network and the positioning of the mitotic spindle. The developed strategy was then validated by modulating the 3-arylpyrrole moiety on diverse positions, and used for the synthesis of labelled derivatives. The second part of this manuscript focused on the development of a methodology to synthesize new polysubstituted 3-trifluoromethylpyrroles, based on the gold-catalyzed cyclisation reaction. Using trifluoroacetaldehyde as building-block, various trifluoromethylated pyrroles were obtained in mild conditions with good yields
Argenty, Jérémy. "Rôles dans les lymphocytes T de la protéine Lis1, un régulateur de la dynamique des microtubules dépendante de la dynéine." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30123/document.
Full textThe T cell receptor (TCR) is assembled during the early development of T lymphocytes in the thymus after complexe genetic recombinations. The rearrangement of a functional TCR beta-chain (pre-TCR) triggers intracellular signaling pathways that cause the survival, expansion and maturation of thymocytes. The commitment of the TCR to the surface of mature T cells after antigen recognition also leads to proliferation allowing the development of effective immune responses. These cellular events go along with significant reorganization of the microtubule networks and a redistribution of molecular motors, such as dynein, which transport the cellular structures via this network. The molecular mechanisms and physiological consequences of the reorganization are poorly understood in T cells. Lis1 is a dynein regulator involved in neuronal migration and stem cells proliferation during neural development. Its role in lymphoid tissue is still unknown. In this study, we used mouse models specifically Lis1-deficient in T cells to study the molecular, cellular and physiological functions of this protein in T cells. We identifiy that Lis1 plays an essential role in the early development of T cells and in the homeostasis of mature cells. Lis1 deficiency does not affect beta-chain rearrangement or signaling events triggered by pre-TCR or TCR, but leads to the blockage of thymocyte cell division that have undergone beta-selection or mature T cells stimulated. Fine analysis of mitosis indicates that the deficiency of Lis1 strongly slows down the mitotic process, counteracts the cell changes leading to the metaphase and leads to asymmetric distribution of the genetic material in the daughter cells. Microtubule networks analysis shows that the absence of Lis1 induces centrosomes amplification and increase of multipolar cells during mitosis. Finally, we show that Lis1 promotes the dynein-dynactin interaction, indicating that Lis1 plays an important role in T cells to bind dynein to the cell structures it carries. In conclusion, we here described that Lis1 is important for the distribution of genetic material during double negative thymocyte and peripheral lymphocyte proliferation
Masoud, Kinda. "Caractérisation moléculaire et fonctionnelle des protéines GIPs (Gamma-tubulin complex protein 3-Interacting Proteins) d'Arabidopsis thaliana." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAJ011/document.
Full textMicrotubules (MTs) constitute one of the cytoskeletal networks in eukaryotic cells. They are involved in various processes such as cell division, intracellular transport and cell morphogenesis. In higher plants, MTs can be organized into dynamic structures, which undergo continual assembly and disassembly during the cell cycle. This specificity requires the recruitment of the nucleation complexes of the MTs to the nuclear envelope, to the cortex and to pre-existing MTs. The work of A. C. Schmit’s team (IBMP, CNRS, Strasbourg), in which I did my thesis, focuses on the characterization of MT nucleation complexes (γ-TuRCs) and the regulation of mitotic spindle assembly in plants. We have identified small proteins interacting with Gamma-tubulin Complex Protein 3 (GCP) and named GIP1 and GIP2 (GCP3-Interacting Proteins). The aim of these studies was to characterize this new class of proteins in order to understand their role. It shows that GIPs are conserved among eukaryotes and suggests that their association with the γ-TuRC participates in the regulation of their activity and the formation of a robust mitotic spindle. The localization of GIPs during the cell cycle and the phenotypes observed in T-DNA insertional gip1gip2 double mutants indicatethat GIPs are required for the recruitment of γ-TuRCs, MT nucleation, spindle assembly, cell cycle regulation and stem cell maintenance. Likewise, in vitro assays showed that GIP1 is a novel substrate for Aurora kinase1, which is a well known cell cycle regulator. The results of complementation experiments with GIP1 phosphomutants indicate that the phosphorylation of GIPs may be required for their function(s). Altogether, our results have contributed to the characterization of a new class of proteins involved in MT nucleation/organization and functions. The study of the interaction network (interactome) of GIPs and oftheir homologues could open new ways of research in the control of cell division and in the fight against cancer
Albertini, Catherine. "Mise en evidence de proteines associees aux microtubules chez physarum polycephalum." Toulouse 3, 1988. http://www.theses.fr/1988TOU30020.
Full textNahaboo, Wallis. "Élongation du fuseau mitotique dans l'Embryon de C. elegans : caractérisation d'une Nouvelle Force de propulsion." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN003.
Full textIn mitosis, different mechanical forces are involved in chromosome segregation. In C. elegans one-cell embryos, preliminary data suggest that an unknown mechanism, coming from inside the mitotic spindle, could influence chromosome separation. In those cells, it has been showed that kinetochore microtubule activity is absent. Thanks to external pulling forces, centrosome separation drives chromosome segregation. By using microsurgery inside the one-cell C. elegans embryos, we have shown that destroying one or two centrosomes did not prevent chromosome separation, revealing the existence of an outward pushing force (Nahaboo et al., 2015). By combining gene inactivation and centrosome destruction, we showed that the kinesin-5 and the crosslinker SPD-1 act as a brake on this pushing force, whereas they enhance chromosome segregation in other species. Moreover, we identified a novel role for the two microtubule-growth and nucleation agents, RanGTP and CLASP, in the establishment of the centrosome-independent force during anaphase. Their involvement raises the interesting possibility that microtubule polymerization of midzone microtubules is required to sustain chromosome segregation during mitosis. Then, we aim to reversibility affect microtubule dynamics in the central spindle. Because of the lack of adequate tools, we have collaborated with biochemists from Dr. D. Trauner lab, in Munich, Germany, who are specialized in photoactivable drugs. They have synthetized a photoswitable drug, Photostatin (PST), which can depolymerize microtubules in few seconds in an on/off manner (Borowiak et al., 2015). Under blue light (390 - 430 nm), PST is activated leading to microtubule depolymerization, whereas under green light (500 - 530 nm), PST is activated which does not affect microtubule dynamics. I measured that microtubule growing is absent in presence of activated PST in Hela cells. I also showed that cell cycle can be stopped thank to activated PST in multiple cell C. elegans embryos. We have shown that PST can control microtubule dynamics thanks to visible light in vitro, in cellulo and in vivo, as an on/off switch, in a non-invasive, local and reversible manner
Paganelli, Laëtitia. "Étude de partenaires protéiques d’une protéine associée aux microtubules, MAP65-3, indispensable à la formation des cellules géantes induites par le nématode à galles Meloidogyne incognita : caractérisation du complexe de surveillance de la mitose chez Arabidopsis." Thesis, Nice, 2013. http://www.theses.fr/2013NICE4028/document.
Full textRoot-knot nematodes from the genus Meloidogyne are obligate biotrophic plant parasites. During a compatible interaction, they induce the redifferentiation of root cells into multinucleated and hypertrophied feeding cells to ensure their growth and reproduction. The study of molecular and cellular mechanisms underlying giant cell ontogenesis has led to the identification of a Microtubule-Associated Protein, MAP65-3, essential for giant cell ontogenesis and nematode development. One of the MAP65-3 interacting partners is a BUB3 homologue, member of the Mitotic Checkpoint Complex (MCC). The MCC is a surveillance mechanism ensuring that chromosomes undergoing mitosis do not segregate until they are properly attached to the microtubules of the mitotic spindle. During my thesis, I have characterized the Arabidopsis thaliana orthologs of the MCC, BUB3.1, MAD2 and the multigenic family composed of BUBR1, BRK1 et BUB1.2. I have demonstrated that MAP65-3 and all the MCC members interact together in planta, some interactions taking place within the nuclei or at the centromeres. As MAP65-3, all these genes are expressed in dividing cells. The study of the subcellular localization of the protein showed a cytoplasmic localization for BUB3.1, BUB1.2 and MAD2, nuclear for BUBR1 and centromeric for BRK1. Thus, the MCC proteins did not relocalize to the kinetochore during a normal mitosis in planta. BUB3.1, BUBR1 and MAD2 localize to the unattached kinetochores following defects in spindle assembly as observed in cells treated with microtubule poisons. The functional analysis of BUB1/BUBR1 multigenic family showed that the knock-out mutants were more sensitive to microtubule-destabilizing drugs. Furthermore, analysis of mitosis revealed that BUBR1 is essential for an error-free mitosis in Arabidopsis. This work represents the first characterization of the MCC in A. thaliana
Kim, Haein. "Temporal Coordination Of Mitotic Chromosome Alignment And Segregation: Structural And Functional Studies Of Kif18a." ScholarWorks @ UVM, 2018. https://scholarworks.uvm.edu/graddis/930.
Full textMaillet, Vanessa. "LKB1, gardien de la prolifération hépatocytaire et de l’intégrité génomique." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB103/document.
Full textLiver Kinase B1 (LKB1) is involved in pleiotropic biological processes and known to be a key regulator of hepatic metabolism and polarity. Here, we investigated the contribution of LKB1 in hepatocyte proliferation and liver regeneration process. We demonstrated that loss of hepatic Lkb1 promotes liver mass recovery, through an increase of hepatocytes proliferation, independently on metabolic/energetic balance. LKB1 regulates G0/G1 progression, specifically by controlling Epidermal Growth Factor Receptor (EGFR) signaling. In addition, later during regeneration, LKB1 controls mitotic fidelity. Deletion of Lkb1 results in major alterations of mitotic spindle formation, along the polarity axis, independently of AMP- activated protein kinase (AMPK) activity, a key target of LKB1. Consequently, LKB1 deficiency leads to an alteration of ploidy profile, at late stage of regenerative process. Overall our study highlights the dual role of LKB1, during liver regeneration, as a guardian of hepatocyte proliferation and genomic integrity
Sdelci, Sara. "Role of the Kinases NEK6, NEK7 and NEK9 in the Regulation of the Centrosome Cycle." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/96820.
Full textMüller-Reichert, Thomas. "Spindle organization in three dimensions." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1166107130476-22269.
Full textDie Segregation der Chromosomen während der Zellteilung wird duch bipolare, von Microtubuli-aufgebauten Spindlen gewährleistet. In der vorliegenden Arbeit wird C. elegans zur Analyse der Spindelorganisation unter mitotischen und meiotischen Bedingungen herangezogen. Erstens wird die Rolle von SAS-4 in der Organisation von Zentrosomen untersucht. Die partielle Depletierung von SAS-4 in frühen Embryonen führt zu strukturell defekten Zentriolen und wirft somit Licht auf die wenig verstandene Rolle der Zentriolen in der Bestimmung der Zentrosomengröße. Zweitens wird die Ultrastruktur der mitotischen Spindelkomponenten im Wildtyp durch Elektronentomographie untersucht. Diese 3-D-Analyse zeigt, dass im mitotischen Spindlepol unterschiedliche Morphologien der Mikrotubulienden zu finden sind. Diese Ergebnisse haben strukturelle Implikationen für Modelle der Mikrotubuli-Zentrosomen-Interaktionen. Drittens wird der Aufbau der Spindel in der weiblichen Meiose, speziell die Rolle des Mikrotubuli-schneidenden Kataninkomplexes in der Spindelorganisation, untersucht. Die Elektronentomographie zeigt hier eine Fragmentierung der Spindelmikrotubuli. Basierend auf diesem Ergebnis wird ein neues Katanin-abhängiges Modell der Formierung der Meiosespindel entwickelt, in dem relativ lange Microtubuli in Nähe des meiotischen Chromatins in zahlreiche kurze Mikrotubuli “zerschnitten” werden. Dies erhöht die Anzahl der verfügbaren Polymere in dieser azentrosomalen Situation. Zusammenfassend bringen diese Ergebnisse neue Einsichten in die räumliche Organisation der Mikrotubuli während des Spindelaufbaus
Barlukova, Ayuna. "Dynamic instability of microtubules and effect of microtubule targeting agents." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0064.
Full textThe aim of this thesis is to design new mathematical models that are able to appropriately describe dynamic instability of a population of microtubules (MTs) and effect of drugs on MT dynamics. MT dynamic instability play an important role in the processes of mitosis and cell migration and, thus, in cancer progression. Dynamic instability is a complex process that involves different states of tubulin (polymerized or non-polymerized, GTP-tubulin or GDPtubulin that correspond to two different energetic states of tubulin dimers) that resulted from chemical processes (polymerization, depolymerization, hydrolysis, recycling, nucleation) linking these different states of tubulin. Description of this complexity by mathematical models enables one to test biological hypotheses concerning the impact of each process and action of drugs on microtubule dynamics. Recent observations show that MT dynamics depends on aging of MT. One of the aims of the work is to test the hypothesis that MT aging results from the acceleration of the GTP hydrolysis. We construct for that new models that couple two multidimensional transport equations with two ordinary differential equations involving integral terms. We have calibrated our models on the basis of experimental data; tested biological hypothesis on mechanism of aging process; performed a sensitivity analysis of the model with respect to parameters describing chemical processes; and tested hypotheses concerning actions of drugs
Hunter, Andrew W. "Coupling of ATP hydrolysis to microtubule depolymerization by mitotic centromere-associated kinesin /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/10549.
Full textFerreira, Vanessa Miriam dos Reis. "The role of phosphorylation in the regulation of the chromokinesin Xkid." Doctoral thesis, Universitat Pompeu Fabra, 2010. http://hdl.handle.net/10803/31906.
Full textXkid es una cromoquinesina del sistema de Xenopus, necesaria para el alineamiento de los cromosomas en la placa metafásica y para la transición entre la meiosis I y meiosis II en los oócitos. El objectivo de este trabajo era estudiar la regulación de Xkid por fosforilación en los oócitos y en el extracto de huevos de Xenopus. Para poder cumplirlo se estableció un método para la expresión de proteínas añadiendo al extracto de huevos ARN mensajeros sintetizados in vitro. Los resultados obtenidos sugieren que Xkid es eficientemente fosforilada en el sitio cdk1 durante la meiosis y la mitosis. Aunque la forma de Xkid fosforilada se localiza eficientemente a nivel de los cromosomas mitóticos, esta fosforilación no parece tener ningún papel regulador sobre esta localización. En cambio, parece interferir con la localización de Xkid sobre los microtúbulos mitóticos. El efecto dominante negativo de la forma de Xkid que mimetiza la fosforilación durante la formación del huso mitótico, sugiere además que la fosforilación desempeña un papel importante en la regulación de la función de Xkid. Finalmente, varias proteínas que interaccionan con Xkid han sido identificadas.
Rosas, Salvans Miquel 1987. "Understanding RanGTP dependent microtubule assembly : Idenification of DnaJB6 as a RanGTP regulated factor involved in microtubule organization during mitosis." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/664169.
Full textTres vies de formació de microtúbuls (MT) participen en la formació del fus mitòtic: la centrosòmica, la via d’amplificació dependent d’Augmin i la via dependent de RanGTP o cromosòmica. Per formar el fus, tots aquests MTs són organitzats per diferents classes de proteïnes motores en dos feixos interconnectats de MTs antiparal·lels, amb els seus extrems negatius concentrats al pols del fus. Dynein-Dynactin i HSET s’encarreguen de concentrar els extrems negatius als pols. El fus es pot formar també en absència de centrosomes, indicant que les vies de RanGTP i d’Augmin són suficients per formar-lo. La via de RanGTP es pot estudiar utilitzant extractes d’ous (EE) de Xenopus Laevis. L’addició de RanGTP activa un procés dinàmics de nucleació, estabilització i organització del MTs en asters i mini-fusos. Hem utilitzat la proteòmica com una aproximació per obtenir una visió global de la ruta de RanGTP i em descrit un interactoma dels RanGTP-MTs de 1263 proteïnes. A més, hem analitzat els canvis en aquest proteoma intentant correlacionar-los amb canvis en la dinàmica i l’organització observades al llarg de diferents temps d’incubació de l’EE amb RanGTP. Tot i que la composició del proteoma no varia, hem trobat diferents patrons de reclutament per varis grups de proteïnes. El proteoma inclou la majoria dels factors regulats per RanGTP en mitosis que es coneixen i te un elevat grau de solapament amb altres proteomes del fus i dels Taxol-MTs publicats prèviament. A més, conté un elevat nombre de proteïnes amb i sense roles descrits en varis processos cel·lulars. Hem utilitzat el proteoma dels RanGTP-MTs per identificar nous possibles factors regulats per Ran involucrats en la formació del fus. Hem identificat DnaJB6 com una proteïna regulada per Ran amb una funció en la formació del fus mitòtic. Hem descrit la interacció de DnaJB6 amb p150, dependent de RanGTP específicament en fase M. DnaJB6 afavoreix l’estabilització el complex Dynactin específicament en mitosis, regulant l’activitat de Dynein-Dynactin en l’establiment de la bipolaritat del fus mitòtic i la concentració dels extrems (-) dels MTs als pols del fus mitòtic.
Bouissou, Anaïs. "Rôle de la tubuline gamma et des protéines associées dans la dynamique des microtubules." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1151/.
Full textMicrotubules are highly dynamic polymers, essential in cell division. They are often organized from the centrosome where the protein Gamma-tubulin plays an important role in microtubule nucleation. Gamma-tubulin acts within two main complexes: a small Gamma-tubulin complex (Gamma-TuSC) is essential for viability and assembly of a functional spindle, and a larger complex (Gamma-TuRC) is required for efficient mitotic progression. The role of Gamma-TuRC-specific proteins is not well defined. Using RNAi-mediated depletion in Drosophila S2 cells, I studied the function of these non-essential Gamma-TuRC proteins in microtubule organisation and dynamics. In interphase, I show for the first time that Gamma-TuRCs, localized along microtubules, regulate microtubule dynamics, acting as pause factors. In mitosis, Gamma-TuRCs are associated with all microtubule subsets, including astral microtubules. The loss of Gamma-TuRCs alters astral microtubule dynamics, correlated with spindle positioning defects. Together, these results demonstrate that Gamma-TuRCs regulate microtubule dynamics in interphase and in mitosis. We propose that Gamma-TuRCs are essential to mediate non-centrosomal functions such as organization of cell type-specific microtubule networks or spindle positioning
Loncar, Ana. "Comparaison de la dynamique du fuseau mitotique et méiotique chez la levure à fission." Thesis, Université Paris sciences et lettres, 2020. https://tel.archives-ouvertes.fr/tel-03174872.
Full textCell division is a universal process in all living beings where duplicated chromosomes are separated to the opposite cell poles. Mitosis is a cell division type that serves for proliferation of cells, while meiosis produces sex cells, which are used in the sexual reproduction of an organism. In both cases, a microtubule-based machine called a spindle flawlessly separates the chromosomes. Precise chromosome separation is paramount, as any errors in chromosome segregation can result in aneuploidy that may cause congenital defects, cancer or cell death.Mitosis and meiosis have been the focus of research for many decades, and a plethora of key players has been identified and studied. However, no study has been done on comparison of mitotic and meiotic spindle dynamics in the same organism. In this study, mitotic and meiotic spindle dynamics have been characterized and compared simultaneously in fission yeast. Spindle dynamics comparison ascertained that there are three distinct spindle types – mitotic, meiotic I and meiotic II spindles, with distinguishing features. A fission yeast mutant deficient for kinesin-5 Cut7 and kinesin-14 Pkl1 was used as a tool to identify the source of the differences in mitotic and meiotic spindle dynamics. Although cut7Δpkl1Δ mitotic spindles are bipolar and capable of segregating the chromosomes, we show that meiosis I spindles fail to establish bipolarity and separate the chromosomes, resulting in zygotes forming less than typical four spores. Next, we reveal Pkl1 concentration is reduced in meiotic I compared to mitotic spindles, and identify kinesin-14 Klp2 as the molecule that co-operates with Pkl1 in antagonizing Cut7 in meiosis I. Furthermore, we found that suppressing microtubule dynamics in cut7Δpkl1Δ zygotes restores spindle bipolarity, arguing that microtubules are more dynamic in meiosis I spindles than in mitotic spindles.In summary, this work shows mitotic and meiotic spindles are inherently different, and their differences stem from kinesin-14s and microtubule dynamics regulation
Chakraborty, Papia. "Regulation of Nucleoporins in Mitosis." Scholarly Repository, 2007. http://scholarlyrepository.miami.edu/oa_dissertations/54.
Full textScrofani, Jacopo 1984. "Mechanism of RanGTP dependent microtubule assembly during mitosis." Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/289621.
Full textDurante la mitosis, el proceso de ensamblaje del huso mitótico implica diferentes fuentes de microtúbulos incluyendo centrosomas y cromosomas. Mientras que el rol de los centrosomas ha sido extensamente estudiado, no se entiende en su totalidad como los cromosomas inducen la formación de microtúbulos contribuyendo de esta manera al ensamblaje del huso mitótico. La vía de los cromosomas está mayormente determinada por un gradiente de RanGTP, centrado en los cromosomas, que induce la activación local de factores mitóticos. Para entender el mecanismo que promueve el ensamblaje de los microtúbulos vía RanGTP durante la mitosis, este trabajo tuvo los siguientes objetivos: i) La identificación de nuevas proteínas reguladas por RanGTP que participan en el ensamblaje del huso. Nuestros resultados apuntan a tres nuevas proteínas con un posible papel mitótico en la vía RanGTP de ensamblaje de los microtúbulos. ii) El estudio de el mecanismo para el cual RanGTP regula la nucleación de microtúbulos durante la mitosis. Hemos descubierto que TPX2 junto con Aurora-A y RHAMM son parte de un complejo RanGTP dependiente que estimula la actividad de nucleación de el TuRC. iii) El estudio del papel de la vía de RanGTP en el ensamblaje del huso. En particular, nuestros datos proporcionan nuevas evidencias sobre la participación de los MTs nucleados alrededor de los cromosomas en el proceso del ensamble de fibras cinetocóricas.
Lecland, Nicolas 1984. "Non-centrosomal microtubule nucleation and organization in mitosis." Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/299799.
Full textDurante la formación del huso mitótico, los complejos anulares de γ-tubulina (γTuRCs, del ingles γ-tubulin ring complexes) nuclean microtúbulos alrededor de la cromatina mitótica y, mediante la interacción con el complejo de la Augmina, a partir de otros microtúbulos ya existentes. El estudio de estos mecanismos en células somáticas es complejo, debido a la predominancia de la nucleación centrosomal de los microtúbulos en estas células. En la actualidad, aun no se sabe como microtúbulos procedentes de distintas vías de nucleación se organizan en la estructura bipolar del huso mitótico. Se ha observado que los extremos (-) están presentes a lo largo del huso, detectándose una mayor concentración cerca de los polos. A pesar de esto, no se conocen estudios detallados acerca de la dinámica del extremo (-) debido a la ausencia de marcadores adecuados. He observado que el complejo anular de γ-tubulina (γTuRC) es un marcador fiable de los extremos (-) en los microtúbulos acentrosomales presentes en el huso mitótico. Además, he confirmado la acumulación de estos extremos (-) en la región próxima a los polos del huso. Utilizando líneas celulares que expresan de forma estable γ-tubulina fusionada a un GFP foto-activable, y que además han sido transfectadas con isoformas mutantes de subunidades del γTuRC, he demostrado que el γTuRC se recluta preferentemente en regiones del huso alejadas de los polos. Allí el γTuRC se asocia con los extremos (-) de los microtúbulos, para ser transportado a lo largo del huso mitótico en dirección a los polos. El transporte del γTuRC presente en los extremos (-) en dirección a los polos lo realizan los motores moleculares Dineina, KIFC1 y KIF11. También he descubierto que una parte de las moléculas de γTuRC que alcanzan los polos del huso se integran de forma estable en los centrosomas, complementando la vía de incorporación al centrosoma independiente de microtúbulos que ha sido previamente descrita. Usando la técnica de ablación de centrosomas con laser, he estudiado la formación acentrosomal del huso. Cuando estas células entran en mitosis en ausencia de centrosomas, pueden nuclear microtúbulos desde el área nuclear. Estos microtúbulos forman husos multipolares, aunque las células finalmente se dividen en dos células hijas. Las células procedentes de estas mitosis anormales no suelen ser viables. En conclusión, mediante el revelado la dinámica de los extremos (-) de los microtúbulos no centrosomales, he proporcionado nueva información acerca del ensamblaje y arquitectura del huso mitótico. Además, he demostrado que los centrosomas, aunque no son esenciales para la división celular somática, juegan un papel importante en el correcto ensamblaje y función del huso mitótico.
Demir, Özlem. "Functional Characterization of Microtubule Associated Proteins in ES Cell Division and Neuronal Differentiation." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-163103.
Full textKondratick, Christine M. "Mitosis related phosphorylation of the neuronal microtubule-associated protein tau /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487949150071694.
Full textDeavours, Bettina Edith. "Microtubule interactions and regulation of the mitotic kinesin-like protein-1 and kinesin-like calmodulin-binding protein." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/29951.
Full textPh. D.
Timón, Pérez Krystal 1987. "Spindle assembly and the control of microtubule nucleation through NEDD1 phosphorylation." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/665720.
Full textDurante la mitosis, los microtúbulos se organizan en un huso mitótico que segrega los cromosomas. En organismos eucariotas, estos microtúbulos se nuclean a través de tres vías diferentes que involucran los centrosomas (vía centrosomal), la cromatina (vía dependiente de Ran-GTP/vía cromosomal) y microtúbulos pre-existentes (vía dependiente del complejo proteico Augmin). Estas tres vías dependen de un complejo de nucleación llamado γ-TuRC y la proteína adaptadora NEDD1. Durante la mitosis, la fosforilación de NEDD1 determina su papel en la nucleación de microtúbulos a través de las tres vías: la fosforilación en la Ser377 dependiente de la kinasa Nek9 controla la nucleación centrosomal, la fosforilación en la Ser405 dependiente de la kinasa AuroraA regula la nucleación chromosomal y la fosforilación en la Ser411 dependiente de la kinasa Cdk1 gobierna la nucleación sobre los microtúbulos. Para definir la contribución específica de estas vías de nucleación en el ensamblaje del huso, generamos varias líneas celulares inducibles para expresar mutantes de fosforilación de NEDD1 en Ser377, Ser405 y Ser411 individualmente o en combinación tras silenciar NEDD1 endógena. Nuestros datos muestran que, de acuerdo con resultados previos, los tres sitios de fosforilación son importantes para el ensamblaje del huso. Además sugieren que la fosforilación en Ser411 es responsable del cambio de mobilidad de NEDD1 en mitosis y juega un papel importante en la función de NEDD1 en mitosis.
Meaders, Johnathan Lee. "Growth, Morphology, and Positioning of Microtubule Asters in Large Zygotes:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:109018.
Full textMicrotubule (MT) asters are radial arrays of MTs nucleated from a microtubule organizingcenter (MTOC) such as the centrosome. Within many cell types, which display highly diverse size and shape, MT asters orchestrate spatial positioning of organelles to ensure proper cellular function throughout the cell cycle and development. Therefore, asters have adopted a wide variety of sizes and morphologies, which are directly affects how they migrate and position within the cell. In large cells, for example during embryonic development, asters growth to sizes on the scales of hundreds of microns to millimeters. Due to this relatively enormous size scale, it is widely accepted that MT asters migrate primarily through pulling mechanisms driven by dynein located in the cytoplasm and/or the cell cortex. Moreover, prior to this dissertation, significant contributions from pushing forces as a result of aster growth and expansion against the cell cortex have not been detected in large cells. Here we have reinvestigated sperm aster growth, morphology, and positioning of MT asters using the large interphase sperm aster of the sea urchin zygote, which is historically a powerful system due to long range migration of the sperm aster to the geometric cell center following fertilization. First, through live-cell quantification of sperm aster growth and geometry, chemical manipulation of aster geometry, inhibition of dynein, and targeted chemical ablation, we show that the sperm aster migrates to the zygote center predominantly through a pushing-based mechanism that appears to largely independent of proposed pulling models. Second, we investigate the fundamental principles for how sperm aster size is determined during growth and centration. By physically manipulating egg size, we obtain samples of eggs displaying a wide range of diameters, all of which are at identical developmental stages. Using live-cell and fluorescence microscopy, we find strong preliminary evidence that aster diameter and migration rates show a direct, linear scaling to cell diameter. Finally, we hypothesize that a collective growth model for aster growth, or centrosome independent MT nucleation, may explain how the sperm aster of large sea urchin zygotes overcomes the proposed physical limitations of a pushing mechanism during large aster positioning. By applying two methods of super resolution microscopy, we find support for this collective growth model in the form of MT branching. Together, we present a model in which growth of astral MTs, potentially through a collective growth model, pushes the sperm aster to the zygote center
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Monda, Julie Kathryn. "Functional analyses of mitotic microtubule-binding complexes." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119916.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
Mitosis is the process by which a single cell divides to form two identical daughter cells. Each daughter cell must inherit a full complement of the genetic material. Thus, a critical aspect of mitosis is the faithful segregation of each duplicated chromosome. Chromosome segregation is achieved through the attachment of a chromosome-localized macromolecular complex, termed the kinetochore, to microtubules. Microtubules are dynamic polymers comprised of tubulin heterodimers. The successful execution of mitosis additionally depends on the organization of the microtubules into a bipolar array, termed the mitotic spindle. The depolymerization of kinetochore-bound microtubules generates the force required to properly segregate the chromosomes. The work in this thesis analyzes the molecular basis for the function and activity of two key players in microtubule function. First, I investigate the mechanisms by which the Ska1 complex facilitates the continued association of the kinetochore with microtubules, even as the microtubules grow and shrink. I show that Ska1 uses multiple surfaces to interact with diverse tubulin substrates, and each of these surfaces are required for microtubule tip tracking and optimal mitotic progression. Second, I analyze cytoplasmic dynein, a microtubule-based motor that is critically required to maintain spindle bipolarity and execute numerous other cellular processes throughout the cell cycle. The execution of these diverse functions of dynein relies on precise temporal and spatial regulation of dynein activity. Dynein regulation is accomplished in part by the association of adaptor proteins with the dynein complex, including Nde1. Here, I show that Nde1 utilizes distinct intermolecular interactions to regulate different dynein functions. I also identify a previously uncharacterized interaction between Nde1 and the 26S proteasome. Finally, I explore a potential role for post-translational modifications in regulating dynein function. I find that the localization of dynein during mitosis is rapidly altered following the addition of small molecule inhibitors of ubiquitination enzymes. Together, these findings provide new insights into the function and regulation of diverse components of the mitotic machinery.
by Julie Kathryn Monda.
Ph. D.
Bendre, Shweta [Verfasser], and Andrea [Akademischer Betreuer] Musacchio. "GTSE1 regulates microtubule stability during mitosis through inhibition of the microtubule depolymerase MCAK / Shweta Bendre ; Betreuer: Andrea Musacchio." Duisburg, 2017. http://d-nb.info/1141053675/34.
Full textFarache, Dorian. "Etude des fonctions de GCP4, 5 et 6 dans l'assemblage du complexe de nucléation des microtubules." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30231/document.
Full textMicrotubules are highly dynamic components of the cytoskeleton. gammatubulin is found at the centrosome where it forms a microtubule nucleation complex together with GCPs 2-6, the gamma-TuRC. GCPs 2-6 form a conserved family of proteins characterised by two conserved domains called GRIP1 and 2. The gamma-TuRC functions as a structural template for microtubule nucleation. The gamma-TuRC is composed of smaller subcomplexes called gamma-TuSC. Each gamma-TuSC is composed by one GCP2, one GCP3 and two gamma?tubulins. GCP2 and GCP3 interact via their N-terminal domain and bind gamma tubulin through their C-terminal domain. Several gamma-TuSCs can assemble laterally to form a one-turn helix with the two ends overlapping. The atomic structure of GCP4 fits almost perfectly in the place of GCP2 and GCP3 within the gamma-TuSC envelope obtained by electron microscopy suggesting a strong structural conservation among GCPs. Hence, GCP4, 5 and 6 may be part of the helix. During the course of my thesis, I studied the relative position of GCPs 4, 5, 6 within the gamma-TuRC. To this aim, I developed a domain swapping and mutagenesis approaches. I also combined FLIM-FRET and immunoprecipitation strategies. I have been able to show that the N-terminal domains of GCPs define their identity while the C-terminal domains can be swapped. My results also indicate that GCP4 and GCP5 establish gamma-TuSC like interactions within the gamma-TuRC. I also isolated a complex containing GCP4, 5, 6 and gamma tubulin independently of the gamma-TuRC. My thesis provides the first experimental evidence supporting the model where GCP4, 5 and 6 are part of the gamma-TuRC helix where they form a sub-complex localised at a defined position
Maney, Robert Todd. "A functional analysis of mitotic centromere-associated kinesin /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/10532.
Full textMontgomery, Jessica M. "Nek6 controls mitotic progression through regulating EML3 localisation to spindle microtubules." Thesis, University of Leicester, 2016. http://hdl.handle.net/2381/37774.
Full textEspeut, Julien. "Régulation de la motilité de Cenp-E, une kinésine associée au kinétochore." Montpellier 2, 2007. http://www.theses.fr/2007MON20133.
Full textThe mitotic spindle assembly checkpoint stops cell division in case of incorrect positioning of the chromosomes onto the metaphase plate. This checkpoint avoids inaccurate chromosome division, which could result in a loss or gain of genetic material. Amongst the many proteins involved in this regulation is the kinetochore protein Cenp-E (Centromere associated protein E). One of the biggest goal in the field of mitosis is to establish which kinetochore proteins are responsible of chromosome movement. Therefore the aim of my thesis has been to determine the mechanisms of regulation of the Cenp-E kinesin motor activity involved in the dynamics of binding to the microtubules. We have been able to show that Cenp-E moves towards the "+" end of microtubules. Furthermore, the C-terminal portion of Cenp-E directly inhibits its motor activity and such inhibition is reversed by phosphorylation of the Cterminus by the kinases Mps1 and Cdk1-cyclin B. These results suggest a dynamic control of Cenp-E motility and of chromosome congression, dependent on kinetochore phosphorylation
Sousa, Da Costa Maria Judite. "Csi2 modulates microtubule dynamics and helps organize the bipolar spindle for proper chromosome segregation in fission yeast." Paris 6, 2013. http://www.theses.fr/2013PA066626.
Full textLa ségrégation correcte des chromosomes est processus fondamental pour maintenir la stabilité génomique. Des défauts de ségrégation sont souvent à l’origine de l’apparition de cellules aneuploïdes, caractéristique fréquemment observée dans les cellules cancéreuses. Dans les cellules eucaryotes, la ségrégation correcte des chromosomes est assurée par le fuseau mitotique. Des mécanismes de contrôle, tels que le point de contrôle mitotique et le bon attachement des centromères, sont mis en œuvre pour assurer la bonne ségrégation des chromosomes. Dans cette étude, nous avons pu établir chez le levure fissipare, que la protéine csi2, localisée aux pôles du fuseau mitotique, joue un rôle sur la dynamique des MTs mitotiques, dans la formation d’un fuseau mitotique intègre et par conséquent dans la ségrégation correcte des chromosomes. Les MTs composants le fuseau mitotique bipolaire sont dynamiques et de petite taille ~1µm ce qui représente un défis technique pour les imager, en effet, la résolution optique d’un microscope ~λ/2 est en général de 300nm. Nous avons développé une nouvelle approche pour imager les MTs mitotiques basée sur l’utilisation du mutant réversible thermosensible kinesin-5 cut7. 24ts, pour obtenir des cellules ayant des fuseaux monopolaires. Ainsi, nous avons pu mettre en évidence que la délétion de la protéine csi2 chez la levure S. Pombe était à l’origine d’un allongement de la longueur des microtubules mitotiques, d’une augmentation du nombre de cellules présentant un fuseau monopolaire et d’une augmentation des défauts de ségrégation des chromosomes. L’étude de l’implication de la protéine csi2 dans ces différents mécanismes nous a permis de mettre en évidence la contribution de chacun de ces mécanismes dans la bonne ségrégation des chromosomes. Nous proposons dans cette étude que le facteur déterminant à l’origine d’une ségrégation incorrecte des chromosomes serait majoritairement imputable à des défauts de régulation de la dynamique des microtubules
Holmfeldt, Per. "Regulation of tubulin heterodimer partitioning during interphase and mitosis." Doctoral thesis, Umeå : Department of Molecular Biology, Umeå University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1923.
Full textCaudron, Maïwen. "Coordination of mitotic spindle assembly by chromosome-generated molecular interaction gradients." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. http://www.theses.fr/2005STR13056.
Full textOnce in every cell cycle, living cells distribute evenly their chromosomes to the two daughter cells. The cellular machine that achieves chromosome segregation is the mitotic spindle, which is made of oriented protein nanotubes arranged into a bipolar system that surround the chromosomes to which the tubes are attached through specialized regions, the kinetochores. At the onset of cell division, microtubules that were long and stable suddenly become shorter and highly dynamic. This is due to a general change in the state of the cytoplasmic environment. Surprisingly, the mitotic cytoplasm does support the assembly of the bipolar spindle in the absence of chromosomes, raising questions about the mechanism of spindle assembly and the role of chromosomes in this process. This was interesting since this could represent an example of the coordination of the assembly of a machine by the very substrate on which it is acting. It appeared that chromosomes actually play a central role in spindle assembly by modifying locally the nature of the cytoplasm in their vicinity, thereby promoting the nucleation and stabilization of microtubules that finally self-organize into a bipolar array thanks to the action of various molecular motors. In this thesis, I show both theoretically and experimentally that chromosomes generate gradients of molecular interactions that provide spatial cues required for the coordination of microtubule nucleation and plus end stabilization two essential events in the pathway that leads to the self-organization of the mitotic spindle. A small molecule called Ran can be present in two forms. A high-energy state that contains GTP and a low energy state that is loaded with GDP. On the chromosomes, there is an exchange factor that loads Ran with GTP and in the cytoplasm there is a GTPase “activating factor” that forces Ran to change the bound GTP into GDP. Previous work had shown that the local production of Ran GTP around chromosomes leads to its interaction with molecular complexes present in cells. These complexes are called Importin- [Nuclear-Localization-Signal-containing proteins] (NLS-proteins). Upon binding of Ran GTP to importins, NLS-proteins are released around chromosomes. It turns out that among these NLS-proteins, there are molecules that trigger microtubule nucleation and stabilize microtubule plus ends when they are released from importins. In my thesis, I have shown that such a local effect on microtubule nucleation and stabilization is important for the proper formation of a mitotic spindle. Then, I showed that reaction-diffusion equations allow calculating the shape and extent of the gradients of various molecular species like free Ran GTP, Ran GTP-importin complexes and free NLS-proteins. Finally, I have used Fluorescence Life time Imaging (FLIM) technology to visualize the shape of the Ran GTP-importin gradient and demonstrated that this gradient was read differently by the microtubule system so that microtubule nucleation would occur close to chromosomes while stabilization effects would be sensed much further away. In summary, I have shown that a reaction-diffusion process occurring around chromosomes governs important aspects of the self-organization of microtubules into a bipolar spindle
Perchey, Renaud. "Le rôle de p27Kip1 dans la mitose et dans l'instabilité génétique." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30055.
Full textProgression through the cell cycle is regulated by the sequential activation of cyclin/CDK complexes. One level of regulation of these complexes is provided by their association with their inhibitors, the CKIs, which include p27Kip1 (p27). p27 is therefore an inhibitor of the cell division cycle, in this way, p27 acts as a tumor suppressor. However, in certain contexts, and especially when p27 is located in the cytoplasm, p27 has oncogenic functions. It appears that in addition to its role in the regulation of cyclin/CDK complexes, p27 has multiple CDK-independent roles and is involved in the control of various cellular processes such as migration, transcription, autophagy and cytokinesis. Determination of the interactome of p27 revealed that several proteins playing an essential role in cytokinesis could interact with p27, including PRC1 (Protein Regulating Cytokinesis 1) and Citron-Kinase (CitK). The objectives of my thesis are to understand how p27 participates in the control of cytokinesis via its interaction with these two proteins. Regulation of PRC1 activity by p27Kip1 PRC1 is necessary for the formation of the central spindle at the beginning of anaphase via its interaction with microtubules and other partners. For this project, my objectives were to confirm the p27/PRC1 interaction, to map the interaction domains on each partner, to test whether p27 could regulate PRC1 activity and determine by which mechanism, as well as the cellular consequences of this regulation. I validated the interactions in different cells models and identified the respective interaction domains. I found by a microtubule sedimentation technique in vitro that p27 prevents the interaction of PRC1 with microtubules. I was able to uncover two phenotypes. First, PRC1 overexpression induces excessive and massive microtubule bundling, which is abolished by co-expression of p27. Second, PRC1 overexpression causes binucleation and p27 co-expression prevents PRC1-induced binucleation. This phenotype is indicative of cytokinesis failure and suggests a CDK-independent role of p27 during cytokinesis. Citron-Kinase regulation by CDK1 and p27Kip1 Another p27 interactor previously reported by my team is CitK. CitK plays an essential role in cytokinesis and its depletion induces cytokinesis failure. CitK is involved in the final stages of cytokinesis (abscission), notably as a scaffold protein that bridges the plasma membrane and the contractile ring. The regulatory mechanisms of CitK remain poorly understood and it appears important to understand how this protein playing an essential role in cytokinesis is regulated. In our 2012 study, a p27CK- mutant, that cannot bind and inhibit cyclin-CDK complexes and is not degraded correctly by the proteasome, induced a phenotype of multinucleation by interfering with CitK activity, notably via the regulation of the CitK/RhoA interaction. We initially thought that the accumulation of p27CK- in G2/M drove this phenotype. However, our current data suggest that although the total amount of p27CK- is elevated, the amount of p27CK- at the midbody are similar to that of p27WT, suggesting that p27CK- lacks a feature that p27WT has. Since the only difference between p27WT and p27CK- is the ability to bind and inhibit cyclin/CDK complexes, we hypothesized that CitK can be regulated by CDK1 and that p27 participates in this regulation. My work has shown that CitK interacts with CDK1/Cyclin B1 in different cells lines
Mathieu, Michelle. "Regulation of mitotic BubR1 phosphorylation by the BubR1 pseudokinase domain." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/27062.
Full textThe mitotic protein BubR1 functions in the spindle assembly checkpoint (SAC) by stabilizing kinetochore-microtubule (KT-MT) interactions. These functions protect the cell from abnormal chromosome segregation and genome instability. BubR1 has highly conserved mitotic phosphorylation sites in the kinetochore-attachment regulatory domain (KARD); the residue S676 is phosphorylated by polo-like kinase-1 (Plk1) and S670 is phosphorylated by cyclin-dependent kinase-1 (Cdk1). These phosphorylation sites are essential for KARD recruitment of protein phosphatase PP2A-B56, which stabilizes KT-MT interactions. Our results show that mutations that cause pseudokinase domain instability and a highly stable truncation mutant of BubR1 were found to cause loss of mitotic S676 and S670 phosphorylation. We hypothesize that the pseudokinase domain of BubR1 may play an important role in the regulation of KARD phosphorylation and thus the stabilization of KT-MT interactions.
Gouveia, Susana Montenegro. "Funcional analysis of microtubule binding domain of MAST." Master's thesis, Universidade de Aveiro, 2005. http://hdl.handle.net/10773/4979.
Full textA Mast/Orbit/CLASP é uma família conservada de proteínas associadas aos microtúbulos (MAPs) essenciais para a organização e função do fuso mitótico (Inoue et al., 2000; Lemos et al., 2000; Akhmanova et al., 2001; Maiato et al., 2002; Maiato et al., 2003a; Mimori-Kiyosue et al., 2005). Estas proteínas surgem associadas aos microtúbulos, centrossomas e cinetocoros e diversos estudos sugerem que desempenham um papel importante na regulação das propriedades dinâmicas dos microtúbulos (Akhmanova et al., 2001; Maiato et al., 2002; Maiato et al., 2003a; Maiato et al., 2005). As isoformas humanas, CLASPs, fazem parte de um conjunto de proteínas (+TIPs) que exibem uma forte acumulação na ponta de crescimento (+) dos microtúbulos em polimerização (Schuyler and Pellman, 2001). Estas proteínas dissociam-se do polímero formado o que origina uma localização em forma de cometa na extremidade do microtúbulo. Neste trabalho mostramos que em Drosophila, a proteína Mast também é uma +TIP. Adicionalmente, definimos o domínio de ligação da proteína aos microtubulos e demonstrámos que, in vitro, a Mast se associa directamente com a tubulina num processo sensível a nucleótidos de guanina. O GTP favorece a ligação aos heterodímeros de tubulina, mas não influencia a ligação aos microtubulos. Contrariamente, o GDP inibe fortemente a ligação da Mast aos microtúbulos e heterodímeros de tubulina. Finalmente, provamos que a Mast liga e hidrolisa GTP, o que a torna a primeira +TIP com características de GTPase e sugere um novo mecanismo para a localização dinâmica das +TIPs. Estes resultados são consistentes com um modelo no qual a Mast-GTP copolimeriza com os heterodímeros de tubulina ou se associa directamente à extremidade (+) dos microtúbulos em crescimento. Após a associação ao microtúbulo dá-se a hidrólise do GTP e consequente formação de Mast-GDP que causará uma alteração conformacional da proteína promovendo a sua dissociação do microtúbulo. Este estudo sugere que uma proteína associada aos microtúbulos pode utilizar a actividade GTPásica na regulação da sua ligação aos microtúbulos.
Mast/Orbit/CLASP is a conserved MAP protein family essential for the organization and function of mitotic spindle (Inoue et al., 2000; Lemos et al., 2000; Akhmanova et al., 2001; Maiato et al., 2002; Maiato et al., 2003a; Mimori-Kiyosue et al., 2005). It accumulates at centrosomes, kinetochores and microtubule plus-ends where it is thought to regulate their dynamic properties (Akhmanova et al., 2001; Maiato et al., 2002; Maiato et al., 2003a; Maiato et al., 2005; Mimori-Kiyosue et al., 2005). CLASPs, the human homologues (Akhmanova et al., 2001), are members of the microtubule plus-end tracking protein (+TIP) family (Schuyler and Pellman, 2001). +TIPs show strong accumulation at the polymerizing end of microtubules, dissociating from the polymer soon afterwards giving the appearance of a comet-like structure. Here we show that the Drosophila homologue Mast also displays +TIP behaviour. Moreover, we defined the microtubule binding domain of Mast and showed that it associates directly with tubulin in a guanine nucleotide sensitive manner. GTP favours the binding of Mast to tubulin heterodimers but does not influence binding to microtubules, while GDP strongly inhibits the binding of Mast to microtubules. More importantly, we show that Mast can bind and hydrolyse GTP demonstrating that it is the first +TIP with this feature and hence suggesting a new mechanism for +TIP behaviour. These results are fully consistent with a model in which Mast-GTP copolymerizes with tubulin heterodimers at the growing microtubule plus end. Mast is then released from the polymer due to hydrolysis of the bound GTP, causing a conformational change of the protein that promotes its release from the microtubule lattice. Our data provides evidence that a microtubule associated protein could use its GTPase activity to regulate its ability to bind microtubules.
FCT
POCTI/BCI/49176/2002
Conti, Duccio. "Role of phosphatases in the end-on conversion process." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/278657.
Full textLioutas, Antonio 1980. "Aurora A kinase function during anaphase." Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/97290.
Full textAurora A (AurA) es una quinasa mitótica importante que se ha estudiado principalmente en su papel durante la progresión del ciclo celular, la maduración del centrosoma, la organización y la formación del polo y del huso mitótico. Durante la mitosis, AurA se localiza en los centrosomas duplicados y en los microtúbulos (MTs) del huso y se ha observado que regula varios factores que participan en la formación del huso mitótico. AurA se degrada al final de la mitosis indicando que pueda tener una función durante la anafase. En este estudio nos hemos centrado en la comprensión de la función de AurA durante la anafase en dos sistemas experimentales diferentes. En primer lugar, utilizando extractos de huevos de Xenopus hemos mantenido AurA activa durante la transición de metafase a anafase y hemos visto que los MTs del huso mitótico mantienen su organización durante más tiempo. También hemos observado que cuando AurA se mantiene activa existen defectos en la segregación cromosómica y la formación de la membrana nuclear. Esto indica que la actividad de AurA tiene un papel regulador sobre los MTs y la chromatina durante la transición de la metafase a la interfase. Para entender cual es la función de AurA durante la transición de metafase a anafase primero hemos estudiado si la actividad de la quinasa es necesaria para el mantenimiento del huso mitótico. Hemos visto que la inhibición de la actividad quinasa AurA resultó en el colapso del huso durante la metafase en células HeLa. Esto indica que la actividad de AurA es necesaria para el mantenimiento del huso mitótico de metafase. A continuación hemos analizamos si la actividad quinasa de AurA sigue siendo necesaria para la anafase. Para ello hemos inhibido AurA en células Hela al inicio de la anafase. En estas condiciones los husos de la anafase son más pequeños y la estructura de los MTs responsable del alargamiento del huso mitótico durante la anafase, el huso central, se organiza defectuosamente. Además, se encontraron errores durante la segregación de los cromosomas. Estos resultados indican que la actividad quinasa de AurA es necesaria para el alargamiento del huso durante la anafase y la organización y segregación cromosómica. Para entender el mecanismo de la función de AurA durante la anafase hemos estudiado a sustratos de AurA. Al estudiar TACC3 , un sustrato conocido de AurA que participa en la formación de MTs en las fase iniciales de la mitosis hemos encontrado que su eliminación de células HeLa produce el mismo fenotipo que la inhibición de AurA. Esto indica que TACC3 tiene una función en la organización de MT y la segregación de cromosomas durante la anafase y que esta función podría estar regulada por la quinasa AurA. En este estudio hemos demostrado que la actividad quinasa de AurA es esencial para el mantenimiento del huso mitótico. También hemos encontrado que durante la anafase cuando la quinasa AurA se mantiene activa o se inhibe la organización de los MTs del huso mitótico se ve muy afectada y los cromosomas se segregan defectuosamente. Por tanto los resultados de este estudio indican que la actividad quinasa de AurA está estrechamente controlada durante la anafase para el correcto cumplimiento de la mitosis.
Kim, Yumi. "Mechanism of the mitotic kinesin CENP-E in tethering kinetochores to spindle microtubules." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3369626.
Full textTitle from first page of PDF file (viewed September 15, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 109-127).
Shojania, Feizabadi Mitra. "Physical Concepts of Copolymerization of Microtubules in the Presence of Anti-mitotic Agents." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/27795.
Full textPh. D.
Schütz, Martin Maximilian. "The role of NIMA-like kinase Nek9 in mitosis." Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/38705.
Full textLa mitosis es el proceso esencial durante el cual una célula se divide en dos células hijas viables. Para permitir una segregación fiable de los cromosomas en cada hija, la célula forma el huso bipolar. Nek9, el miembro de la familia de quinasas NIMA-like ha sido propuesto para desempeñar un papel en el la asamblea del huso bipolar y en la vía cromosómica de ensamblaje de los microtúbulos. Nuestro objetivo era lograr una mejor comprensión de la función Nek9 caracterizando Nek9 de Xenopus, xNek9, utilizando el sistema de extracto de huevos de Xenopus. Hemos demostrado que xNek9 probablemente no actuará a través de la cascada de las quinasas xNek9 - xNek6 en la meiosis como se describe para Nek9 humano en células somáticas y por lo tanto pueden tener diferentes sustratos. Además, hemos demostrado por el agotamiento, la adición incrementada de Flag-hNek9 y un enfoque dominante-negativas que xNek9 es importante para la formación del huso bipolar. Además, hemos demostrado que el agotamiento xNek9 causa una disminución de la densidad de los microtúbulos en los husos bipolares y una formación más lenta de asteres inducidos por RanGTP. Se identificó xNedd1, la proteína adaptadora para el γTuRC, como un interactor y sustrato novedoso de xNek9. El agotamiento de xNek9 reduce la contratación de xNedd1 a los asteres inducidas por núcleos de espermatozoides y disminuye el número y longitud de microtúbulos nucleados. Estos datos sugieren que un papel de xNek9 en el conjunto del huso se husorce a través de la regulación de xNedd1. Proponemos un modelo para la interacción xNek9 – xNedd1 y un supuesto mecanismo para la regulación de xNek9 – xNedd1 explicando cómo cumplen su papel en la ensamblaje del huso bipolar.
Lacroix, Benjamin. "Rôle de la polyglutamylation dans le contrôle sélectif des moteurs moléculaires et des MAPs." Montpellier 2, 2009. http://www.theses.fr/2009MON20196.
Full textMicrotubules (MTs) are cytoskeletal filaments that are essential for many different cellular functions including cell division, intracellular transport and cell motility. Polyglutamylation is a post-translational modification that targets alpha- and beta-tubulin, the building blocks of MTs. This modification is present on the C-terminal tail of the tubulins, which is a main domain of interaction between MTs and MAPs (MTs associated proteins). Tubulin polyglutamylation is a complex modification that can generate long side chains of glutamates on a single modified residue of the protein. My first focus was to characterize the enzymatic properties of the polyglutamylases of the family of TTLLs (Tubulin Tyrosine Ligase Like proteins). I found that each enzyme has a specificity toward initiation or elongation of the side chains and for preferentially modifying alpha or beta tubulin. The polyglutamylation level on MTs varies during the cell cycle: interphase MTs are almost not glutamylated whereas spindle and midbody MTs are strongly modified. This suggests that tubulin polyglutamylation plays a specific role during mitosis. I demonstrated that the glutamylation pattern present on mitotic MTs regulates the localisation and activity of MAPs. I found that the mitotic MAP (TPX2) is recruited specifically to glutamylated MTs and that polyglutamylated tubulin activates the MT-severing activity of two proteins, katanin and spastin
Conte, Nathalie [Aude]. "TACC-TIC cellulaires." Aix-Marseille 2, 2003. http://www.theses.fr/2003AIX22079.
Full text