Journal articles on the topic 'Microwave attenuator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microwave attenuator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yuzvik, Denis A., and Maksim A. Stepanov. "An algorithm for synthesis of a film attenuator with uniform power dissipation along its length." Proceedings of the Russian higher school Academy of sciences, no. 2 (June 30, 2022): 60–69. http://dx.doi.org/10.17212/1727-2769-2022-2-60-69.
Full textTatarenko, A. S., G. Srinivasan, and D. A. Filippov. "Magnetoelectric microwave attenuator." Electronics Letters 43, no. 12 (2007): 674. http://dx.doi.org/10.1049/el:20070949.
Full textAubakirov, Constantine Y., and Alexander V. Makeev. "DESIGNING MICROWAVE BAND ATTENUATORS AS ELECTRIC FILTERS WITH LOSSES." Interexpo GEO-Siberia 8 (May 21, 2021): 280–87. http://dx.doi.org/10.33764/2618-981x-2021-8-280-287.
Full textCui, Hong Ling, Qi Su, and En Li. "Attenuation Distribution Broadband Measurement System of Ceramic Pole Attenuator Used for TWT." Key Engineering Materials 723 (December 2016): 224–29. http://dx.doi.org/10.4028/www.scientific.net/kem.723.224.
Full textFabeni, P., D. Mugnai, G. P. Pazzi, and A. Ranfagni. "Microwave variable waveguide attenuator." Review of Scientific Instruments 79, no. 6 (2008): 066104. http://dx.doi.org/10.1063/1.2930798.
Full textChadha, D., S. Aditya, M. R. Ambe, and G. Bamra. "Optically Controlled Microwave Attenuator." IETE Journal of Research 41, no. 2 (1995): 151–55. http://dx.doi.org/10.1080/03772063.1995.11437240.
Full textMitkov, A. S., A. A. Stolyarenko, and M. G. Rubanovich. "FILM ATTENUATORS BASED ON FILTER STRUCTURES WITH DISSIPATIVE LOSSES." Issues of radio electronics, no. 4 (May 10, 2019): 84–89. http://dx.doi.org/10.21778/2218-5453-2019-4-84-89.
Full textTang, Jie, Yi-Ran Liu, Li-Jiang Zhang, et al. "Flexible Thermo-Optic Variable Attenuator based on Long-Range Surface Plasmon-Polariton Waveguides." Micromachines 9, no. 8 (2018): 369. http://dx.doi.org/10.3390/mi9080369.
Full textKoshelets, V. P., S. V. Shitov, A. V. Shchukin, et al. "Josephson tunnel junction microwave attenuator." Applied Physics Letters 63, no. 23 (1993): 3218–20. http://dx.doi.org/10.1063/1.110203.
Full textLi, Ze Lun, Zhi Cheng Huang, and You Jun Huang. "Study on a Moisture Measurement Method Based on Microwave Attenuation." Applied Mechanics and Materials 103 (September 2011): 305–8. http://dx.doi.org/10.4028/www.scientific.net/amm.103.305.
Full textTatarenko, A. S., and M. I. Bichurin. "Microwave Magnetoelectric Devices." Advances in Condensed Matter Physics 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/286562.
Full textAntonenkov, O. V., and D. A. Filippov. "Electric-field-controlled magnetoelectric microwave attenuator." Technical Physics Letters 33, no. 9 (2007): 752–54. http://dx.doi.org/10.1134/s1063785007090118.
Full textTomar, Raghbendra Singh, Enakshi K. Sharma, and A. K. Verma. "Optically Controlled Coupled Microstripline Microwave Power Attenuator." IOSR Journal of Electrical and Electronics Engineering 9, no. 5 (2014): 19–26. http://dx.doi.org/10.9790/1676-09541926.
Full textXu, En Dao, Zhi Ping Chen, Zhen Jie Zhang, and Cun Jun He. "Design and Analysis of a Kind of Attenuator that Used in Microwave Moisture Contactor." Applied Mechanics and Materials 644-650 (September 2014): 3927–30. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.3927.
Full textLi, Song, Tai Li Bai, and Yao Han. "Design of Automatic Level Control for Microwave Signal Source." Applied Mechanics and Materials 226-228 (November 2012): 2009–13. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.2009.
Full textYoshida, Mitsuhiro, Hiroshi Matsumoto, Tsumoru Shintake, Koji Nishiyama, and Sadao Miura. "High-power microwave attenuator employing slow wave structure." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 693 (November 2012): 6–10. http://dx.doi.org/10.1016/j.nima.2012.06.001.
Full textSaavedra, C. E., and You Zheng. "Ring-hybrid microwave voltage-variable attenuator using HFET transistors." IEEE Transactions on Microwave Theory and Techniques 53, no. 7 (2005): 2430–34. http://dx.doi.org/10.1109/tmtt.2005.850400.
Full textLiu, Zheng, Lei Zhu, and Gaobiao Xiao. "A Novel Microwave Attenuator on Multilayered Substrate Integrated Waveguide." IEEE Transactions on Components, Packaging and Manufacturing Technology 6, no. 7 (2016): 1106–12. http://dx.doi.org/10.1109/tcpmt.2016.2572735.
Full textSaddow, S. E., B. J. Thedrez, and C. H. Lee. "An optoelectronic attenuator for the control of microwave circuits." IEEE Microwave and Guided Wave Letters 3, no. 10 (1993): 361–62. http://dx.doi.org/10.1109/75.242261.
Full textRiza, N. A., and S. E. Saddow. "Optically controlled photoconductive N-bit switched microwave signal attenuator." IEEE Microwave and Guided Wave Letters 5, no. 12 (1995): 448–50. http://dx.doi.org/10.1109/75.481857.
Full textFlemish, Joseph R., and Randy L. Haupt. "Optimization of a Photonically Controlled Microwave Switch and Attenuator." IEEE Transactions on Microwave Theory and Techniques 58, no. 10 (2010): 2582–88. http://dx.doi.org/10.1109/tmtt.2010.2065350.
Full textPierantoni, Luca, Davide Mencarelli, Maurizio Bozzi, et al. "Broadband Microwave Attenuator Based on Few Layer Graphene Flakes." IEEE Transactions on Microwave Theory and Techniques 63, no. 8 (2015): 2491–97. http://dx.doi.org/10.1109/tmtt.2015.2441062.
Full textWei, Zhihu, Rong Wang, Tao Pu, Guodan Sun, Tao Fang, and Jilin Zheng. "A tunable optoelectronic oscillator based on a tunable microwave attenuator." Optical Fiber Technology 19, no. 5 (2013): 383–86. http://dx.doi.org/10.1016/j.yofte.2013.05.004.
Full textHaidar, Jihad, Anne Vilcot, and Michel Bouthinon. "Optically tunable microwave attenuator using a quarter-wave microstrip coupler." Microwave and Optical Technology Letters 10, no. 6 (1995): 313–14. http://dx.doi.org/10.1002/mop.4650100602.
Full textLonghi, Patrick E., Sergio Colangeli, Walter Ciccognani, and Ernesto Limiti. "Improved microwave attenuator topology minimizing the number of control voltages." Microwave and Optical Technology Letters 61, no. 4 (2018): 926–29. http://dx.doi.org/10.1002/mop.31667.
Full textLiu, Lin, Yutang Ye, Yunfeng Wu, Zhenlong Chen, and Yulin Wang. "Study of optically controlled high temperature superconducting microwave variable attenuator." Microwave and Optical Technology Letters 49, no. 7 (2007): 1539–41. http://dx.doi.org/10.1002/mop.22494.
Full textLei, Lin, and Zhi Xiong Ouyang. "Microwave Power Real-Time Soft-Measuring Based on Improved BP Neural Network." Advanced Materials Research 301-303 (July 2011): 902–7. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.902.
Full textZhao, Zizheng, Ling Tong, and Yu Tian. "Design and experiment for high-power microwave attenuator of rectangular waveguide." JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT 24, no. 9 (2010): 842–47. http://dx.doi.org/10.3724/sp.j.1187.2010.00842.
Full textNakano, Hiroshi, and Yoshihiko Kato. "Electrically controlled broadband microwave attenuator with p-i-n diode switches." Review of Scientific Instruments 70, no. 6 (1999): 2864–65. http://dx.doi.org/10.1063/1.1149809.
Full textQuine, Richard W., Mark Tseytlin, Sandra S. Eaton, and Gareth R. Eaton. "A very fast switched-attenuator circuit for microwave and RF applications." Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 37B, no. 2 (2010): 39–44. http://dx.doi.org/10.1002/cmr.b.20157.
Full textFilippov, Ivan. "Phase and Amplitude Control Integrated Circuit in 0.18 μm SiGe BiCMOS for Sub-6 GHz Phased Array Applications". Journal of Integrated Circuits and Systems 16, № 2 (2021): 1–6. http://dx.doi.org/10.29292/jics.v16i2.229.
Full textMONDAL, J. P., A. G. MILNES та J. G. OAKES. "Theoretical analysis for microwave T- and π-type attenuator circuits using MESFETs". International Journal of Electronics 58, № 2 (1985): 231–347. http://dx.doi.org/10.1080/00207218508939019.
Full textSuzuki, Y., T. Ohira, and H. Ogawa. "Voltage-controlled biphase attenuator and vector synthesizer for monolithic microwave signal processors." IEEE Transactions on Microwave Theory and Techniques 46, no. 11 (1998): 1982–85. http://dx.doi.org/10.1109/22.734525.
Full textSherar, M. D., H. Clark, B. Cooper, J. Kumaradas, and F. F. Liu. "A variable microwave array attenuator for use with single-element waveguide applicators." International Journal of Hyperthermia 10, no. 5 (1994): 723–31. http://dx.doi.org/10.3109/02656739409022450.
Full textMurtianta, Budihardja, Deddy Susilo, and Rizky Salenda. "Pemancar Modulasi Frekuensi dengan Modul GRF-3300." Techné : Jurnal Ilmiah Elektroteknika 17, no. 02 (2018): 81–92. http://dx.doi.org/10.31358/techne.v17i02.174.
Full textAdonin, A. S., A. Yu Evgrafov, Yu V. Kolkovskii, and V. M. Minnebaev. "Electromagnetic Modeling of a Monolithic Microwave Integrated Circuit Attenuator on AlGaN/GaN Heterostructures." Russian Microelectronics 50, no. 3 (2021): 197–205. http://dx.doi.org/10.1134/s1063739721020025.
Full textChen, Yong, Peng Duan, Zhi-long Jia, et al. "Fast microwave calibration system for cryogenic device characterization." Journal of Instrumentation 17, no. 11 (2022): P11021. http://dx.doi.org/10.1088/1748-0221/17/11/p11021.
Full textWei, Ming, Ning Chen, Ju Zhou, and Jing Chao Du. "An Auto-Test System Based on VEE for the Improvemet of Target Position Precision." Advanced Materials Research 588-589 (November 2012): 953–56. http://dx.doi.org/10.4028/www.scientific.net/amr.588-589.953.
Full textZhang, Yanchu, and Zhigang Kong. "Effect of Microwave Absorbing Material on the Straight-Through Performance of Millimetre Wave Coaxial Attenuator." Journal of Physics: Conference Series 1622 (September 2020): 012010. http://dx.doi.org/10.1088/1742-6596/1622/1/012010.
Full textSingh, Jasbir, Charanjeet Singh, Yang Bai, et al. "Role of phase, grain morphology and impedance properties in tailoring of Barium Strontium hexaferrites for microwave absorber/attenuator applications." Materials Science and Engineering: B 281 (July 2022): 115679. http://dx.doi.org/10.1016/j.mseb.2022.115679.
Full textSingh, Jasbir, Charanjeet Singh, Yang Bai, et al. "Role of phase, grain morphology and impedance properties in tailoring of Barium Strontium hexaferrites for microwave absorber/attenuator applications." Materials Science and Engineering: B 281 (July 2022): 115679. http://dx.doi.org/10.1016/j.mseb.2022.115679.
Full textSingh, Jasbir, Charanjeet Singh, Yang Bai, et al. "Role of phase, grain morphology and impedance properties in tailoring of Barium Strontium hexaferrites for microwave absorber/attenuator applications." Materials Science and Engineering: B 281 (July 2022): 115679. http://dx.doi.org/10.1016/j.mseb.2022.115679.
Full textMarquez-Segura, Enrique, Sang-Hee Shin, Attique Dawood, Nick M. Ridler, and Stepan Lucyszyn. "Microwave Characterization of Conductive PLA and Its Application to a 12 to 18 GHz 3-D Printed Rotary Vane Attenuator." IEEE Access 9 (2021): 84327–43. http://dx.doi.org/10.1109/access.2021.3087012.
Full textNavas-Guzmán, Francisco, Niklaus Kämpfer, Franziska Schranz, Wolfgang Steinbrecht, and Alexander Haefele. "Intercomparison of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques." Atmospheric Chemistry and Physics 17, no. 22 (2017): 14085–104. http://dx.doi.org/10.5194/acp-17-14085-2017.
Full textBOLLI, P., L. CRESCI, F. HUANG, S. MARIOTTI, and D. PANELLA. "A HIGH TEMPERATURE SUPERCONDUCTOR MICROWAVE FILTER WORKING IN C-BAND FOR THE SARDINIA RADIO TELESCOPE." Journal of Astronomical Instrumentation 03, no. 01 (2014): 1450003. http://dx.doi.org/10.1142/s2251171714500032.
Full textMital, P. Bhushan. "Optically Controlled Microwave Attenuators." Active and Passive Electronic Components 17, no. 4 (1995): 275–82. http://dx.doi.org/10.1155/1995/67190.
Full textБогатов, Н. А., В. С. Сысоев, Д. И. Сухаревский та М. Ю. Наумова. "Микроволновая диагностика разрядов в искусственном облаке заряженных водяных капель". Журнал технической физики 92, № 3 (2022): 386. http://dx.doi.org/10.21883/jtf.2022.03.52133.284-21.
Full textBogatov N. A., Syssoev V.S., Sukharevsky D. I., and Naumova M. Yu. "Microwave diagnostics of electrical discharges in an artificial cloud of charged water drops." Technical Physics 92, no. 3 (2022): 306. http://dx.doi.org/10.21883/tp.2022.03.53260.284-21.
Full textAl-Hartomy, Omar A., Falleh Al-Solamy, Ahmed Al-Ghamdi, Nikolay Dishovsky, Vladimir Iliev, and Farid El-Tantawy. "Dielectric and Microwave Properties of Siloxane Rubber/Carbon Black Nanocomposites and Their Correlation." International Journal of Polymer Science 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/837803.
Full textDjibo, Moumouni, Wendyam Boris Serge Ouedraogo, Ali Doumounia, et al. "ESTIMATION DE LA VISIBILITÉ MÉTÉOROLOGIQUE À L’AIDE DES LIENS MICRO-ONDES COMMERCIAUX DE TÉLÉCOMMUNICATIONS." Journal de Physique de la SOAPHYS 3, no. 1 (2021): C21A03–1—C21A03–4. http://dx.doi.org/10.46411/jpsoaphys.2021.01.03.
Full text