Journal articles on the topic 'Microwave ferrite device'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microwave ferrite device.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhou, Hao Miao, Fang Li, Juan Hu Deng, and Jing Wei. "The Electric Field Tuning Characteristics in the Strain-Mediated Ferrite-Piezoelectric Laminated Magnetoelectric Microwave Devices." Advanced Materials Research 571 (September 2012): 569–73. http://dx.doi.org/10.4028/www.scientific.net/amr.571.569.
Full textSingh, Lovdeep, Jagjeet Malhotra, Charanjeet Singh, S. Bindra Narang, and Madhu Chandra. "Investigation of microwave and electrical characteristics of Co–Zr substituted M-type Ba–Sr hexagonal ferrite." Materials Science-Poland 33, no. 2 (2015): 335–39. http://dx.doi.org/10.1515/msp-2015-0051.
Full textSharma, Rohit, Prashant Thakur, Pankaj Sharma, and Vineet Sharma. "Mn2+ Doped Mg–Zn Ferrite Nanoparticles for Microwave Device Applications." IEEE Electron Device Letters 39, no. 6 (2018): 901–4. http://dx.doi.org/10.1109/led.2018.2829926.
Full textSavu, Sorin Vasile. "Microwave Differential Thermal Analysis Technique of the Fe2O3+BaCO3 Homogeneous Mixture." Advanced Materials Research 1036 (October 2014): 24–29. http://dx.doi.org/10.4028/www.scientific.net/amr.1036.24.
Full textMonzon, Cesar. "A non-structured subwavelength near-field microwave lens." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2114 (2009): 539–48. http://dx.doi.org/10.1098/rspa.2009.0381.
Full textYEH, W. J., A. R. ABUZIR, and R. PETRUS. "FABRICATION OF PERPENDICULAR BA-FERRITE FILMS BY MAGNETRON SPUTTERING WITH IN SITU PROCESS." International Journal of Modern Physics B 19, no. 01n03 (2005): 559–61. http://dx.doi.org/10.1142/s0217979205029031.
Full textWagner, Dmitry V., Olga Dotsenko, and Olga A. Ulyanova. "Electromagnetic Properties of W – Hexaferrites Composites with Magnetic Texture." Advanced Materials Research 1040 (September 2014): 29–33. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.29.
Full textHasan, Intan Helina, Mohd Nizar Hamidon, Alyani Ismail, et al. "Nickel zinc ferrite thick film with linseed oil as organic vehicle for microwave device applications." Materials Chemistry and Physics 236 (October 2019): 121790. http://dx.doi.org/10.1016/j.matchemphys.2019.121790.
Full textJalli, Jeevan, Yang-Ki Hong, Seok Bae та ін. "Growth and characterization of 144 μm thick barium ferrite single crystalline film for microwave device application". Journal of Applied Physics 105, № 7 (2009): 07A511. http://dx.doi.org/10.1063/1.3062824.
Full textWang, Yu, Yingli Liu, Jie Li, Qian Liu, Huaiwu Zhang, and Vincent G. Harris. "LTCC processed CoTi substituted M-type barium ferrite composite with BBSZ glass powder additives for microwave device applications." AIP Advances 6, no. 5 (2016): 056410. http://dx.doi.org/10.1063/1.4945041.
Full textPENCHAL REDDY, M., M. VENKATA RAMANA, N. RAMA MANOHAR REDDY, et al. "STRUCTURAL, ELECTRICAL AND MAGNETIC CHARACTERIZATION OF Ni–Cu–Zn SPINEL FERRITES." Modern Physics Letters B 25, no. 03 (2011): 211–22. http://dx.doi.org/10.1142/s0217984911025626.
Full textPolevoy, S., G. Kharchenko, S. Tarapov, et al. "A magnetoactive metamaterial based on a structured ferrite." RADIOFIZIKA I ELEKTRONIKA 26, no. 1 (2021): 28–34. http://dx.doi.org/10.15407/rej2021.01.028.
Full textDar, M. Abdullah, Kowsar Majid, Mohd Hanief Najar, R. K. Kotnala, and Jyoti Shah. "Synthesis and characterization of Li 0.5 Fe 2.5-x Gd x O 4 ferrite nano-particles as a potential candidate for microwave device applications." Materials & Design 90 (January 2016): 443–52. http://dx.doi.org/10.1016/j.matdes.2015.10.151.
Full textJain, K. K., and Pran Kishan. "Microwave Ferrite Devices." IETE Technical Review 14, no. 6 (1997): 373–86. http://dx.doi.org/10.1080/02564602.1997.11416700.
Full textDarwish, Moustafa A., Alex V. Trukhanov, Oleg S. Senatov, et al. "Investigation of AC-Measurements of Epoxy/Ferrite Composites." Nanomaterials 10, no. 3 (2020): 492. http://dx.doi.org/10.3390/nano10030492.
Full textRen, Gui Hua, and Zhi Song Yu. "Synthesis of Monodisperse Fe3O4 and MnFe2O4 Nanospheres by Using a Solvothermal Reduction Method." Solid State Phenomena 181-182 (November 2011): 393–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.181-182.393.
Full textZezyulina, Polina A., Dmitry A. Petrov, Konstantin N. Rozanov, et al. "Study of the Static and Microwave Magnetic Properties of Nanostructured BaFe12−xTixO19." Coatings 10, no. 8 (2020): 789. http://dx.doi.org/10.3390/coatings10080789.
Full textTatarenko, Alexander, Darya Snisarenko, and Mirza Bichurin. "Modeling of magnetoelectric microwave devices." Facta universitatis - series: Electronics and Energetics 30, no. 3 (2017): 285–93. http://dx.doi.org/10.2298/fuee1703285t.
Full textTatarenko, A. S., and M. I. Bichurin. "Microwave Magnetoelectric Devices." Advances in Condensed Matter Physics 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/286562.
Full textMallmann, E. J. J., A. S. B. Sombra, J. C. Goes, and P. B. A. Fechine. "Yttrium Iron Garnet: Properties and Applications Review." Solid State Phenomena 202 (May 2013): 65–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.202.65.
Full textRodrigue, G. P. "A generation of microwave ferrite devices." Proceedings of the IEEE 76, no. 2 (1988): 121–37. http://dx.doi.org/10.1109/5.4389.
Full textPereira, F. M. M., and A. S. B. Sombra. "A Review on BaxSr1-xFe12O19 Hexagonal Ferrites for use in Electronic Devices." Solid State Phenomena 202 (May 2013): 1–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.202.1.
Full textSINGH, M., and S. P. SUD. "Mg–Mn–Al FERRITES FOR HIGH FREQUENCY APPLICATIONS." Modern Physics Letters B 14, no. 14 (2000): 531–37. http://dx.doi.org/10.1142/s0217984900000677.
Full textYao, Mouteng, Yaojin Li, Bian Tian, et al. "Freestanding single-crystal Ni0.5Zn0.5Fe2O4 ferrite membranes with controllable enhanced magnetic properties for flexible RF/microwave applications." Journal of Materials Chemistry C 8, no. 47 (2020): 17099–106. http://dx.doi.org/10.1039/d0tc04342g.
Full textSchloemann, Ernst. "Advances in ferrite microwave materials and devices." Journal of Magnetism and Magnetic Materials 209, no. 1-3 (2000): 15–20. http://dx.doi.org/10.1016/s0304-8853(99)00635-6.
Full textDionne, G. F., D. E. Oates, D. H. Temme, and J. A. Weiss. "Ferrite-superconductor devices for advanced microwave applications." IEEE Transactions on Microwave Theory and Techniques 44, no. 7 (1996): 1361–68. http://dx.doi.org/10.1109/22.508241.
Full textChizhov, V. V., A. A. Zvyagintsev, and A. V. Strizhachenko. "Checking of Ferrite Element Parameters in Microwave Devices." Telecommunications and Radio Engineering 68, no. 15 (2009): 1361–67. http://dx.doi.org/10.1615/telecomradeng.v68.i15.50.
Full textGlass, H. L. "Ferrite films for microwave and millimeter-wave devices." Proceedings of the IEEE 76, no. 2 (1988): 151–58. http://dx.doi.org/10.1109/5.4391.
Full textKuanr, Bijoy K., V. Veerakumar, K. Lingam, et al. "Size dependent microwave properties of ferrite nanoparticles: Application to microwave devices." Journal of Applied Physics 105, no. 7 (2009): 07B522. http://dx.doi.org/10.1063/1.3073836.
Full textIonescu, Daniela, and Gabriela Apreotesei. "Wave absorption control in the new designed photonic metamaterials with artificial opal." MATEC Web of Conferences 178 (2018): 04004. http://dx.doi.org/10.1051/matecconf/201817804004.
Full textQassym, Lilia, Gérard Cibien, Richard Lebourgeois, Gilles Martin, and Dorothée Colson. "New Ferrimagnetic Garnets for LTCC-Technology Circulators." Journal of Microelectronics and Electronic Packaging 14, no. 2 (2017): 51–55. http://dx.doi.org/10.4071/imaps.358290.
Full textQassym, Lilia, Gérard Cibien, Richard Lebourgeois, Gilles Martin, and Dorothée Colson. "New ferrimagnetic garnets for LTCC-technology circulators." International Symposium on Microelectronics 2016, no. 1 (2016): 000586–90. http://dx.doi.org/10.4071/isom-2016-thp24.
Full textDiniz, Verônica C. S., Débora A. Vieira, Ruth Herta Goldsmith Aliaga Kiminami, Daniel Cornejo, and Ana Cristina Figueiredo de Melo Costa. "Sintering of Ni-Zn Ferrite by Microwave Energy." Materials Science Forum 727-728 (August 2012): 977–81. http://dx.doi.org/10.4028/www.scientific.net/msf.727-728.977.
Full textSaita, Hitoshi, Yi Fang, Atsuyuki Nakano, et al. "Microwave Sintering Study of NiCuZn Ferrite Ceramics and Devices." Japanese Journal of Applied Physics 41, Part 1, No. 1 (2002): 86–92. http://dx.doi.org/10.1143/jjap.41.86.
Full textBobyl, A., R. Suris, S. Karmanenko, et al. "The ferrite/superconductor layered structure for tunable microwave devices." Physica C: Superconductivity 372-376 (August 2002): 508–10. http://dx.doi.org/10.1016/s0921-4534(02)00734-7.
Full textBagdasarian, Alexander, Mikhail Samoylovich, Alpik Mkrtchyan, et al. "Technology of Synthesis of Opal Matrix Metamaterials." Advanced Materials Research 1084 (January 2015): 58–60. http://dx.doi.org/10.4028/www.scientific.net/amr.1084.58.
Full textSilva Neto, Lauro Paulo, J. O. Rossi, P. A. G. Dias, and J. J. Barroso. "Frequency Characterization of Ferrite Beads in the Microwave Range for Nonlinear Applications." Materials Science Forum 802 (December 2014): 552–57. http://dx.doi.org/10.4028/www.scientific.net/msf.802.552.
Full textAnwar, Asima, Muhammad Asif Yousuf, Bashir Tahir, et al. "New Er3+-substituted NiFe2O4 Nanoparticles and their Nano-heterostructures with Graphene for Visible Light-Driven Photo-catalysis and other Potential Applications." Current Nanoscience 15, no. 3 (2019): 267–78. http://dx.doi.org/10.2174/1573413714666180911101337.
Full textZhou, Hao Miao, Qing Chen, Juan Hu Deng, and Ying Xiao. "Theoretical Model of Electric Field Tunable FMR Frequency of Magnetoelectric Tri-Layered Structure." Applied Mechanics and Materials 303-306 (February 2013): 16–21. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.16.
Full textLiu, Ming, and Nian X. Sun. "Voltage control of magnetism in multiferroic heterostructures." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2009 (2014): 20120439. http://dx.doi.org/10.1098/rsta.2012.0439.
Full textRoohani, Ebrahim, Hadi Arabi, and Reza Sarhaddi. "Influence of nickel substitution on crystal structure and magnetic properties of strontium ferrite preparation via sol-gel auto-combustion route." International Journal of Modern Physics B 32, no. 01 (2018): 1750271. http://dx.doi.org/10.1142/s021797921750271x.
Full textBorodin, Vladimir N., Valery A. Kozlov, Evgeny A. Mikhalitsyn, and Alexander V. Sorokin. "Computer aided design of ferrite lumped element circulators." Physics of Wave Processes and Radio Systems 23, no. 4 (2021): 74–84. http://dx.doi.org/10.18469/1810-3189.2020.23.4.74-84.
Full textQindeel, Rabia, Norah H. Alonizan, Eman A. Alghamdi, and Manal A. Awad. "Synthesis and characterization of spinel ferrites for microwave devices." Journal of Sol-Gel Science and Technology 97, no. 3 (2021): 593–99. http://dx.doi.org/10.1007/s10971-021-05470-9.
Full textBHATTACHARYYA, AMITAVA, and MANGALA JOSHI. "CO-DEPOSITION OF IRON AND NICKEL ON NANOGRAPHITE FOR MICROWAVE ABSORPTION THROUGH FLUIDIZED BED ELECTROLYSIS." International Journal of Nanoscience 10, no. 04n05 (2011): 1125–30. http://dx.doi.org/10.1142/s0219581x11009490.
Full textLee, Jin‐Fa, and Raj Mittra. "Analysis of microwave ferrite devices by using the finite‐element method." Journal of Applied Physics 69, no. 8 (1991): 5032–34. http://dx.doi.org/10.1063/1.348167.
Full textDas, Jaydip, Boris A. Kalinikos, Arkajit Roy Barman, and Carl E. Patton. "Multifunctional dual-tunable low loss ferrite-ferroelctric heterostructures for microwave devices." Applied Physics Letters 91, no. 17 (2007): 172516. http://dx.doi.org/10.1063/1.2802577.
Full textPlonis, Darius. "GYROTROPIC WAVEGUIDES ANALYSIS." Mokslas - Lietuvos ateitis 2, no. 1 (2010): 117–21. http://dx.doi.org/10.3846/mla.2010.026.
Full textSchloemann, E. "Radiation loss in microwave devices based on easy-plane ferrites." IEEE Transactions on Magnetics 37, no. 4 (2001): 2386–88. http://dx.doi.org/10.1109/20.951180.
Full textAfsar, Mohammed N., and Wei Quan. "Nano-Size Hexagonal Ferrites for Microwave and Millimeter-Wave Devices." IEEE Transactions on Magnetics 56, no. 4 (2020): 1–9. http://dx.doi.org/10.1109/tmag.2019.2962040.
Full textWang, Yunqi, Flynn Castles, and Patrick S. Grant. "3D Printing of NiZn ferrite/ABS Magnetic Composites for Electromagnetic Devices." MRS Proceedings 1788 (2015): 29–35. http://dx.doi.org/10.1557/opl.2015.661.
Full text