Academic literature on the topic 'Microwave measurement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microwave measurement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microwave measurement"
Matveev, V. I. "MICROWAVE MOISTURE MEASUREMENT." Kontrol'. Diagnostika, no. 288 (June 2022): 18–22. http://dx.doi.org/10.14489/td.2022.06.pp.018-022.
Full textBartoli, Frediani, Briens, Berruti, and Rosi. "An Overview of Temperature Issues in Microwave-Assisted Pyrolysis." Processes 7, no. 10 (September 26, 2019): 658. http://dx.doi.org/10.3390/pr7100658.
Full textVelychko, Oleh, Valentyn Gaman, and Serhii Kursin. "Calibration features for power meters of high and microwave frequencies." Ukrainian Metrological Journal, no. 2 (June 30, 2022): 9–14. http://dx.doi.org/10.24027/2306-7039.2.2022.263724.
Full textPang, Shao Feng, Yan Chen, Ming Quan Jia, and Ling Tong. "Indoor Microwave Scattering Properties Measurement and Study of Soil." Key Engineering Materials 500 (January 2012): 403–8. http://dx.doi.org/10.4028/www.scientific.net/kem.500.403.
Full textShaw, Brian M. "Book Review: Microwave Measurement." International Journal of Electrical Engineering & Education 24, no. 3 (July 1987): 285–86. http://dx.doi.org/10.1177/002072098702400325.
Full textSong, Shijie, Xiaoke Yi, Lu Gan, Wenjian Yang, Linh Nguyen, Suen Chew, Liwei Li, and Robert Minasian. "Photonic-Assisted Scanning Receivers for Microwave Frequency Measurement." Applied Sciences 9, no. 2 (January 17, 2019): 328. http://dx.doi.org/10.3390/app9020328.
Full textKahrs, Mark. "Patents in Microwave Measurement: Measurement Connectors [Tidbits]." IEEE Microwave Magazine 23, no. 9 (September 2022): 23–26. http://dx.doi.org/10.1109/mmm.2022.3180152.
Full textNowak, D., M. Stachowicz, K. Granat, and M. Pigiel. "Microwave Absorption by Used Moulding and Core Sands." Archives of Foundry Engineering 12, no. 3 (September 1, 2012): 87–90. http://dx.doi.org/10.2478/v10266-012-0087-9.
Full textKrupka, Jerzy. "Microwave Measurements of Electromagnetic Properties of Materials." Materials 14, no. 17 (September 6, 2021): 5097. http://dx.doi.org/10.3390/ma14175097.
Full textBai, Jingxu, Jiabei Fan, Liping Hao, Nicholas L. R. Spong, Yuechun Jiao, and Jianming Zhao. "Measurement of the Near Field Distribution of a Microwave Horn Using a Resonant Atomic Probe." Applied Sciences 9, no. 22 (November 14, 2019): 4895. http://dx.doi.org/10.3390/app9224895.
Full textDissertations / Theses on the topic "Microwave measurement"
Khattak, Muhammad I. "Microwave measurement techniques for wearable antennas." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6454.
Full textGau, Jiahn-Rong J. "Microwave absorber analysis, design and measurement /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487859313347128.
Full textWilliams, Wyman L. Rutledge David B. Rutledge David B. "Computer-aided measurement of microwave circuits /." Diss., Pasadena, Calif. : California Institute of Technology, 1989. http://resolver.caltech.edu/CaltechETD:etd-02162007-080706.
Full textGuler, Michael George. "Spherical microwave holography." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/15055.
Full textDevaraj, Kiruthika. "The centimeter- and millimeter-wavelength ammonia absorption spectra under jovian conditions." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42806.
Full textStatz, C., J. Küttner, D. Plettemeier, and Thomas Herlitzius. "SEBIMO - Microwave-based Measurement of Soil Parameters." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-229895.
Full textMercer, Sean R. "Online microwave measurement of complex dielectric constant." Doctoral thesis, University of Cape Town, 1990. http://hdl.handle.net/11427/8342.
Full textThis dissertation examines the problem of on-line measurement of complex dielectric constant for the purpose of dielectric discrimination or product evaluation using microwave techniques. Various methods of signal/sample interaction were studied and consideration was given to the problem of sorting irregularly shaped discrete samples. The use of microwave transmission and reflection measurements was evaluated. The signal reflection methods were deemed to be best suited to applications with constant geometry feed presentation ( ie. a continuous, homogeneous product stream with little variation in surface geometry).
Isa, Maryam Binte Mohd. "Microwave radar sensor for solid flow measurement." Thesis, University of Manchester, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488369.
Full textLouw, Willem J. "Microwave heating of multiphase materials : modelling and measurement." Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/21217.
Full textENGLISH ABSTRACT: Both coaxial probe and waveguide (WG) measurement systems for electric and magnetic material property extraction were investigated. These measurement techniques were used to determine electrical properties of an inhomogeneous rock sample in its solid and crushed states. A lumped element model of the probe was used and permittivity was determined by the inversion algorithm developed by Stuchly and Stuchly. To support this technique it was compared to a full wave inversion algorithm and referenced to properties of the same samples but determined by a resonant cavity technique. The Nicholson, Ross and Weir inversion algorithm was used to determine material properties from WG measurements. As a reference, the same techniques were applied to a well defined material. It was found that neither of the measurement techniques could measure low loss factors or conductive materials and literature values were used in these cases. Various simulation models of the multiphase ore in both its solid and crushed states are presented. These models were utilised in finite-difference time-domain (FDTD) simulations of different microwave (MW) cavities. Simulation and experimental S-parameter comparisons are presented. The level of accuracy achieved varies as a function of the geometrical representation and material properties. After an S-parameter comparison with simulation results it was concluded that the electrical properties of both the solid and crushed rocks have been well determined for MW cavity design. Predicted and measured field distributions in cavities were also compared and it is shown that accurate models of multiphase materials become especially important in the determination of field distributions in and around different rock phases. Recommendations for the suggested material property determination and verification processes are presented. A specific application of this work is in the field of microwave assisted comminution.
AFRIKAANSE OPSOMMING: ’n Koaksiale probe en golfgeleier (WG) stelsels vir die bepaling van materiaal eienskappe (elektries en magneties) word gebruik met die doel om ’n nie-homogene rotsmonster te karakteriseer. Die ekstraksie algoritme van Stuchly en Stuchly word gebruik om die materiaal eienskappe te bepaal vanaf die gemete S11-parameter. Hierdie ekstraksie metode word vergelyk met ’n vol golf ekstraksie van permitiwiteit vanaf dieselfde gemete data. Beide die ekstraksie metodes word dan vergelyk met resonante holte meetings van dieselfde materiale. Die Nicholson, Ross en Weir ekstraksie algoritme word toegepas op meetings wat gedoen is deur die golfgeleier stelsel. As ’n verwysing word dieselfde tegnieke toegepas op ’n bekende materiaal en daar is gevind dit stem goed ooreen behalwe dat nie een van die twee meet tegnieke lae verlies faktore kan meet nie. Verder kan nie een van die twee sisteme geleidende materiale meet nie. Vir sulke gevalle is waardes nageslaan. Verskeie simulasiemodelle van die rots word voorgestel vir beide soliede en vergruisde monsters. Hierdie modelle word gebruik in FDTD simulasies van verskeie mikrogolftoevoegers met die oog om ’n vergelyking te tref tussen gesimuleerde en gemete S-parameters. Verskillende vlakke van akkuraatheid is bereik en is ’n funksie van die geometrie en die materiaaleienskappe van die model. Nadat gemete en gesimuleerde S-parameters vergelyk is, is gevind dat die materiaal eienskappe van beide die soliede en vergruisde rots monsters goed bepaal is vir mikrogo lf toevoeger ontwerp. Voorspelde en gemete veldverspreidings word ook vergelyk en dit is veral hierso van belang om ’n realistiese model van die nie-homogene monster te gebruik. Sekere voorstelle word gemaak om die verskillende aspekte van die meet van ma teriaaleienskappe en simulasiemodelle te kan verfyn. ’n Spesifieke toepassing van hierdie werk is in mikrogolf ondersteunde skeiding van minerale en erts.
Amiet, Andrew. "Free space permittivity and permeability measurements at microwave frequencies." Monash University, Dept. of Electrical and Computer Systems Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/9529.
Full textBooks on the topic "Microwave measurement"
E, Bailey A., Institution of Electrical Engineers, and IEE Vacation School on Microwave Measurements (1985 : University of Kent at Canterbury), eds. Microwave measurement. London, UK: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1985.
Find full textD, Hunter J., and Institution of Electrical Engineers, eds. Microwave impedance measurement. London, UK: P. Peregrinus Ltd on behalf of the Institution of Electrical Engineers, 1985.
Find full textRadio frequency & microwave power measurement. London, U.K: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1990.
Find full textDouglas, Skinner A., and Institution of Engineering and Technology, eds. Microwave measurements. 3rd ed. London: Institution of Engineering and Technology, 2007.
Find full textWorkshop-cum-Symposium on Microwave Measurement Techniques and Applications (2002 Jawaharlal Nehru University). Microwave measurement techniques and applications. Edited by Behari Jitendra. New Delhi: Anamaya Publishers, 2003.
Find full textTeppati, Valeria, Andrea Ferrero, and Mohamed Sayed, eds. Modern RF and Microwave Measurement Techniques. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9781139567626.
Full textLinfeng, Chen, ed. Microwave electronics: Measurement and materials characterisation. Chichester: John Wiley, 2004.
Find full textChen, Lin-Feng. Microwave electronics: Measurement and materials characterisation. New York: John Wiley & Sons, 2004.
Find full textNational Institute of Standards and Technology (U.S.), ed. Power measurement system for 1 mW at 1 GHz. Boulder, Colo: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1991.
Find full textBook chapters on the topic "Microwave measurement"
Ida, N. "Microwave Measurement Techniques." In Microwave NDT, 152–70. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2739-4_5.
Full textDubey, SatyaKesh, Naina Narang, Parmendra Singh Negi, and Vijay Narain Ojha. "Microwave Measurement Systems." In SpringerBriefs in Electrical and Computer Engineering, 11–24. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6280-3_3.
Full textKlein, Norbert. "Microwave Properties and Measurement Techniques." In Polar Oxides, 99–118. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527604650.ch5.
Full textChaturvedi, Prakash Kumar. "Microwave Measurement: Instruments and Techniques." In Microwave, Radar & RF Engineering, 271–95. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7965-8_7.
Full textNeumeyer, B. "Comparison of Different S-Parameter Measurement Systems in the MM-Wave Range." In Microwave Applications, 71–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83157-7_8.
Full textKarmakar, Nemai Chandra, Yang Yang, and Abdur Rahim. "Correlation Coefficient Measurement for WBAN Channels." In Microwave Sleep Apnoea Monitoring, 213–26. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6901-7_11.
Full textMurthy, V. R. K. "Methods of Measurement of Dielectric Constant and Loss in the Microwave Frequency Region." In Microwave Materials, 100–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-08740-4_4.
Full textAntipov, Sergey A. "Microwave Measurement of the Cloud Density." In Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets, 37–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02408-6_3.
Full textMichaelson, Sol M., and James C. Lin. "Radio and Microwave Dosimetry and Measurement." In Biological Effects and Health Implications of Radiofrequency Radiation, 47–91. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-4614-3_3.
Full textXiao, F., Zhao Xian Xiong, X. Y. Dong, and G. S. Yang. "Automatic Multimode Measurement for Microwave Ceramics." In High-Performance Ceramics V, 195–97. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.195.
Full textConference papers on the topic "Microwave measurement"
"Electromagnetic measurements. Microwave measurement." In 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2017. http://dx.doi.org/10.1109/rsemw.2017.8103683.
Full textGlibitskiy, Gennadiy M. "Microwave measurement receiver." In Millimeter and Submillimeter Waves and Applications: International Conference, edited by Mohammed N. Afsar. SPIE, 1994. http://dx.doi.org/10.1117/12.183011.
Full textGrzybowski, Richard, George Foyt, Hartwig Knoell, William Atkinson, and Josef Wenger. "Microwave Blade Tip Clearance Measurement System." In ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-002.
Full textGlibitzki, G. M. "The microwave measurement receiver." In International Conference on Millimeter and Submillimeter Waves and Applications 1994. SPIE, 2017. http://dx.doi.org/10.1117/12.2303287.
Full textHatfield, Lynn L., and Bryan Schilder. "Microwave shielding measurement method." In 2009 IEEE Pulsed Power Conference (PPC). IEEE, 2009. http://dx.doi.org/10.1109/ppc.2009.5386414.
Full textZvyagintsev, A. O., A. I. Ivanov, S. A. Pogarsky, A. V. Strizhachenko, and V. V. Chizhov. "Multifunctional microwave measurement system." In 2003 13th International Crimean Conference 'Microwave and Telecommunication Technology' Conference Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/crmico.2003.158977.
Full textThalayasingam, Kokulathasan, and Holger Heuermann. "Novel vector non-linear measurement system for intermodulation measurements." In 2009 European Microwave Conference (EuMC). IEEE, 2009. http://dx.doi.org/10.23919/eumc.2009.5296011.
Full textWeissl, T., S. W. Jolin, and D. B. Haviland. "Quantum correlations in microwave frequency combs." In Quantum Information and Measurement. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qf5a.3.
Full textZuber, Simon, Marcel Joss, S. Tresch, and M. Kleingries. "Dynamic optimization of the transmission efficiency between the solid state microwave sources and the microwave applicator." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7412.
Full textLi, Yihan, Naoya Kuse, and Martin E. Fermann. "Photonic-assisted Wideband Microwave Measurement." In 2018 IEEE/MTT-S International Microwave Symposium - IMS 2018. IEEE, 2018. http://dx.doi.org/10.1109/mwsym.2018.8439585.
Full textReports on the topic "Microwave measurement"
King, R. J. Wide spectrum microwave pulse measurement. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6028011.
Full textWang, Kang. Nonlinear Microwave Power and Noise Measurement and Analysis Facility. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada394360.
Full textSun, Ding, Dave McGinnis, and /Fermilab. Measurement and Simulation Results of Ti Coated Microwave Absorber. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/984636.
Full textE. Mazzucato. Microwave Imaging Reflectometry for the Measurement of Turbulent Fluctuations in Tokamaks. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/821811.
Full textHe, Rui, Na (Luna) Lu, and Jan Olek. Development of In-Situ Sensing Method for the Monitoring of Water-Cement (w/c) Values and the Effectiveness of Curing Concrete. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317377.
Full textAsher, William E. Field Measurement of the Effects of Foam and Roughness on Microwave Emissivity. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada623705.
Full textLevin, S. M. A measurement of the low frequency spectrum of the cosmic microwave background radiation. Office of Scientific and Technical Information (OSTI), April 1987. http://dx.doi.org/10.2172/6463884.
Full textBolton, P. R. Measurement and deconvolution of detector response time for short HPM pulses: Part 1, Microwave diodes. Office of Scientific and Technical Information (OSTI), June 1987. http://dx.doi.org/10.2172/6289252.
Full textSchamiloglu, Edl, and Frank Hegeler. Refined Measurement and Signal Analysis Techniques in Vacuum and Plasma-Filled High Power Microwave Sources. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada378843.
Full textDuda, L. E. User manual for CSP{_}VANA: A check standards measurement and database program for microwave network analyzers. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/541945.
Full text