Academic literature on the topic 'Microwave metamaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microwave metamaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microwave metamaterials"
Ruvio, Giuseppe. "State-of-the-art of Metamaterials: Characterization, Realization and Applications." Studies in Engineering and Technology 1, no. 2 (2014): 38. http://dx.doi.org/10.11114/set.v1i2.456.
Full textDatta, Srijan, Saptarshi Mukherjee, Xiaodong Shi, et al. "Negative Index Metamaterial Lens for Subwavelength Microwave Detection." Sensors 21, no. 14 (2021): 4782. http://dx.doi.org/10.3390/s21144782.
Full textIvanov, Andrei V., V. Yu Galkin, V. A. Ivanov, et al. "Metamaterials Fabricated of Amorphous Ferromagnetic Microwires: Negative Microwave Permeability." Solid State Phenomena 152-153 (April 2009): 333–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.152-153.333.
Full textTan, Plum, and Singh. "Surface Lattice Resonances in THz Metamaterials." Photonics 6, no. 3 (2019): 75. http://dx.doi.org/10.3390/photonics6030075.
Full textKarimi Mahabadi, Rayehe, Taha Goudarzi, Romain Fleury, Bakhtiyar Orazbayev, and Reza Naghdabadi. "Effect of mechanical nonlinearity on the electromagnetic response of a microwave tunable metamaterial." Journal of Physics D: Applied Physics 55, no. 20 (2022): 205102. http://dx.doi.org/10.1088/1361-6463/ac5209.
Full textCui, Tie Jun. "Microwave metamaterials." National Science Review 5, no. 2 (2017): 134–36. http://dx.doi.org/10.1093/nsr/nwx133.
Full textChen, Tianyi, Wenxuan Tang, Jing Mu, and Tie Jun Cui. "Microwave Metamaterials." Annalen der Physik 531, no. 8 (2019): 1800445. http://dx.doi.org/10.1002/andp.201800445.
Full textGhezzo, Fabrizia, Xiang Yi, Xi Geng Miao, Chun Lin Ji, and Ruo Peng Liu. "Broadband Microwave Transmission Achieved by Using Engineered Sandwich Materials." Advanced Materials Research 915-916 (April 2014): 493–97. http://dx.doi.org/10.4028/www.scientific.net/amr.915-916.493.
Full textSikder, Sunbeam Islam, Rashed Iqbal Faruque Mohammad, and Tariqul Islam Mohammad. "A New Double Negative Metamaterial for C-Band Microwave Applications." Advanced Materials Research 974 (June 2014): 33–37. http://dx.doi.org/10.4028/www.scientific.net/amr.974.33.
Full textAmalia, Riska, Defrianto Defrianto, Yan Soerbakti, Vepy Asyana, and Hewa Yaseen Abdullah. "Simulation and analysis of triangular structure metamaterial properties at microwave frequencies for medical sensor applications." Science, Technology and Communication Journal 5, no. 1 (2024): 15–20. https://doi.org/10.59190/stc.v5i1.286.
Full textDissertations / Theses on the topic "Microwave metamaterials"
Pengle, Jia. "Developing a Compact Microwave Filter Using Metamaterials." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-13848.
Full textButler, Celia A. M. "The microwave response of square mesh metamaterials." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/3596.
Full textПрокопчук, Ольга Володимирівна, Ольга Владимировна Прокопчук, and Olha Volodymyrivna Prokopchuk. "Metamaterials and their application in microwave technology." Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46853.
Full textDockrey, Joseph Anthony. "Manipulation of Microwave Surface Waves Supported on Metamaterials." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18152.
Full textAlburaikan, Abdullah. "Metamaterial structure inspired miniature RF/microwave filters." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/metamaterial-structure-inspired-miniature-rfmicrowave-filters(5e1dee93-038a-42ef-99ad-669ecc4b4763).html.
Full textTremain, Benjamin James. "The microwave response of metasurfaces." Thesis, University of Exeter, 2016. http://hdl.handle.net/10871/24304.
Full textSchwanecke, Alexander Sven. "Novel phenomena in planar and layered, photonic and microwave metamaterials." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/340845/.
Full textEkmekci, Evren. "Design, Fabrication And Characterization Of Novel Metamaterials In Microwave And Terahertz Regions: Multi-band, Frequency-tunable And Miniaturized Structures." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612730/index.pdf.
Full textKafaratzis, Andreas. "Tunable and nonlinear RF/microwave circuits based on left-handed metamaterials." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496239.
Full textLai, Anthony. "One- and two-dimensional microwave devices based on left-handed metamaterials." Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1481670071&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textBooks on the topic "Microwave metamaterials"
Caloz, Christophe, and Tatsuo Itoh. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471754323.
Full textMarqués, Ricardo. Metamaterials with negative parameter: Theory, design and microwave applications. John Wiley, 2007.
Find full textSzoplik, Tomasz. Metamaterials II: 16-18 April, 2007, Prague, Czech Republic. Edited by SPIE Europe, Society of Photo-optical Instrumentation Engineers. Czech Republic Chapter, and Society of Photo-optical Instrumentation Engineers. SPIE, 2007.
Find full textCaloz, Christophe. Electromagnetic metamaterials: Transmission line theory and microwave applications : the engineering approach. John Wiley & Sons, 2006.
Find full textCaloz, Christophe. Electromagnetic metamaterials: Transmission line theory and microwave applications : the engineering approach. Wiley-Interscience, 2004.
Find full textCalif.) Metamaterials: Fundamentals and Applications VI (Conference) (6th 2013 San Diego. Metamaterials: Fundamentals and Applications VI: 25-29 August 2013, San Diego, California, United States. Edited by Boardman A. D, Engheta N. (Nader), Noginov Mikhail A, Zheludev Nikolay I, and SPIE (Society). SPIE, 2013.
Find full textMaasch, Matthias. Tunable Microwave Metamaterial Structures. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28179-7.
Full textTariqul Islam, Mohammad. Metamaterial for Microwave Applications. CRC Press, 2023. http://dx.doi.org/10.1201/9781003358152.
Full text1957-, Shalaev Vladimir M., ed. Optical metamaterials: Fundamentals and applications. Springer, 2010.
Find full textBozzi, Maurizlo, and Luca Perregrini. Periodic structures 2006. Research Signpost, 2006.
Find full textBook chapters on the topic "Microwave metamaterials"
Cheng, Qiang, X. M. Yang, H. F. Ma, et al. "Experiments and Applications of Metamaterials in Microwave Regime." In Metamaterials. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0573-4_14.
Full textRybin, Oleg. "The Principle of Miniaturization of Microwave Patch Antennas." In Metamaterials. CRC Press, 2021. http://dx.doi.org/10.1201/9781003050162-12.
Full textSingh, Amit K., Mahesh P. Abegaonkar, and Shiban Kishen Koul. "Microwave Metamaterial Absorbers." In Metamaterials for Antenna Applications. CRC Press, 2021. http://dx.doi.org/10.1201/9781003045885-7.
Full textMaasch, Matthias. "Tunable Transmission Line Metamaterials." In Tunable Microwave Metamaterial Structures. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28179-7_5.
Full textIslam, Mohammad Tariqul, and Md Atiqur Rahman. "Flexible Metamaterials for Microwave Application." In Metamaterial for Microwave Applications. CRC Press, 2023. http://dx.doi.org/10.1201/9781003358152-6.
Full textLi, Le-Wei, Ya-Nan Li, and Li Hu. "Wideband and Low-Loss Metamaterials for Microwave and RF Applications: Fast Algorithm and Antenna Design." In Metamaterials. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0573-4_13.
Full textGande, Arun Kumar, and Gopi Ram. "Metamaterial Based Microwave Coupler Design." In Metamaterials Science and Technology. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6441-0_27.
Full textGande, Arun Kumar, and Gopi Ram. "Metamaterial Based Microwave Coupler Design." In Metamaterials Science and Technology. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-15-8597-5_27-1.
Full textSwain, Rajanikanta. "Metasurfaces for Transforming Microwave Antenna Performance." In Metamaterials Science and Technology. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-13-0261-9_44-1.
Full textSwain, Rajanikanta. "Metasurfaces for Transforming Microwave Antenna Performance." In Metamaterials Science and Technology. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-19-0716-6_44.
Full textConference papers on the topic "Microwave metamaterials"
Keshavarz, Rasool, Negin Shariati, Mohammad-Ali Miri, and Kevin Zelaya. "Microstrip arrayed lines lens for microwave beam steering." In Metamaterials, Metadevices, and Metasystems 2024, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2024. http://dx.doi.org/10.1117/12.3027786.
Full textDidenko, Yurii, Anatolii Orlov, Dmytro Tatarchuk, and Yuriy Poplavko. "Metamaterials for Microwave Absorption and Reflection Control." In 2024 IEEE 42nd International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2024. https://doi.org/10.1109/elnano63394.2024.10756849.
Full textAvina Ortiz, Jose Ramon, Jose Roberto Reyes Ayona, Arturo Alfonso Fernández Jaramillo, Roberto Rojas-Laguna, Edgar Reyes Ayona, and Juan Manuel Sierra-Hernández. "Planar resonant microwave cavities for the detection of Ca(NO3 )2, KNO3, and Mg(NO3 )2 concentrations." In Metamaterials, Metadevices, and Metasystems 2024, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2024. http://dx.doi.org/10.1117/12.3029047.
Full textPenketh, Harry, Cameron P. Gallagher, Michal Mrnka, et al. "Super-resolution hyperspectral characterisation of microwave metamaterials." In Metamaterials XIV, edited by Kevin F. MacDonald, Anatoly V. Zayats, and Isabelle Staude. SPIE, 2024. http://dx.doi.org/10.1117/12.3022192.
Full textPatterson, Mark. "Metamaterials for microwave frequencies." In NAECON 2010 - IEEE National Aerospace and Electronics Conference. IEEE, 2010. http://dx.doi.org/10.1109/naecon.2010.5712974.
Full textBrazis, Romuald, Vladimiras Kazakevicius, and Ryszard Narkowicz. "Metamaterials for Microwave Photonics." In 2007 9th International Conference on Transparent Optical Networks. IEEE, 2007. http://dx.doi.org/10.1109/icton.2007.4296141.
Full text., Ankit, Kamal Kishor, and Ravindra Kumar Sinha. "Design and analysis of multiband metamaterial in microwave regime." In Metamaterials XIV, edited by Kęstutis Staliūnas, Vladimír Kuzmiak, and Tomasz Stefaniuk. SPIE, 2023. http://dx.doi.org/10.1117/12.2664671.
Full textPuentes, Margarita, Martin Schu, Andreas Penirschke, Christian Damm, and Rolf Jakoby. "Metamaterials in microwave sensing applications." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690570.
Full textInamdar, Kirti, Y. P. Kosta, and Suprava Patnaik. "Microwave Applications of Metamaterials Concepts." In 2010 International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom). IEEE, 2010. http://dx.doi.org/10.1109/artcom.2010.38.
Full textSlobozhanyuk, A. P., P. V. Kapitanova, I. V. Shadrivov, et al. "Light coupling in microwave metamaterials." In 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS 2013). IEEE, 2013. http://dx.doi.org/10.1109/metamaterials.2013.6808996.
Full textReports on the topic "Microwave metamaterials"
Lu, Tzu-Ming, Terence Bretz-Sullivan, Ana Lima-Sharma, et al. Superconducting metamaterials - the first step toward a microwave quantum bus. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1663263.
Full textBehdad, Nader. High-Power Microwave Metamaterials for Phased-Array, anti-HPM, and Pulse-Shaping Applications. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada609315.
Full text