Journal articles on the topic 'Microwave Transistor Amplifiers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microwave Transistor Amplifiers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rosolowski, Dawid, Wojciech Wojtasiak, and Daniel Gryglewski. "27 dBm Microwave Amplifiers with Adaptive Matching Networks." International Journal of Electronics and Telecommunications 57, no. 1 (2011): 103–8. http://dx.doi.org/10.2478/v10177-011-0015-x.
Full textSajedin, Maryam, I. T. E. Elfergani, Jonathan Rodriguez, Raed Abd-Alhameed, and Monica Fernandez Barciela. "A Survey on RF and Microwave Doherty Power Amplifier for Mobile Handset Applications." Electronics 8, no. 6 (2019): 717. http://dx.doi.org/10.3390/electronics8060717.
Full textUrteaga, M., S. Krishnan, D. Scott, et al. "Submicron InP-based HBTs for Ultra-high Frequency Amplifiers." International Journal of High Speed Electronics and Systems 13, no. 02 (2003): 457–95. http://dx.doi.org/10.1142/s0129156403001806.
Full textSquartecchia, Michele, Tom K. Johansen, Jean-Yves Dupuy, et al. "Optimization of InP DHBT stacked-transistors for millimeter-wave power amplifiers." International Journal of Microwave and Wireless Technologies 10, no. 9 (2018): 999–1010. http://dx.doi.org/10.1017/s1759078718001137.
Full textDéchansiaud, A., R. Sommet, T. Reveyrand, et al. "Design, modeling and characterization of MMIC integrated cascode cell for compact Ku-band power amplifiers." International Journal of Microwave and Wireless Technologies 5, no. 3 (2013): 261–69. http://dx.doi.org/10.1017/s1759078713000482.
Full textEvseev, Vladimir, Mikhail Ivlev, Elena Lupanova, Sergey Nikulin, Vitaliy Petrov, and Andrey Terentyev. "Automation of S-parameters measurements of high-power microwave transistors in a contact device with tunable strip matching circuits." ITM Web of Conferences 30 (2019): 11002. http://dx.doi.org/10.1051/itmconf/20193011002.
Full textSchmid, Ulf, Rolf Reber, Sébastien Chartier, et al. "GaN devices for communication applications: evolution of amplifier architectures." International Journal of Microwave and Wireless Technologies 2, no. 1 (2010): 85–93. http://dx.doi.org/10.1017/s1759078710000218.
Full textYALAMANCHILI, RAJ, ZHENG AN QIU, and YEN-CHU WANG. "Review of microwave distributed superconducting vortex-flow transistor amplifiers." International Journal of Electronics 73, no. 3 (1992): 585–604. http://dx.doi.org/10.1080/00207219208925693.
Full textBaden Fuller, A. J., and M. Runham. "Technical memorandum: Computer design of microwave IC transistor amplifiers." IEE Proceedings H Microwaves, Antennas and Propagation 136, no. 2 (1989): 182. http://dx.doi.org/10.1049/ip-h-2.1989.0034.
Full textAhmad, Norhawati, S. S. Jamuar, M. Mohammad Isa, et al. "Extrinsic and Intrinsic Modeling of InGaAs/InAlAs pHEMT for Wireless Applications." Applied Mechanics and Materials 815 (November 2015): 369–73. http://dx.doi.org/10.4028/www.scientific.net/amm.815.369.
Full textPoole, C. R., and D. K. Paul. "Optimum Noise Measure Terminations for Microwave Transistor Amplifiers (Short Paper)." IEEE Transactions on Microwave Theory and Techniques 33, no. 11 (1985): 1254–57. http://dx.doi.org/10.1109/tmtt.1985.1133207.
Full textMabrok, Mussa, Zahriladha Zakaria, and Nasrullah Saifullah. "Design of Wide-band Power Amplifier based on Power Combiner Technique with Low Intermodulation Distortion." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 5 (2018): 3504. http://dx.doi.org/10.11591/ijece.v8i5.pp3504-3511.
Full textCorral, Celestino A. "Design of microwave transistor amplifiers with optimum cascaded gain and noise." IET Microwaves, Antennas & Propagation 10, no. 11 (2016): 1196–203. http://dx.doi.org/10.1049/iet-map.2015.0803.
Full textAronov, V. L., A. S. Evstigneev, G. S. Kolchin, and I. P. Iakovlev. "THE ISSUE OF ENERGY STORAGE CAPACITORS IN PULSE MICROWAVE TRANSISTOR AMPLIFIERS." Electronic Enginering.Semiconductor Devices 253, no. 2 (2019): 30–40. http://dx.doi.org/10.36845/2073-8250-2019-253-2-30-40.
Full textLink, G. N., and V. S. Rao Gudimetla. "Analytical expressions for simplifying the design of broadband low noise microwave transistor amplifiers." IEEE Transactions on Microwave Theory and Techniques 43, no. 10 (1995): 2498–501. http://dx.doi.org/10.1109/22.466187.
Full textRachakh, Amine, Larbi El Abdellaoui, Jamal Zbitou, Ahmed Errkik, Abdelali Tajmouati, and Mohamed Latrach. "A Novel Configuration of A Microstrip Power Amplifier based on GaAs-FET for ISM Applications." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 5 (2018): 3882. http://dx.doi.org/10.11591/ijece.v8i5.pp3882-3889.
Full textKaganov, W. I., and F. Ki. "Redistribution of Signals Power in Multipath System of Radio Communication." Russian Technological Journal 7, no. 4 (2019): 54–59. http://dx.doi.org/10.32362/2500-316x-2019-7-4-54-59.
Full textBOR, SHEAU-SHONG, JIU-CHYUN LIU, and SHU-MING YEH. "Using feedback techniques to design a stable and matching condition for microwave transistor amplifiers." International Journal of Electronics 81, no. 6 (1996): 713–21. http://dx.doi.org/10.1080/002072196136391.
Full textIkeda, Hikaru, and Yasushi Itoh. "A 2.4 GHz-Band 250 W, 60% Feedback-Type GaN-HFET Oscillator Using Imbalanced Coupling Resonator for Use in the Microwave Oven." Applied Sciences 9, no. 14 (2019): 2887. http://dx.doi.org/10.3390/app9142887.
Full textUEDA, TETSUZO, YASUHIRO UEMOTO, TSUYOSHI TANAKA, and DAISUKE UEDA. "GaN TRANSISTORS FOR POWER SWITCHING AND MILLIMETER-WAVE APPLICATIONS." International Journal of High Speed Electronics and Systems 19, no. 01 (2009): 145–52. http://dx.doi.org/10.1142/s0129156409006199.
Full textNguyen, Huy Hoang, Duy Manh Luong, and Gia Duong Bach. "A Novel Independently Biased 3-Stack GaN HEMT Configuration for Efficient Design of Microwave Amplifiers." Applied Sciences 9, no. 7 (2019): 1510. http://dx.doi.org/10.3390/app9071510.
Full textNguty, Tennyson, Tyrone Plata, and Henk Thoonen. "RF and Microwave Power Amplifiers assembly – Interaction between materials, design and process on reliability." International Symposium on Microelectronics 2015, no. 1 (2015): 000510–16. http://dx.doi.org/10.4071/isom-2015-wp63.
Full textGryglewski, Daniel, Wojciech Wojtasiak, Eliana Kamińska, and Anna Piotrowska. "Characterization of Self-Heating Process in GaN-Based HEMTs." Electronics 9, no. 8 (2020): 1305. http://dx.doi.org/10.3390/electronics9081305.
Full textOthman, Nurul Aida Farhana, Sharidya Rahman, Sharifah Fatmadiana Wan Muhamad Hatta, Norhayati Soin, Brahim Benbakhti, and Steven Duffy. "Design optimization of the graded AlGaN/GaN HEMT device performance based on material and physical dimensions." Microelectronics International 36, no. 2 (2019): 73–82. http://dx.doi.org/10.1108/mi-09-2018-0057.
Full textSavelkaev, Sergei V., Nadezhda A. Vikhareva, and Natalia V. Chekotun. "METHOD OF COMPLEX REFLECTION PARAMETERS MEASUREMENT OF TRANSISTOR LOADS USING A SIMULATOR-ANALYZER OF MICROWAVE AMPLIFIERS AND OSCILLATORS." Vestnik SSUGT (Siberian State University of Geosystems and Technologies) 26, no. 1 (2021): 150–62. http://dx.doi.org/10.33764/2411-1759-2021-26-1-150-162.
Full textVoll, Patricia, Lorene Samoska, Sarah Church, et al. "A G-band cryogenic MMIC heterodyne receiver module for astronomical applications." International Journal of Microwave and Wireless Technologies 4, no. 3 (2012): 283–89. http://dx.doi.org/10.1017/s1759078712000189.
Full textJi-Chyun Liu, Sheau-Shong Bor, Po Chiang Lu, D. K. Paul, P. Gardner, and C. R. Poole. "Comments, with reply, on "Optimum noise measure terminations for microwave transistor amplifiers" by C.R. Poole and D.K. Paul." IEEE Transactions on Microwave Theory and Techniques 41, no. 2 (1993): 363–64. http://dx.doi.org/10.1109/22.216486.
Full textJi-Chyun Liu, Sheau-Shong Bor, and Po-Chiang Lu. "Comments on "Optimum noise measure terminations for microwave transistor amplifiers" by C.R. Poole and D.K. Paul [with reply]." IEEE Transactions on Microwave Theory and Techniques 41, no. 11 (1993): 2042–43. http://dx.doi.org/10.1109/22.273438.
Full textLopez-Diaz, Daniel, Ingmar Kallfass, Axel Tessmann, et al. "High-performance 60 GHz MMICs for wireless digital communication in 100 nm mHEMT technology." International Journal of Microwave and Wireless Technologies 3, no. 2 (2011): 107–13. http://dx.doi.org/10.1017/s1759078711000109.
Full textChéron, Jérôme, Michel Campovecchio, Denis Barataud, et al. "Electrical modeling of packaged GaN HEMT dedicated to internal power matching in S-band." International Journal of Microwave and Wireless Technologies 4, no. 5 (2012): 495–503. http://dx.doi.org/10.1017/s1759078712000530.
Full textMcCulloch, Mark A., Simon J. Melhuish, and Lucio Piccirillo. "Enhancing the noise performance of monolithic microwave integrated circuit-based low noise amplifiers through the use of a discrete preamplifying transistor." Journal of Astronomical Telescopes, Instruments, and Systems 1, no. 1 (2014): 016001. http://dx.doi.org/10.1117/1.jatis.1.1.016001.
Full textWentzel, Andreas, Maruf Hossain, Dimitri Stoppel, Nils Weimann, Viktor Krozer, and Wolfgang Heinrich. "An efficient W-band InP DHBT digital power amplifier." International Journal of Microwave and Wireless Technologies 9, no. 6 (2017): 1241–49. http://dx.doi.org/10.1017/s1759078717000198.
Full textTakano, H. "Novel WSi/Au T-shaped gate GaAs metal–semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, no. 3 (1995): 1014. http://dx.doi.org/10.1116/1.587895.
Full textShevchenko, I. N., and V. G. Kryzhanovskii. "Effect of Collector Current and Voltage Profiles on the Efficiency of Transistor Microwave Power Amplifiers of Class F(H) With Parametric Effects Taken Into Account." Telecommunications and Radio Engineering 52, no. 8 (1998): 68–72. http://dx.doi.org/10.1615/telecomradeng.v52.i8.150.
Full textAronov, V. L., E. M. Savchenko, D. M. Moseykin, A. D. Pershin, and D. G. Drozdov. "ANALYSIS OF THE CONDITIONS OF OCCURRENCE AND SUPPRESSION OF LATERAL VIBRATIONS IN MICROWAVE POWER FETS." Electronic engineering Series 2 Semiconductor devices 258, no. 3 (2020): 4–21. http://dx.doi.org/10.36845/2073-8250-2020-258-3-4-21.
Full textRunham, M., and A. J. Baden Fuller. "Design of microwave transistors amplifiers." Computer-Aided Design 21, no. 2 (1989): 102–6. http://dx.doi.org/10.1016/0010-4485(89)90145-0.
Full textMariem, Jarjar, and Pr EL Quazzani Nabih. "Design of active inductor-based butterworth and chebyshev microwave bandpass filters in standard 0.18µm-CMOS technology." International Journal of Reconfigurable and Embedded Systems (IJRES) 8, no. 1 (2019): 27. http://dx.doi.org/10.11591/ijres.v8.i1.pp27-35.
Full textTREW, R. J., and M. W. SHIN. "HIGH FREQUENCY, HIGH TEMPERATURE FIELD-EFFECT TRANSISTORS FABRICATED FROM WIDE BAND GAP SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 06, no. 01 (1995): 211–36. http://dx.doi.org/10.1142/s0129156495000067.
Full textDjoric, Aleksandra, Natasa Males-Ilic, Aleksandar Atanaskovic, and Bratislav Milovanovic. "Linearization of broadband microwave amplifier." Serbian Journal of Electrical Engineering 11, no. 1 (2014): 111–20. http://dx.doi.org/10.2298/sjee131130010d.
Full textVenguer, A. P., J. L. Medina, R. Chávez, and A. Velázquez. "Low-noise one-port microwave transistor amplifier." Microwave and Optical Technology Letters 33, no. 2 (2002): 100–104. http://dx.doi.org/10.1002/mop.10236.
Full textIvanov, Boris I., Dmitri I. Volkhin, Ilya L. Novikov, et al. "A wideband cryogenic microwave low-noise amplifier." Beilstein Journal of Nanotechnology 11 (September 30, 2020): 1484–91. http://dx.doi.org/10.3762/bjnano.11.131.
Full textDarwish, Ali M., H. Alfred Hung, Edward Viveiros, and Amr A. Ibrahim. "Broadband AlGaN/GaN MMIC amplifier." International Journal of Microwave and Wireless Technologies 3, no. 4 (2011): 399–404. http://dx.doi.org/10.1017/s1759078711000195.
Full textTrew, R. J. "Wide bandgap semiconductor transistors for microwave power amplifiers." IEEE Microwave Magazine 1, no. 1 (2000): 46–54. http://dx.doi.org/10.1109/6668.823827.
Full textSutrisno, S. "Microwave amplifier design using high mobility electron transistor." IOP Conference Series: Materials Science and Engineering 830 (May 19, 2020): 032031. http://dx.doi.org/10.1088/1757-899x/830/3/032031.
Full textAlgani, A., H. Wang, and A. Konczykowska. "Power added efficiency optimisation of microwave transistor amplifier." Electronics Letters 25, no. 8 (1989): 542. http://dx.doi.org/10.1049/el:19890371.
Full textHou, Danqiong, Griff L. Bilbro, and Robert J. Trew. "Analytic Model for Conduction Current in AlGaN/GaN HFETs/HEMTs." Active and Passive Electronic Components 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/806253.
Full textLahsaini, Mohammed, Lahbib Zenkouar, and Seddik Bri. "Modeling of a Microwave Amplifier Operating around 11 GHz for Radar Applications." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 5 (2018): 3496. http://dx.doi.org/10.11591/ijece.v8i5.pp3496-3503.
Full textSafari, Ali, Massoud Dousti, and Mohammad Bagher Tavakoli. "Distributed Amplifier Based on Monolayer Graphene Field Effect Transistor." Journal of Circuits, Systems and Computers 28, no. 14 (2019): 1950231. http://dx.doi.org/10.1142/s0218126619502311.
Full textKEOGH, D. M., J. C. LI, A. M. CONWAY, et al. "ANALYSIS OF GaN HBT STRUCTURES FOR HIGH POWER, HIGH EFFICIENCY MICROWAVE AMPLIFIERS." International Journal of High Speed Electronics and Systems 14, no. 03 (2004): 831–36. http://dx.doi.org/10.1142/s0129156404002910.
Full textBURKE, P. J., C. RUTHERGLEN, and Z. YU. "SINGLE-WALLED CARBON NANOTUBES: APPLICATIONS IN HIGH FREQUENCY ELECTRONICS." International Journal of High Speed Electronics and Systems 16, no. 04 (2006): 977–99. http://dx.doi.org/10.1142/s0129156406004119.
Full text