Journal articles on the topic 'Microwave transistors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microwave transistors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
FLANDRE, D., J. P. RASKIN, and D. VANHOENACKER-JANVIER. "SOI CMOS TRANSISTORS FOR RF AND MICROWAVE APPLICATIONS." International Journal of High Speed Electronics and Systems 11, no. 04 (2001): 1159–248. http://dx.doi.org/10.1142/s0129156401001076.
Full textKuliev, M. V. "Influence of the Heterostructure Composition on the Long-Term Stability of a Microwave Oscillator." Nano- i Mikrosistemnaya Tehnika 24, no. 1 (2022): 27–29. http://dx.doi.org/10.17587/nmst.24.27-29.
Full textBalti, M., D. Pasquet, and A. Samet. "PROPAGATION EFFECTS ON Z PARAMETERS IN AN FET EQUIVALENT CIRCUIT." SYNCHROINFO JOURNAL 7, no. 5 (2021): 21–25. http://dx.doi.org/10.36724/2664-066x-2021-7-5-21-25.
Full textSavelkaev, Sergey, Valerik Airapetyan, and Vladimir Litovchenko. "Three Sectional Drift-Diffusion Mathematical Model Of The Field Effect Transistor With A Schottky Barrier." Siberian Journal of Physics 10, no. 1 (2015): 57–62. http://dx.doi.org/10.54362/1818-7919-2015-10-1-57-62.
Full textBogdanov, Sergey. "Application of Neural Networks in the Construction of Nonlinear Models of Field-Effect Transistors." Infocommunications and Radio Technologies 5, no. 1 (2022): 45–53. http://dx.doi.org/10.29039/2587-9936.2022.05.1.03.
Full textAhmad, Norhawati, S. S. Jamuar, M. Mohammad Isa, et al. "Extrinsic and Intrinsic Modeling of InGaAs/InAlAs pHEMT for Wireless Applications." Applied Mechanics and Materials 815 (November 2015): 369–73. http://dx.doi.org/10.4028/www.scientific.net/amm.815.369.
Full textGromov, Dmitry, and Vadim Elesin. "Long-term radiation effects in GaAs microwave devices exposed to pulsed ionizing radiation." ITM Web of Conferences 30 (2019): 10005. http://dx.doi.org/10.1051/itmconf/20193010005.
Full textMantena, N. R. "High Power Microwave Transistors." IETE Technical Review 3, no. 2 (1986): 39–46. http://dx.doi.org/10.1080/02564602.1986.11437891.
Full textĐorđević, Vladica, Zlatica Marinković, and Olivera Pronić-Rančić. "COMPARATIVE ANALYSIS OF DIFFERENT CAD METHODS FOR EXTRACTION OF THE HEMT NOISE WAVE MODEL PARAMETERS." Facta Universitatis, Series: Automatic Control and Robotics 16, no. 2 (2017): 117. http://dx.doi.org/10.22190/fuacr1702119d.
Full textDéchansiaud, A., R. Sommet, T. Reveyrand, et al. "Design, modeling and characterization of MMIC integrated cascode cell for compact Ku-band power amplifiers." International Journal of Microwave and Wireless Technologies 5, no. 3 (2013): 261–69. http://dx.doi.org/10.1017/s1759078713000482.
Full textEvseev, Vladimir, Mikhail Ivlev, Elena Lupanova, Sergey Nikulin, Vitaliy Petrov, and Andrey Terentyev. "Automation of S-parameters measurements of high-power microwave transistors in a contact device with tunable strip matching circuits." ITM Web of Conferences 30 (2019): 11002. http://dx.doi.org/10.1051/itmconf/20193011002.
Full textRosolowski, Dawid, Wojciech Wojtasiak, and Daniel Gryglewski. "27 dBm Microwave Amplifiers with Adaptive Matching Networks." International Journal of Electronics and Telecommunications 57, no. 1 (2011): 103–8. http://dx.doi.org/10.2478/v10177-011-0015-x.
Full textSquartecchia, Michele, Tom K. Johansen, Jean-Yves Dupuy, et al. "Optimization of InP DHBT stacked-transistors for millimeter-wave power amplifiers." International Journal of Microwave and Wireless Technologies 10, no. 9 (2018): 999–1010. http://dx.doi.org/10.1017/s1759078718001137.
Full textBayraktaroglu, Burhan, Kevin Leedy, and Robert Neidhard. "Microwave ZnO Thin-Film Transistors." IEEE Electron Device Letters 29, no. 9 (2008): 1024–26. http://dx.doi.org/10.1109/led.2008.2001635.
Full textRunham, M., and A. J. Baden Fuller. "Design of microwave transistors amplifiers." Computer-Aided Design 21, no. 2 (1989): 102–6. http://dx.doi.org/10.1016/0010-4485(89)90145-0.
Full textSriram, S., R. R. Siergiej, R. C. Clarke, A. K. Agarwal, and C. D. Brandt. "SiC for Microwave Power Transistors." physica status solidi (a) 162, no. 1 (1997): 441–57. http://dx.doi.org/10.1002/1521-396x(199707)162:1<441::aid-pssa441>3.0.co;2-3.
Full textWojtasiak, Wojciech, Marcin Góralczyk, Daniel Gryglewski, et al. "AlGaN/GaN High Electron Mobility Transistors on Semi-Insulating Ammono-GaN Substrates with Regrown Ohmic Contacts." Micromachines 9, no. 11 (2018): 546. http://dx.doi.org/10.3390/mi9110546.
Full textVozniak, Oleksandr, and Andrii Shtuts. "CALCULATION OF NON-STANDARD W-PARAMETERS OF FOUR-POLE ON BIPOLAR TRANSISTORS." ENGINEERING, ENERGY, TRANSPORT AIC, no. 2(109) (August 27, 2020): 122–28. http://dx.doi.org/10.37128/2520-6168-2020-2-13.
Full textMANOHAR, S., A. PHAM, J. BROWN, R. BORGES, and K. LINTHICUM. "MICROWAVE GaN-BASED POWER TRANSISTORS ON LARGE-SCALE SILICON WAFERS." International Journal of High Speed Electronics and Systems 13, no. 01 (2003): 265–75. http://dx.doi.org/10.1142/s0129156403001600.
Full textPronić-Rančić, Olivera, Zlatica Marinković, and Vera Marković. "Bias Dependant Noise Wave Modelling Procedure of Microwave Fets." Journal of Electrical Engineering 63, no. 2 (2012): 120–24. http://dx.doi.org/10.2478/v10187-012-0018-6.
Full textTegegne, Zerihun Gedeb, Carlos Viana, Marc D. Rosales, et al. "An 850 nm SiGe/Si HPT with a 4.12 GHz maximum optical transition frequency and 0.805A/W responsivity." International Journal of Microwave and Wireless Technologies 9, no. 1 (2015): 17–24. http://dx.doi.org/10.1017/s1759078715001531.
Full textMin, Jin-Gi, Dong-Hee Lee, Yeong-Ung Kim, and Won-Ju Cho. "Implementation of Ambipolar Polysilicon Thin-Film Transistors with Nickel Silicide Schottky Junctions by Low-Thermal-Budget Microwave Annealing." Nanomaterials 12, no. 4 (2022): 628. http://dx.doi.org/10.3390/nano12040628.
Full textWu, Dong Yan, Zhi Liang Tan, Li Yun Ma, and Peng Hao Xie. "The Failure Modeling Analysis of Bipolar Silicon Transister Device Caused by ESD." Applied Mechanics and Materials 427-429 (September 2013): 929–32. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.929.
Full textSukhanov, M. A., A. K. Bakarov, and K. S. Zhuravlev. "AlSb/InAs Heterostructures for Microwave Transistors." Technical Physics Letters 47, no. 2 (2021): 139–42. http://dx.doi.org/10.1134/s1063785021020127.
Full textPallecchi, E., C. Benz, A. C. Betz, H. v. Löhneysen, B. Plaçais, and R. Danneau. "Graphene microwave transistors on sapphire substrates." Applied Physics Letters 99, no. 11 (2011): 113502. http://dx.doi.org/10.1063/1.3633105.
Full textEn-Jun Zhu, S. S. Zhang, W. W. Sheng, B. Z. Zhao, C. K. Xiong, and Y. S. Wang. "Amorphous Si/Si heterojunction microwave transistors." IEEE Electron Device Letters 10, no. 1 (1989): 4–6. http://dx.doi.org/10.1109/55.31663.
Full textJohnson, G. A., V. J. Kapoor, M. Shokrani, et al. "Indium gallium arsenide microwave power transistors." IEEE Transactions on Microwave Theory and Techniques 39, no. 7 (1991): 1069–75. http://dx.doi.org/10.1109/22.85371.
Full textvan der Ziel, A., and T. G. M. Kleinpenning. "High-frequency response of microwave transistors." Solid-State Electronics 30, no. 7 (1987): 771–72. http://dx.doi.org/10.1016/0038-1101(87)90118-3.
Full textManscher, M. H., M. T. Savolainen, and J. Mygind. "Microwave enhanced cotunneling in SET transistors." IEEE Transactions on Appiled Superconductivity 13, no. 2 (2003): 1107–10. http://dx.doi.org/10.1109/tasc.2003.814167.
Full textYang, Jing Wei, and Meng Meng Xu. "Failure Model Research of Power HBTs." Advanced Materials Research 926-930 (May 2014): 1348–51. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.1348.
Full textKim, Kyongmin, Eunkyeom Kim, Youngill Kim, and Kyoungwan Park. "Characteristics of ZnO Thin Film Transistors Fabricated Using a Microwave Sol-Gel Method." Korean Journal of Metals and Materials 52, no. 2 (2014): 155–61. http://dx.doi.org/10.3365/kjmm.2014.52.2.155.
Full textRAJAN, SIDDHARTH, UMESH K. MISHRA, and TOMÁS PALACIOS. "AlGaN/GaN HEMTs: RECENT DEVELOPMENTS AND FUTURE DIRECTIONS." International Journal of High Speed Electronics and Systems 18, no. 04 (2008): 913–22. http://dx.doi.org/10.1142/s0129156408005874.
Full textAronov, V. L., E. M. Savchenko, D. M. Moseykin, A. D. Pershin, and D. G. Drozdov. "ANALYSIS OF THE CONDITIONS OF OCCURRENCE AND SUPPRESSION OF LATERAL VIBRATIONS IN MICROWAVE POWER FETS." Electronic engineering Series 2 Semiconductor devices 258, no. 3 (2020): 4–21. http://dx.doi.org/10.36845/2073-8250-2020-258-3-4-21.
Full textSolodukha, V. A., Yu P. Snitovsky, and Ya A. Solovyov. "CONTROLLED PROCESSES OF THE PARAMETERS TRANSFORMATION BY ION BEAMS IN SILICON BIPOLAR MICROWAVE TRANSISTORS." Yugra State University Bulletin 14, no. 4 (2018): 23–37. http://dx.doi.org/10.17816/byusu20180423-37.
Full textGladysheva, Nadezhda B., Vadim V. Gruzdov, Yurii V. Kolkovskii, Yulii A. Kontsevoy, and Evgenii F. Pevtsov. "Control of yellow photoluminescence in AlGaN/GaN heterostructures." Modern Electronic Materials 5, no. 2 (2019): 87–89. http://dx.doi.org/10.3897/j.moem.5.2.51391.
Full textFadil, Dalal, Vikram Passi, Wei Wei, et al. "A Broadband Active Microwave Monolithically Integrated Circuit Balun in Graphene Technology." Applied Sciences 10, no. 6 (2020): 2183. http://dx.doi.org/10.3390/app10062183.
Full textSun, Jie, Wei Ming Shi, Wei Guang Yang, Ping Sheng Zhou, and Lin Jun Wang. "Ni-Induced Lateral Fast Crystallization of Amorphous Silicon Film by Microwave Annealing." Advanced Materials Research 337 (September 2011): 133–37. http://dx.doi.org/10.4028/www.scientific.net/amr.337.133.
Full textSleptsova, Anastasia A., Sergey V. Chernykh, Dmitry A. Podgorny, and Ilya A. Zhilnikov. "Optimization of passivation in AlGaN/GaN heterostructure microwave transistor fabrication by ICP CVD." Modern Electronic Materials 6, no. 2 (2020): 71–75. http://dx.doi.org/10.3897/j.moem.6.2.58860.
Full textWozniak, Oleksandr, Andriy Vidmysh, and Andriy Stuts. "INVESTIGATION OF THE GRAPHOANALYTICAL METHOD OF DETERMINING THE STANDARD W-PARAMETERS OF THE FOUR-POLE." ENGINEERING, ENERGY, TRANSPORT AIC, no. 4(107) (December 20, 2019): 67–78. http://dx.doi.org/10.37128/2520-6168-2019-4-9.
Full textISHIBASHI, T., Y. YAMAUCHI, E. SANO, H. NAKAJIMA, and Y. MATSUOKA. "BALLISTIC COLLECTION TRANSISTORS AND THEIR APPLICATIONS." International Journal of High Speed Electronics and Systems 05, no. 03 (1994): 349–79. http://dx.doi.org/10.1142/s0129156494000152.
Full textDai, Z. R., Sangbeom Kang, W. Alan Doolittle, Z. L. Wang, and April S. Brown. "Interfacial Structure and Defects in GaN/AlGaN Heterojunction Epitaxially Grown on LiGa02 Substrate by Molecular Beam Epitaxy." Microscopy and Microanalysis 6, S2 (2000): 1106–7. http://dx.doi.org/10.1017/s1431927600038022.
Full textHanreich, G., M. Mayer, M. Mündlein, and J. Nicolics. "Thermal Investigation of GaAs Microwave Power Transistors." Journal of Microelectronics and Electronic Packaging 1, no. 1 (2004): 1–8. http://dx.doi.org/10.4071/1551-4897-1.1.1.
Full textGruzdov, V. V., K. L. Enisherlova, and Yu V. Kolkovskiy. "COMPARATIVE ANALYSIS OF AlGaN/GaN MICROWAVE TRANSISTORS." Electronic engineering. Series 2. Semiconductor device 245, no. 2 (2017): 6–13. http://dx.doi.org/10.36845/2073-8250-2017-245-2-6-13.
Full textKlimov, A. O., and K. A. Ivanov. "MOUNT TECHNIQUE OF GAN POWER MICROWAVE TRANSISTORS." Electronic Enginering.Semiconductor Devices 252, no. 1 (2019): 57–67. http://dx.doi.org/10.36845/2073-8250-2019-252-1-57-67.
Full textZarate-de Landa, Andres, Jose Zuniga-Juarez, Jose Loo-Yau, J. Reynoso-Hernandez, Maria Maya-Sanchez, and Juan del Valle-Padilla. "Advances in Linear Modeling of Microwave Transistors." IEEE Microwave Magazine 10, no. 2 (2009): 100, 102–111, 146. http://dx.doi.org/10.1109/mmm.2008.931675.
Full textLunardi, L. M., S. Sen, F. Capasso, P. R. Smith, D. L. Sivco, and A. Y. Cho. "Microwave multiple-state resonant tunneling bipolar transistors." IEEE Electron Device Letters 10, no. 5 (1989): 219–21. http://dx.doi.org/10.1109/55.31726.
Full textTsai, Jung-Hui, Shao-Yen Chiu, Wen-Shiung Lour, et al. "Microwave complementary doped-channel field-effect transistors." Superlattices and Microstructures 45, no. 1 (2009): 33–38. http://dx.doi.org/10.1016/j.spmi.2008.11.019.
Full textTaniuchi, Hirotada, Hitoshi Umezawa, Hiroaki Ishizaka, and Hiroshi Kawarada. "Microwave Performance of Diamond Field-Effect Transistors." Japanese Journal of Applied Physics 41, Part 1, No. 4B (2002): 2591–94. http://dx.doi.org/10.1143/jjap.41.2591.
Full textEscotte, L., J. P. Roux, R. Plana, J. Graffeuil, and A. Gruhle. "Noise modeling of microwave heterojunction bipolar transistors." IEEE Transactions on Electron Devices 42, no. 5 (1995): 883–89. http://dx.doi.org/10.1109/16.381984.
Full textHobart, K. D., F. J. Kub, N. A. Papanicoloau, W. Kruppa, and P. E. Thompson. "heterojunction bipolar transistors for microwave power applications." Journal of Crystal Growth 157, no. 1-4 (1995): 215–21. http://dx.doi.org/10.1016/0022-0248(95)00388-6.
Full text