Academic literature on the topic 'Mikrotubuli'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mikrotubuli.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mikrotubuli"
Kliszcz, Beata, Anna Osinka, Ewa Wacławek, Andrzej Kasprzak, and Dorota Włoga. "Modyfikacje potranslacyjne tubuliny." Kosmos 67, no. 1 (July 10, 2018): 95–107. http://dx.doi.org/10.36921/kos.2018_2370.
Full textRoos, Martin. "Diazonamid attackiert Mikrotubuli." Im Focus Onkologie 20, no. 1-2 (February 2017): 10. http://dx.doi.org/10.1007/s15015-017-3076-6.
Full textSamson-Himmelstjerna, G. von. "Anthelminthika-Resistenzen bei Pferde- und Wiederkäuerhelminthen: neueste Forschungsergebnisse aus molekularbiologischer Sicht." Tierärztliche Praxis Ausgabe G: Großtiere / Nutztiere 32, no. 06 (2004): 312–15. http://dx.doi.org/10.1055/s-0038-1623506.
Full textWolf, Klaus Werner, and Konrad Joachim Böhm. "Organisation von Mikrotubuli in der Zelle." Biologie in unserer Zeit 27, no. 2 (March 1997): 87–95. http://dx.doi.org/10.1002/biuz.960270204.
Full textPfeffer, Stefan, and Elmar Schiebel. "Einblicke in die Entstehung von Mikrotubuli." BIOspektrum 26, no. 2 (March 2020): 145–47. http://dx.doi.org/10.1007/s12268-020-1341-2.
Full textCrous, A., and A. M. De Beer. "Ultrastrukturele kwantifisering van mikrotubuli in volledige selprofiele." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 10, no. 4 (July 8, 1991): 176–78. http://dx.doi.org/10.4102/satnt.v10i4.510.
Full textEichbaum, Michael H. R., Christof Sohn, and Ulrich R. Kleeberg. "Inhibitor der Mikrotubuli-Dynamik mit neuartiger Wirkweise." Info Onkologie 14, no. 8 (December 2011): 17–19. http://dx.doi.org/10.1007/bf03363122.
Full textKadavath, Harindranath, Mariusz Jaremko, Łukasz Jaremko, Jacek Biernat, Eckhard Mandelkow, and Markus Zweckstetter. "Faltungszustand des Proteins Tau bei Bindung an Mikrotubuli." Angewandte Chemie 127, no. 35 (June 19, 2015): 10488–92. http://dx.doi.org/10.1002/ange.201501714.
Full textGumpert, J., and U. Taubeneck. "“Mikrotubuli” bei Proteus mirabilis als Produkte defekter Lysogenie." Zeitschrift für allgemeine Mikrobiologie 8, no. 2 (January 24, 2007): 101–5. http://dx.doi.org/10.1002/jobm.19680080203.
Full textBaumann, Knut. "Neue Mikrotubuli-Stabilisatoren: Jenseits von Paclitaxel und Docetaxel." Pharmazie in unserer Zeit 34, no. 2 (March 2005): 110–14. http://dx.doi.org/10.1002/pauz.200400110.
Full textDissertations / Theses on the topic "Mikrotubuli"
Manns, Isabel. "Die Rolle der Mikrotubuli und der mikrotubuli-abhängigen Transportprozesse im polaren Wachstum von Ustilago maydis." [S.l.] : [s.n.], 2005. http://archiv.ub.uni-marburg.de/diss/z2005/0129/.
Full textKopp, Petra. "Regulation von Podosomen in Makrophagen durch Mikrotubuli und Motorproteine." Diss., lmu, 2006. http://nbn-resolving.de/urn:nbn:de:bvb:19-49060.
Full textKopp, Petra. "Regulation von Podosomen in Makrophagen durch Mikrotubuli und Motorproteine." [S.l.] : [s.n.], 2005. http://edoc.ub.uni-muenchen.de/archive/00004906.
Full textZapke, Janet [Verfasser]. "Untersuchungen zur Wechselwirkung von Mikrotubuli mit Kinesinen und Colchicin-Derivaten / Janet Zapke." Berlin : Freie Universität Berlin, 2011. http://d-nb.info/1025939689/34.
Full textVietmeier-Decker, Corina. "Die Funktion des Mikrotubuli-assoziierten S. pombe Proteins Mal3p in der Mitose." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971864985.
Full textHinrichs, Maike [Verfasser]. "Diffusion von Tau auf Mikrotubuli und Auswirkung auf die Kinesin-Funktion / Maike Hinrichs." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1021438618/34.
Full textPeth, Andreas. "Funktionelle Charakterisierung der Interaktion des COP9-Signalosoms mit dem Mikrotubuli-bindenden Protein EB1." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2007. http://dx.doi.org/10.18452/15686.
Full textThe COP9 signalosome (CSN) is an evolutionary conserved protein complex. It consists out of eight subunits and is a paralogue to the lid subcomplex of the 26S proteasome. The CSN posesses several activities, supporting its function as a regulator of the Ubiquitin Proteasome System (UPS). The UPS mediates the degradation of the majority of the cellular proteins. Prior to degradation, a poly-ubiquitin chain is attached to the proteins. This process is catalyzed by a cascade of E1, E2s and E3-ligases. The CSN is a regulator of the E3-ligases, which determine substrate selectivity of the ubiquitination. The CSN also directly binds and thereby controls degradation of several proteasomal substrates. In the present study a direct interaction between the CSN and the microtubule binding protein EB1 is shown, which is mediated by the subunit CSN5. EB1 binds preferentially to the (+)-ends of microtubules and thereby promotes polymerisation rates and enhances the stability of microtubule filaments. The interaction between the CSN and EB1 is localized to the centrosome and results in EB1 phosphorylation and stabilization. A compromised binding of EB1 to the CSN results in an accelerated degradation. For functional studies of the CSN-EB1 interaction in HeLa cells, siRNA mediated knockdowns of CSN subunits were used. The subunits CSN1, CSN3 and CSN5 were knocked down permanently resulting in a faster proteolysis of EB1. This was a result of decreased amounts of CSN complex in cells with downregulated CSN1 and CSN3. The knockdown of CSN5 affects only subunit CSN5 levels causing a compromised binding of EB1 to the CSN complex. An increased sensitivity to the microtubule disrupting agent nocodazole was observed in the CSN1 and CSN3 knockdown cells. A cell cycle arrest induced in HeLa cells by nocodazole treatment was rescued by overexpression of EB1 or CSN1. The data presented in this study suggest a functional relationship of EB1 and the CSN resulting in a stabilization of microtubule filaments.
Dinu, Cerasela Zoica. "Leveraging the motor protein Kinesin to manipulate DNA molecules in synthetic environment." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1149612769067-28113.
Full textThe work described in this thesis is in the field of NanoBioTechnology. Its goal is to leverage the motor protein kinesin and its microtubule track to manipulate DNA molecules in synthetic environment. This thesis contains five chapters. The first chapter describes macromolecular structures of the cell: i. e. the cytoskeleton and one of the motor proteins that move along it, kinesin. Emphasized is how biological motors might prove useful for organizing structures in engineered environments. The second chapter demonstrates how kinesin and microtubules can be used in synthetic environments to transport different cargos: i.e. streptavidin, quantum dots and DNA molecules. Special emphasis is placed on the manipulation of DNA molecules by the motor-driven microtubules. This cargo transport mechanism serves as a proof-of-principle for new bioengineering concepts such as DNA-based molecular electronics. The third chapter describes the influences of the surface properties on the DNA attachment and offers answers as how surface characteristics can be investigated, specifically designed and prepared so that they can serve the desired scientific purpose. The fourth chapter describes the manner in which DNA molecules can be attached to conductive surfaces and manipulated with motor proteins and microtubules. The complex DNA pattern formation that can be used for nanoelectronics is demonstrated. The advantages of motor-based manipulation over the conventional "one-by-one" methods (AFM, optical tweezers etc.) are discussed. The fifth and last chapter shows how one can use the kinesin-microtubule system to derive information about DNA molecules. For this, the response of the microtubules to forces exerted by attached DNA molecules has been studied. In summary, I have generated experimental assays and staining procedures to detect, visualize and control the entire manipulation process and to investigate its implications for theoretical analysis as well as for practical nano-engineered applications. My data demonstrated that DNA molecules can be manipulated in synthetic environment by kinesin and microtubules in such a way that controlled DNA biointerfaces can be generated. These biointerfaces can then be used for nanoelectronical application as well as for DNA topological studies. The kinesin-microtubule system is also expected to be equally important for 3D biomolecular assembly in engineered environments. The ability to generate templates of biomolecules and/or bioassemblies with well-defined features while maintaining their bioactivity, serves as proof-of-principle that biological motors can be used for molecular manufacturing. - (The pressure copies contain in each case a CD-ROM as component: QuickTimeMovies (ca. 86 MB)- To overview of contents see thesis P. IX - XIII)
Rehberg, Markus. "DdEB1, DdMoe1 und DdLIS1: drei neue, centrosomale und Mikrotubuli-assoziierte Proteine bei Dictyostelium discoideum." Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-32903.
Full textThiemann, Meinolf. "Untersuchungen zur In-vitro-Interaktion von Peroxisomen mit Mikrotubuli und der daran beteiligten Bindungsproteine." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962781649.
Full textBooks on the topic "Mikrotubuli"
Wróbel, Zygmunt. Automatyczne metody analizy orientacji mikrotubul. Katowice: Wydawn. Uniwersytetu Śląskiego, 2007.
Find full text1943-, Warner Fred D., Satir Peter, and Gibbons Ian R, eds. Cell movement. New York: Liss, 1989.
Find full textMotility Assays For Motor Proteins (Methods in Cell Biology (Cloth)). Academic Press, 1993.
Find full textBook chapters on the topic "Mikrotubuli"
Berkaloff, André, Jacques Bourguet, Pierre Favard, Nina Favard, and Jean-Claude Lacroix. "Mikrotubuli." In Die Zelle, 135–60. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-663-06822-8_4.
Full text"10.2 Mikrotubuli." In Taschenlehrbuch Biologie Biochemie · Zellbiologie, edited by Katharina Munk. Stuttgart: Georg Thieme Verlag, 2008. http://dx.doi.org/10.1055/b-0034-29196.
Full text"3.3 Mikrotubuli und ihre Motorproteine." In Histologie, edited by Renate Lüllmann-Rauch. Stuttgart: Georg Thieme Verlag, 2012. http://dx.doi.org/10.1055/b-0034-13163.
Full text"KAPITEL 23. Mikrotubuli und Intermediärfilamente." In Molekulare Zellbiologie, 1079–150. De Gruyter, 1996. http://dx.doi.org/10.1515/9783110810578.1079.
Full text"24.3 Interferenz mit Mikrotubuli der Mitosespindel." In Pharmakologie und Toxikologie, edited by Heinz Lüllmann, Klaus Mohr, and Lutz Hein. Stuttgart: Georg Thieme Verlag, 2010. http://dx.doi.org/10.1055/b-0034-71365.
Full text"24.3 Interferenz mit Mikrotubuli der Mitosespindel." In Pharmakologie und Toxikologie, edited by Heinz Lüllmann, Klaus Mohr, and Lutz Hein. Stuttgart: Georg Thieme Verlag, 2006. http://dx.doi.org/10.1055/b-0034-93355.
Full text"Mikrotubulin-assoziiertes Protein tau (MAP-tau)." In Springer Reference Medizin, 1659. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_312599.
Full text"Mikrotubulus-assoziiertes neuronales Protein 2." In Springer Reference Medizin, 1659. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_312600.
Full text