Journal articles on the topic 'Milk-derived extracellular vesicles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Milk-derived extracellular vesicles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hu, Yong, Johannes Thaler, and Rienk Nieuwland. "Extracellular Vesicles in Human Milk." Pharmaceuticals 14, no. 10 (2021): 1050. http://dx.doi.org/10.3390/ph14101050.
Full textCivra, Andrea, Rachele Francese, Manuela Donalisio, et al. "Human Colostrum and Derived Extracellular Vesicles Prevent Infection by Human Rotavirus and Respiratory Syncytial Virus in Vitro." Journal of Human Lactation 37, no. 1 (2021): 122–34. http://dx.doi.org/10.1177/0890334420988239.
Full textPrasadani, Madhusha, Suranga Kodithuwakku, Georgia Pennarossa, Alireza Fazeli, and Tiziana A. L. Brevini. "Therapeutic Potential of Bovine Milk-Derived Extracellular Vesicles." International Journal of Molecular Sciences 25, no. 10 (2024): 5543. http://dx.doi.org/10.3390/ijms25105543.
Full textPrasadani, Madhusha, Suranga Kodithuwakku, GEORGIA PENNAROSSA, Alireza Fazeli, and Tiziana A.L. Brevini. "Therapeutic Potential of Bovine Milk-Derived Extracellular Vesicles." International Journal of Molecular Sciences 25, no. 10 (2024): 5543. https://doi.org/10.3390/ijms25105543.
Full textSamuel, Monisha, Rahul Sanwlani, Mohashin Pathan, et al. "Isolation and Characterization of Cow-, Buffalo-, Sheep- and Goat-Milk-Derived Extracellular Vesicles." Cells 12, no. 20 (2023): 2491. http://dx.doi.org/10.3390/cells12202491.
Full textRyskaliyeva, A., Z. Krupova, C. Henry, B. Faye, G. Konuspayeva, and P. Martin. "Comprehensive proteomic analysis of camel milk-derived extracellular vesicles." International Journal of Biology and Chemistry 12, no. 2 (2019): 93–104. http://dx.doi.org/10.26577/ijbch-2019-i2-12.
Full textGalley, Jeffrey D., and Gail E. Besner. "The Therapeutic Potential of Breast Milk-Derived Extracellular Vesicles." Nutrients 12, no. 3 (2020): 745. http://dx.doi.org/10.3390/nu12030745.
Full textSomiya, Masaharu, Yusuke Yoshioka, and Takahiro Ochiya. "Biocompatibility of highly purified bovine milk-derived extracellular vesicles." Journal of Extracellular Vesicles 7, no. 1 (2018): 1440132. http://dx.doi.org/10.1080/20013078.2018.1440132.
Full textHu, Yong, Lena Hell, Ruth Anna Kendlbacher, et al. "Human milk triggers coagulation via tissue factor–exposing extracellular vesicles." Blood Advances 4, no. 24 (2020): 6274–82. http://dx.doi.org/10.1182/bloodadvances.2020003012.
Full textOng, Siew Ling, Cherie Blenkiron, Stephen Haines, et al. "Ruminant Milk-Derived Extracellular Vesicles: A Nutritional and Therapeutic Opportunity?" Nutrients 13, no. 8 (2021): 2505. http://dx.doi.org/10.3390/nu13082505.
Full textLi, Ying, Xin Zhang, Chao Zhang, et al. "Comparative study on the immunomodulatory function of extracellular vesicles from different dairy products." Food & Function 13, no. 5 (2022): 2504–14. http://dx.doi.org/10.1039/d1fo02394b.
Full textRaghuwanshi, Gaurav, Harpritkaur Bagga, Gunjan Chaudhari, and Ujwal Vyas. "Milk-Derived Exosomes: Innovative Nanocarriers for Enhanced Anticancer Drug Delivery." INTERNATIONAL JOURNAL OF PHARMACEUTICAL QUALITY ASSURANCE 15, no. 03 (2024): 1767–77. http://dx.doi.org/10.25258/ijpqa.15.3.103.
Full textSanwlani, Rahul, Pamali Fonseka, Sai V. Chitti, and Suresh Mathivanan. "Milk-Derived Extracellular Vesicles in Inter-Organism, Cross-Species Communication and Drug Delivery." Proteomes 8, no. 2 (2020): 11. http://dx.doi.org/10.3390/proteomes8020011.
Full textZhong, Youxiu, Xudong Wang, Xian Zhao, et al. "Multifunctional Milk-Derived Small Extracellular Vesicles and Their Biomedical Applications." Pharmaceutics 15, no. 5 (2023): 1418. http://dx.doi.org/10.3390/pharmaceutics15051418.
Full textFonseka, Pamali, Taeyoung Kang, Sing Chee, et al. "Temporal Quantitative Proteomics Analysis of Neuroblastoma Cells Treated with Bovine Milk-Derived Extracellular Vesicles Highlights the Anti-Proliferative Properties of Milk-Derived Extracellular Vesicles." Cells 10, no. 4 (2021): 750. http://dx.doi.org/10.3390/cells10040750.
Full textAscanius, Susanne R., Maria S. Hansen, Marie S. Ostenfeld та Jan T. Rasmussen. "Milk-Derived Extracellular Vesicles Suppress Inflammatory Cytokine Expression and Nuclear Factor-κB Activation in Lipopolysaccharide-Stimulated Macrophages". Dairy 2, № 2 (2021): 165–78. http://dx.doi.org/10.3390/dairy2020015.
Full textMoccia, Valentina, Alessandro Sammarco, Laura Cavicchioli, Massimo Castagnaro, Laura Bongiovanni, and Valentina Zappulli. "Extracellular Vesicles in Veterinary Medicine." Animals 12, no. 19 (2022): 2716. http://dx.doi.org/10.3390/ani12192716.
Full textMecocci, Samanta, Massimo Trabalza-Marinucci, and Katia Cappelli. "Extracellular Vesicles from Animal Milk: Great Potentialities and Critical Issues." Animals 12, no. 23 (2022): 3231. http://dx.doi.org/10.3390/ani12233231.
Full textChutipongtanate, Somchai, Supasek Kongsomros, Hatice Cetinkaya, et al. "Prenatal SARS-CoV-2 Infection Alters Human Milk-Derived Extracellular Vesicles." Cells 14, no. 4 (2025): 284. https://doi.org/10.3390/cells14040284.
Full textRosa, Fernanda, Rafaela Santos, Tomas Lugo, Audrey Brown, and Ulrich Bickel. "Extracellular vesicles derived miRNAs from bovine milk modulate the inflammatory response to lipopolysaccharide in vitro." Journal of Immunology 210, no. 1_Supplement (2023): 167.38. http://dx.doi.org/10.4049/jimmunol.210.supp.167.38.
Full textZeng, Bin, Hailong Wang, Junyi Luo, et al. "Porcine Milk-Derived Small Extracellular Vesicles Promote Intestinal Immunoglobulin Production through pIgR." Animals 11, no. 6 (2021): 1522. http://dx.doi.org/10.3390/ani11061522.
Full textGarcía-Martínez, Jorge, Íñigo M. Pérez-Castillo, Rafael Salto, José M. López-Pedrosa, Ricardo Rueda, and María D. Girón. "Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk." Nutrients 14, no. 7 (2022): 1442. http://dx.doi.org/10.3390/nu14071442.
Full textBuratta, Sandra, Lorena Urbanelli, Alessia Tognoloni, et al. "Protein and Lipid Content of Milk Extracellular Vesicles: A Comparative Overview." Life 13, no. 2 (2023): 401. http://dx.doi.org/10.3390/life13020401.
Full textWeiskirchen, Ralf, Sarah K. Schröder, Sabine Weiskirchen, Eva Miriam Buhl, and Bodo Melnik. "Isolation of Bovine and Human Milk Extracellular Vesicles." Biomedicines 11, no. 10 (2023): 2715. http://dx.doi.org/10.3390/biomedicines11102715.
Full textSeegobin, Nidhi, Marissa Taub, Cécile Vignal, et al. "Small milk-derived extracellular vesicles: Suitable vehicles for oral drug delivery?" European Journal of Pharmaceutics and Biopharmaceutics 212 (July 2025): 114744. https://doi.org/10.1016/j.ejpb.2025.114744.
Full textBabaker, Manal A., Fadwa A. Aljoud, Faris Alkhilaiwi, et al. "The Therapeutic Potential of Milk Extracellular Vesicles on Colorectal Cancer." International Journal of Molecular Sciences 23, no. 12 (2022): 6812. http://dx.doi.org/10.3390/ijms23126812.
Full textWang, Mengling, Meng Cai, Xiaoyan Zhu, Xuemei Nan, Benhai Xiong, and Liang Yang. "Comparative Proteomic Analysis of Milk-Derived Extracellular Vesicles from Dairy Cows with Clinical and Subclinical Mastitis." Animals 13, no. 1 (2023): 171. http://dx.doi.org/10.3390/ani13010171.
Full textOu, Hairui, Tamas Imre Csuth, Tamas Czompoly, and Krisztian Kvell. "Dairy: Friend or Foe? Bovine Milk-Derived Extracellular Vesicles and Autoimmune Diseases." International Journal of Molecular Sciences 25, no. 21 (2024): 11499. http://dx.doi.org/10.3390/ijms252111499.
Full textROSARIO, CHARLUZ M. AROCHO, ADELA OLIVA CHAVEZ, CRAIG COATES, PETE TEEL, DONALD THOMAS, and ARTEM S. ROGOVSKYY. "Characterization and evaluation of extracellular vesicles as anti-tick vaccine candidates." Zoosymposia 22 (November 30, 2022): 315. http://dx.doi.org/10.11646/zoosymposia.22.1.197.
Full textdel Pozo-Acebo, Lorena, M.-C. López de las Hazas, Joao Tomé-Carneiro, et al. "Bovine Milk-Derived Exosomes as a Drug Delivery Vehicle for miRNA-Based Therapy." International Journal of Molecular Sciences 22, no. 3 (2021): 1105. http://dx.doi.org/10.3390/ijms22031105.
Full textSprenger, Richard R., Marie S. Ostenfeld, Ann Bjørnshave, Jan T. Rasmussen, and Christer S. Ejsing. "Lipidomic Characterization of Whey Concentrates Rich in Milk Fat Globule Membranes and Extracellular Vesicles." Biomolecules 14, no. 1 (2023): 55. http://dx.doi.org/10.3390/biom14010055.
Full textUkkola, Jonne, Feby W. Pratiwi, Santeri Kankaanpää, et al. "Enrichment of bovine milk-derived extracellular vesicles using surface-functionalized cellulose nanofibers." Carbohydrate Polymers 297 (December 2022): 120069. http://dx.doi.org/10.1016/j.carbpol.2022.120069.
Full textZhang, Sitong, Xipeng Sun, Yameng Zhang, et al. "Metabolomics analysis of extracellular vesicles derived from bovine colostrum and mature milk." Food Science of Animal Products 2, no. 3 (2024): 9240078. http://dx.doi.org/10.26599/fsap.2024.9240078.
Full textReif, Shimon, Liron Birimberg-Schwartz, Myriam Grunewald, et al. "The Effect of Milk-Derived Extracellular Vesicles on Intestinal Epithelial Cell Proliferation." International Journal of Molecular Sciences 25, no. 24 (2024): 13519. https://doi.org/10.3390/ijms252413519.
Full textJang, Hochung, and Yoosoo Yang. "Harnessing Milk-derived Extracellular Vesicles for Oral Drug Delivery and Therapeutic Application." Journal of Digestive Cancer Research 13, no. 1 (2025): 30–37. https://doi.org/10.52927/jdcr.2025.13.1.30.
Full textCarobolante, Greta, Julia Mantaj, Enrico Ferrari, and Driton Vllasaliu. "Cow Milk and Intestinal Epithelial Cell-Derived Extracellular Vesicles as Systems for Enhancing Oral Drug Delivery." Pharmaceutics 12, no. 3 (2020): 226. http://dx.doi.org/10.3390/pharmaceutics12030226.
Full textPollott, Geoff, Amanda Brito, Christopher Gardiner, and Charlotte Lawson. "A Comparison of Different Methodologies for the Measurement of Extracellular Vesicles and Milk-derived Particles in Raw Milk from Cows." Biomarker Insights 11 (January 2016): BMI.S38438. http://dx.doi.org/10.4137/bmi.s38438.
Full textBenedetto, Alessandro, Nunzia Giaccio, Maddalena Arigoni, et al. "miRNome Characterization of Milk-Derived Extracellular Vesicles in Recombinant Somatotropin-Treated Dairy Cows." International Journal of Molecular Sciences 26, no. 6 (2025): 2437. https://doi.org/10.3390/ijms26062437.
Full textMacia, Laurence, Ralph Nanan, Elham Hosseini-Beheshti, and Georges E. Grau. "Host- and Microbiota-Derived Extracellular Vesicles, Immune Function, and Disease Development." International Journal of Molecular Sciences 21, no. 1 (2019): 107. http://dx.doi.org/10.3390/ijms21010107.
Full textAbou el qassim, Loubna, Regina Golan-Gerstl, Shimon Reif, and Luis J. Royo. "Association between Dairy Production System and Milk Functionality Based on Analysis of miRNAs in Exosomes from Milk." Animals 14, no. 20 (2024): 2960. http://dx.doi.org/10.3390/ani14202960.
Full textMun, Daye, Sangnam Oh, and Younghoon Kim. "Perspectives on Bovine Milk-Derived Extracellular Vesicles for Therapeutic Applications in Gut Health." Food Science of Animal Resources 42, no. 2 (2022): 197–209. http://dx.doi.org/10.5851/kosfa.2022.e8.
Full textPisano, Courtney, Jeffrey Galley, Mostafa Elbahrawy, et al. "Human Breast Milk-Derived Extracellular Vesicles in the Protection Against Experimental Necrotizing Enterocolitis." Journal of Pediatric Surgery 55, no. 1 (2020): 54–58. http://dx.doi.org/10.1016/j.jpedsurg.2019.09.052.
Full textLiang, Jia Qi, Mei-Ying Xie, Lian-Jie Hou, et al. "miRNAs derived from milk small extracellular vesicles inhibit porcine epidemic diarrhea virus infection." Antiviral Research 212 (April 2023): 105579. http://dx.doi.org/10.1016/j.antiviral.2023.105579.
Full textLiu, Runyuan, Shuo Liu, Saixuan Wu, et al. "Milk-Derived Small Extracellular Vesicles Promote Osteogenic Differentiation and Inhibit Inflammation via microRNA-21." International Journal of Molecular Sciences 24, no. 18 (2023): 13873. http://dx.doi.org/10.3390/ijms241813873.
Full textDu, Chunmei, Kun Wang, Yiguang Zhao, et al. "Supplementation with Milk-Derived Extracellular Vesicles Shapes the Gut Microbiota and Regulates the Transcriptomic Landscape in Experimental Colitis." Nutrients 14, no. 9 (2022): 1808. http://dx.doi.org/10.3390/nu14091808.
Full textBenmoussa, Abderrahim, Jonathan Laugier, Charles Joly Beauparlant, Marine Lambert, Arnaud Droit, and Patrick Provost. "Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation." Journal of Dairy Science 103, no. 1 (2020): 16–29. http://dx.doi.org/10.3168/jds.2019-16880.
Full textYlioja, Caroline M., Laman K. Mamedova, and Barry J. Bradford. "332 Young Scholar Presentation: regulation of immune signaling by extracellular vesicles." Journal of Animal Science 97, Supplement_2 (2019): 132–33. http://dx.doi.org/10.1093/jas/skz122.235.
Full textFan, Yuqin, Zhikang Li, Yanmei Hou, et al. "Effects of Different Processing on miRNA and Protein in Small Extracellular Vesicles of Goat Dairy Products." Nutrients 16, no. 24 (2024): 4331. https://doi.org/10.3390/nu16244331.
Full textBarathan, Muttiah, Sook Luan Ng, Yogeswaran Lokanathan, Min Hwei Ng, and Jia Xian Law. "Milk-Derived Extracellular Vesicles: A Novel Perspective on Comparative Therapeutics and Targeted Nanocarrier Application." Vaccines 12, no. 11 (2024): 1282. http://dx.doi.org/10.3390/vaccines12111282.
Full textArntz, Onno J., Bartijn C. H. Pieters, Marina C. Oliveira, et al. "Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models." Molecular Nutrition & Food Research 59, no. 9 (2015): 1701–12. http://dx.doi.org/10.1002/mnfr.201500222.
Full text