Academic literature on the topic 'MIMO'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MIMO.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MIMO"
Sharma, Manmohan, Sunny Verma, and Shekhar Verma. "Optimization of Cell-Free Massive MIMO System." Journal of Physics: Conference Series 2327, no. 1 (August 1, 2022): 012056. http://dx.doi.org/10.1088/1742-6596/2327/1/012056.
Full textFuruya, Toshiki, Mika Hayashi, and Kuniki Kino. "Reconstitution of Active Mycobacterial Binuclear Iron Monooxygenase Complex in Escherichia coli." Applied and Environmental Microbiology 79, no. 19 (July 26, 2013): 6033–39. http://dx.doi.org/10.1128/aem.01856-13.
Full textKumar Sarangi, Ashish, Amrit Mukherjee, and Amlan Datta. "Capacity comparison of MIMO and cooperative MIMO." International Journal of Engineering & Technology 7, no. 1.1 (December 21, 2017): 638. http://dx.doi.org/10.14419/ijet.v7i1.1.10794.
Full textSamardžić, Biljana, and Bojana Zlatković. "MODIFIED PYRAGAS METHOD FOR MULTIPLE SPATIAL LIMIT SETS AND CHAOS CONTROL IN MIMO CASCADE NONLINEAR SYSTEMS." Facta Universitatis, Series: Automatic Control and Robotics 17, no. 3 (January 8, 2019): 165. http://dx.doi.org/10.22190/fuacr1803165s.
Full textLiu, Lingjia, Runhua Chen, Stefan Geirhofer, Krishna Sayana, Zhihua Shi, and Yongxing Zhou. "Downlink MIMO in LTE-advanced: SU-MIMO vs. MU-MIMO." IEEE Communications Magazine 50, no. 2 (February 2012): 140–47. http://dx.doi.org/10.1109/mcom.2012.6146493.
Full textБашкиров, А. В., И. В. Свиридова, and М. В. Хорошайлова. "USING NEURAL NETWORKS FOR MIMO DETECTION AND CHANNEL DECODING." ВЕСТНИК ВОРОНЕЖСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, no. 3(-) (August 15, 2022): 71–77. http://dx.doi.org/10.36622/vstu.2022.18.3.009.
Full textOhtsuki, Tomoaki. "MIMO." Journal of The Institute of Image Information and Television Engineers 60, no. 11 (2006): 1766–68. http://dx.doi.org/10.3169/itej.60.1766.
Full textHandel, Peter, and Daniel Ronnow. "MIMO and Massive MIMO Transmitter Crosstalk." IEEE Transactions on Wireless Communications 19, no. 3 (March 2020): 1882–93. http://dx.doi.org/10.1109/twc.2019.2959534.
Full textMarín-Soler, Adoración, Guillermo Ypiña-García, Álvaro Belda-Sanchiz, and Antonio M. Martínez-González. "MIMO Throughput Effectiveness for Basic MIMO OTA Compliance Testing." International Journal of Antennas and Propagation 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/495329.
Full textApsari Yuniari, Ni Putu Eka, Ni Made Ary Esta Dewi Wirastuti, and I. G. A. K. Diafari Djuni Hartawan. "PERBANDINGAN PERFORMANSI SISTEM MC-SS MIMO DENGAN OFDM MIMO." Majalah Ilmiah Teknologi Elektro 15, no. 2 (December 15, 2016): 7–12. http://dx.doi.org/10.24843/mite.1502.02.
Full textDissertations / Theses on the topic "MIMO"
Ladaycia, Abdelhamid. "Annulation d’interférences dans les systèmes MIMO et MIMO massifs (Massive MIMO)." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCD037.
Full textMIMO systems use sensor arrays that can be of large-scale (massive MIMO) and are seen as a potential candidate for future digital communications standards at very high throughput. A major problem of these systems is the high level of interference due to the large number of simultaneous transmitters. In such a context, ’conventional’ orthogonal pilot design solutions are expensive in terms of throughput, thus allowing for the so-called ’blind’ or ’semi-blind’ channel identification solutions to come back to the forefront as interesting solutions for identifying or deconvolving these MIMO channels. In this thesis, we started with a comparative performance analysis, based on CRB, to quantify the potential size reduction of the pilot sequences when using semi-blind methods that jointly exploit the pilots and data. Our analysis shows that, up to 95% of the pilot samples can be suppressed without affecting the channel estimation performance when such semi-blind solutions are considered. After that, we proposed new methods for semi-blind channel estimation, that allow to approach the CRB. At first, we have proposed a SB estimator, LS-DF which allows a good compromise between performance and numerical complexity. Other SB estimators have also been introduced based on the subspace technique and on the ML approach, respectively. The latter is optimized via an EM algorithm for which three reduced cost versions are proposed. In the case of a specular channel model, we considered a parametric estimation method based on times of arrival estimation combined with the DF technique
Botonjic, Aida. "MIMO kanalmodeler." Thesis, Linköping University, Department of Science and Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2188.
Full textThe objective of this diploma work is to investigate a set of Multiple Input Multiple Output (MIMO) channel models compatible with the emerging IEEE 802.11n standard. This diploma work validates also advanced, innovative tools and wireless technologies that are necessary to facilitate wireless applications while maximizing spectral efficiency and throughput.
MIMO channel models can be used to evaluate new Wireless Local Area Network (WLAN) proposals based on multiple antenna technologies.
The purpose of this thesis is to investigate means of channel models and their implementation in different environments such as: Matlab, C++ and Advanced Design Systems (ADS). The investigation considers also a comparison between the channel models based on theoretical data and parameter setup to the channel models based on statistical characteristics obtained from measured data.
Investigation and comparison of a MIMO channel models consider steering channel matrix H, spatial correlation coefficients, power delay profiles, fading characteristics and Doppler power spectrum.
Choi, Lai U. "Multi-user MISO and MIMO transmit signal processing for wireless communication /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202003%20CHOI.
Full textIncludes bibliographical references (leaves 167-170). Also available in electronic version. Access restricted to campus users.
Ma, Shaodan. "Semi-blind signal detection for MIMO and MIMO-OFDM systems." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36846569.
Full textMa, Shaodan, and 馬少丹. "Semi-blind signal detection for MIMO and MIMO-OFDM systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B36846569.
Full textNegrão, João Lucas. "Efficient detection : from conventional Mimo to massive Mimo communication systems." Universidade Estadual de Londrina. Centro de Tecnologia e Urbanismo. Programa de Pós-Graduação em Engenharia Elétrica, 2018. http://www.bibliotecadigital.uel.br/document/?code=vtls000218370.
Full textThroughout this work, problems related to communication systems equipped with multiple antennas in the transmitter and receiver (MIMO - Multiple-Input Multiple-Output) are analyzed from the point of view of classical detection, nonlinear optimization, as well as linear pre-coding, from conventional MIMO (some Tx and Rx antennas) to large-scale (massive) MIMO systems. Initially, the detection efficiency of several MIMO detectors were analyzed under the prerogative of highly correlated channels, in which situation, MIMO systems present a high loss of performance, and, in some cases, an increasing complexity. Considering this scenario, we have specifically studied the behavior in terms of compromise complexity x bit error rate (BER), for different detection techniques, such as the successive interference cancellation (SIC), lattice reduction (LR), as well as the combination of each of these with linear detection techniques. In this analysis, different uniform antenna structures with uniform linear array (ULA) and planar array array (UPA) were also considered in both transmitter and receiver side. In addition, different number of antennas and order of modulation were also considered. Next, the MIMO detection problem was studied from a nonlinear optimization perspective, specifically aiming to achieve optimum performance. The detection solution with semi-defined relaxation (SDR - it semidefinite relaxation) were analyzed. The SDR-MIMO detector is an efficient approach capable of achieving near-optimal performance, especially for low and medium modulation orders. We focused our efforts on developing a computationally efficient approach for the maximum likelihood (ML) MIMO detection algorithm based on semi-definite programming (SDP) for M-QAM constellations. Finally, we study an optimal power allocation problem aiming to maximizes the sum-rate capacity of a single cell massive MIMO broadcast channel equipped with zero-forcing beamforming (ZFBF) and regularized channel inversion (RCI) precoding at the base station (BS). Our purpose is to investigate this problem in the large-scale system limit, i.e, when the number of users, K, and antennas at the BS, M, tend to infinity with a ratio β = K/M being held constant. We first derive the signal to interference plus noise (SINR) ratio for both chosen precoders. Then we investigate optimal power allocation schemes that maximize the sum-rate per antenna under an average power constraint and we show that the problem is convex and the power allocation follows the well-known Water-Filling strategy. We also studied a problem related to an optimal power allocation at a finite group of clustered users and determine the impact of this scheme in the ergodic sum-rate capacity.
Janhunen, J. (Janne). "Programmable MIMO detectors." Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514296598.
Full textTiivistelmä Usean antennin tekniikka yhdistettynä ortogonaaliseen taajuusvaihtelumodulointiin lähetin-vastaanotimessa on esitetty eräänä lupaavana ratkaisuna jatkuvasti kasvaviin kapasiteetti- ja palvelunlaatuvaatimuksiin langattomissa tietoliikennejärjestelmissä. Tehokas radiospektrin käyttö edellyttää joustavaa lähetin-vastaanotinratkaisua, mikä on ollut syynä ohjelmistoradioteknologioiden kehitykselle. Ohjelmistoradioiden kehityksen on puolestaan odotettu mahdollistavan kognitiiviradioiden syntymisen. Tuloksena, mikä tahansa radiosovellus voitaisiin herättää tarpeen mukaan millä tahansa ohjelmoitavalla sovellusalustalla. Tässä väitöskirjatyössä tutkitaan ilmaisinalgoritmeja sekä ohjelmoitavia prosessoriarkkitehtuureja tarkoituksena löytää käytännöllisiä ratkaisuja tulevaisuuden langattomiin järjestelmiin. Ohjelmoitavalla vastaanottimella voidaan vähentää vastaanottimen energiankulutusta vaihtamalla ilmaisinalgoritmeja vallitsevan kanavatilan mukaan. Työssä esitellään laaja, viimeisintä tutkimusta edustava ilmaisinalgoritmivertailu, joka antaa realistisen näkökannan toteutuksiin erilaisissa kanavatiloissa. Lisäksi työssä esitellään numeroaritmetiikka- ja sananpituustutkimus, jonka tarkoituksena on arvioida toteutusten realistista kovokompleksisuutta sekä energiankulutusta. Tutkimus sisältää kattavan suunnitteluketjun algoritmikehityksestä todelliseen prosessorisuunnitteluun ja lopulta algoritmin ohjelmointiin tietylle sovellusalustalle. Väitöskirjatyössä arvioidaan yksi- ja moniytimisiä prosessoritoteutuksia vertaamalla saavutettuja tuloksia Long Term Evolution -standardin suorituskykyvaatimuksiin. Ilmaisimia toteutetaan digitaalisilla signaaliprosessoreilla, grafiikkaprosessorilla sekä siirtoliipaisuarkkitehtuurilla. Toteutustuloksia vertaillaan laskentatehona, pinta-alana sekä energiatehokkuutena. Lopuksi käsitellään arkkitehtuurien hyviä ja huonoja puolia sekä suunnittelun työläyttä
Basnayaka, Dushyantha. "Macrodiversity MIMO Transceivers." Thesis, University of Canterbury. Electrical and Computer Engineering, 2012. http://hdl.handle.net/10092/7266.
Full textXiao, Hui. "MIMO channel modeling." Thesis, University of York, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.479187.
Full textKančo, Vít. "Simulace MIMO systémů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218624.
Full textBooks on the topic "MIMO"
Monteiro, Mário Ypiranga. Dalila (Mimo). Manaus: Editora da Universidade do Amazonas, 1997.
Find full textMasarykova univerzita v Brně. Ústav slavistiky, ed. Slovensko mimo Slovensko, Slovensko mimo Slovenska: Kolektivní monografie. Brno: Ústav slavistiky Filozofické fakulty Masarykovy univerzity, 2008.
Find full textKumar, Yadwinder, Shrivishal Tripathi, and Balwinder Raj. Multifunctional MIMO Antennas. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003290230.
Full textStaszewski, Stanisław. Tata mimo woli. Warszawa: Wydawnictwo "Kosmos Kosmos", 2014.
Find full textBook chapters on the topic "MIMO"
Ovchinnikov, Andrei, and Sergei Semenov. "MIMO." In Modulation and Coding Techniques in Wireless Communications, 301–49. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470976777.ch8.
Full textRoy, Radhika Ranjan. "MIMO." In Artificial Intelligence-Based 6G Networking, 18–25. New York: Auerbach Publications, 2024. https://doi.org/10.1201/9781003499480-2.
Full textAbbas, Karim. "MIMO." In From Algorithms to Hardware Architectures, 297–343. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08693-9_9.
Full textRao, K. Deergha. "MIMO System." In Channel Coding Techniques for Wireless Communications, 385–421. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0561-4_11.
Full textSeron, María M., Julio H. Braslavsky, and Graham C. Goodwin. "MIMO Control." In Communications and Control Engineering, 85–117. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0965-5_4.
Full textSeron, María M., Julio H. Braslavsky, and Graham C. Goodwin. "MIMO Filtering." In Communications and Control Engineering, 197–209. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0965-5_9.
Full textFang, Song, Jie Chen, and Hideaki Ishii. "MIMO Systems." In Towards Integrating Control and Information Theories, 113–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49289-6_7.
Full textBarry, John R., Edward A. Lee, and David G. Messerschmitt. "MIMO Communications." In Digital Communication, 461–536. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4615-0227-2_10.
Full textLarsson, Erik G., and Emil Björnson. "Massive MIMO." In Encyclopedia of Wireless Networks, 771–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_136.
Full textZhang, Jun. "Network MIMO." In Encyclopedia of Wireless Networks, 983–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_138.
Full textConference papers on the topic "MIMO"
Puerta, Rafael, Armands Ostrovskis, Kristaps Rubuls, Fabio Pittalà, Markus Gruen, Hadrien Louchet, Mahdieh Joharifar, et al. "Approaching Theoretical Performance of 6G Distributed MIMO with Optical Analog Fronthaul." In CLEO: Science and Innovations, SW4N.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sw4n.3.
Full text"Resource Allocation in SVD-assisted Broadband MIMO Systems Using Polynomial Matrix Factorization." In Special Session on Advances in MIMO Communication. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005265403170324.
Full text"Antennas’ Correlation Influence on the GMD-assisted MIMO Channels Performance." In Special Session on Advances in MIMO Communication. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005363603250334.
Full text"Efficient Soft-output Detectors - Multi-core and GPU implementations in MIMOPack Library." In Special Session on Advances in MIMO Communication. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005369503350344.
Full textMelchior, P., C. Inarn, and A. Oustaloup. "Path Tracking Design by Fractional Prefilter Extension to Square MIMO Systems." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87550.
Full textThoma, R. S. "MIMO measurement for double-directional channel modelling." In IEE Seminar MIMO: Communications Systems from Concept to Implementation. IEE, 2001. http://dx.doi.org/10.1049/ic:20010191.
Full textWales, S. W. "A MIMO technique within the UTRA TDD standard." In IEE Seminar MIMO: Communications Systems from Concept to Implementation. IEE, 2001. http://dx.doi.org/10.1049/ic:20010200.
Full textLohse, N. "MIMO signal description for spatial-variant filter generation." In IEE Seminar MIMO: Communications Systems from Concept to Implementation. IEE, 2001. http://dx.doi.org/10.1049/ic:20010206.
Full textWirnitzer, W. "Broadband vector channel sounder for MIMO channel measurement." In IEE Seminar MIMO: Communications Systems from Concept to Implementation. IEE, 2001. http://dx.doi.org/10.1049/ic:20010207.
Full textJungnickel, V. "A MIMO WLAN based on linear channel inversion." In IEE Seminar MIMO: Communications Systems from Concept to Implementation. IEE, 2001. http://dx.doi.org/10.1049/ic:20010210.
Full textReports on the topic "MIMO"
Rabideau, D. J. MIMO Radar Aperture Optimization. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada536191.
Full textKantor, J. M., and S. K. Davis. Airborne MIMO GMTI Radar. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada540557.
Full textBadiey, Mohsen, Aijun Song, and Arthur Trembanis. MIMO Transceiver Systems on AUVs. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada532962.
Full textHaimovich, Alex. Advanced Techniques for MIMO Broadband Communications. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada449036.
Full textZhu, Weijun, and Babak Daneshrad. Throughput Optimization Via Adaptive MIMO Communications. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada451674.
Full textYang, Liuqing, and Jian Li. MIMO-UAC for Rate Enhancement and Range Extension. Fort Belvoir, VA: Defense Technical Information Center, December 2008. http://dx.doi.org/10.21236/ada491511.
Full textLi, Jian. Robust High Data Rate MIMO Underwater Acoustic Communications. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada535636.
Full textLi, Jian. Robust High Data Rate MIMO Underwater Acoustic Communications. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada551223.
Full textLi, Jian. Multi-Input Multi-Output (MIMO) Radar - Diversity Means Superiority. Fort Belvoir, VA: Defense Technical Information Center, October 2008. http://dx.doi.org/10.21236/ada487209.
Full textHaimovich, Alexander M. MIMO Radar: A Multi-Sensor Spatially Diverse Radar Architecture. Fort Belvoir, VA: Defense Technical Information Center, August 2008. http://dx.doi.org/10.21236/ada495118.
Full text