Academic literature on the topic 'Mineral carbonation process'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mineral carbonation process.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mineral carbonation process"
Ramli, Noor Allesya Alis, Faradiella Mohd Kusin, and Verma Loretta M. Molahid. "Influencing Factors of the Mineral Carbonation Process of Iron Ore Mining Waste in Sequestering Atmospheric Carbon Dioxide." Sustainability 13, no. 4 (February 9, 2021): 1866. http://dx.doi.org/10.3390/su13041866.
Full textPrigiobbe, V., M. Hänchen, M. Werner, R. Baciocchi, and M. Mazzotti. "Mineral carbonation process for CO2 sequestration." Energy Procedia 1, no. 1 (February 2009): 4885–90. http://dx.doi.org/10.1016/j.egypro.2009.02.318.
Full textSantos, Rafael M., and Tom Van Gerven. "Process intensification routes for mineral carbonation*." Greenhouse Gases: Science and Technology 1, no. 4 (September 30, 2011): 287–93. http://dx.doi.org/10.1002/ghg.36.
Full textKasina, Monika, Piotr R. Kowalski, and Marek Michalik. "Mineral carbonation of metallurgical slags." Mineralogia 45, no. 1-2 (June 1, 2015): 27–45. http://dx.doi.org/10.1515/mipo-2015-0002.
Full textKoukouzas, N., H. Ziock, F. Ziogou, and I. Typou. "MINERAL CARBONATION AS A POTENTIAL CARBON DIOXIDE STORAGE OPTION FOR THE REGION OF WESTERN MACEDONIA, GREECE." Bulletin of the Geological Society of Greece 40, no. 2 (January 1, 2007): 872. http://dx.doi.org/10.12681/bgsg.16735.
Full textIbrahim, Mohamed, Muftah El-Naas, Abdelbaki Benamor, Saad Al-Sobhi, and Zhien Zhang. "Carbon Mineralization by Reaction with Steel-Making Waste: A Review." Processes 7, no. 2 (February 24, 2019): 115. http://dx.doi.org/10.3390/pr7020115.
Full textKremer, Dario, Simon Etzold, Judith Boldt, Peter Blaum, Klaus M. Hahn, Hermann Wotruba, and Rainer Telle. "Geological Mapping and Characterization of Possible Primary Input Materials for the Mineral Sequestration of Carbon Dioxide in Europe." Minerals 9, no. 8 (August 13, 2019): 485. http://dx.doi.org/10.3390/min9080485.
Full textDu Breuil, Clémence, Louis César-Pasquier, Gregory Dipple, Jean-François Blais, Maria Iliuta, and Guy Mercier. "Mineralogical Transformations of Heated Serpentine and Their Impact on Dissolution during Aqueous-Phase Mineral Carbonation Reaction in Flue Gas Conditions." Minerals 9, no. 11 (November 3, 2019): 680. http://dx.doi.org/10.3390/min9110680.
Full textAyub, Syifa Afiza, Haylay Tsegab, Omeid Rahmani, and Amin Beiranvand Pour. "Potential for CO2 Mineral Carbonation in the Paleogene Segamat Basalt of Malaysia." Minerals 10, no. 12 (November 24, 2020): 1045. http://dx.doi.org/10.3390/min10121045.
Full textReynes, Javier F., Guy Mercier, Jean-François Blais, and Louis-César Pasquier. "Feasibility of a Mineral Carbonation Technique Using Iron-Silicate Mining Waste by Direct Flue Gas CO2 Capture and Cation Complexation Using 2,2′-Bipyridine." Minerals 11, no. 4 (March 26, 2021): 343. http://dx.doi.org/10.3390/min11040343.
Full textDissertations / Theses on the topic "Mineral carbonation process"
Park, Ah-Hyung Alissa. "Carbon dioxide sequestration chemical and physical activation of aqueous carbonation of Mg-bearing minerals and pH swing process /." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1124272324.
Full textTitle from first page of PDF file. Document formatted into pages; contains xx, 176 p.; also includes graphics (some col.). Includes bibliographical references (p. 169-176). Available online via OhioLINK's ETD Center
Sauerbronn, Wilhelm Malheiros. "Avaliação do potencial mineral de rochas metabásicas e metaultramáficas da faixa Itapira-Amparo para uso em processo de carbonatação mineral no sequestro de CO2 /." Rio Claro : [s.n.], 2008. http://hdl.handle.net/11449/92759.
Full textAbstract: Greenhouse effect gas emission reduction has been a great technological challenge to the industrial models standings. Furthermore, the clean development mechanism (CDM) and CO2 sequestration are fundamental on sustainable development in order to reach safer levels of CO2. Nowadays, innovate researchers have also considered the CO2 sequestration by mineral carbonatation, where silicates rich in Mg, Ca and Fe are transformed into carbonates. Nearby to the industrial district of Paulinia (São Paulo), high grade metabasic and ultramaphics rocks of Amparo-Itapira Complex occur. The metamorphic rocks consisting of amphibolites, actinolite-schist and hornblend-rich amphibolite are found intercalated with quartz-feldspatic rocks as lenticular layers. The ultramafic rocks present as discontinuous massive bodies are rich in olivine, pyroxene and amphibole. Carbon sequestrating potential of two selected areas, based on petrographic and litogeochemical analyses are estimated to be capable of capturing approximately 73 x 106 tons of CO2.
Orientador: Maria Rita Caetano Chang
Coorientador: Chang Hung Kiang
Banca: Didier Gastmans
Banca: Luis Tadeu Furlan
Mestre
Sauerbronn, Wilhelm Malheiros [UNESP]. "Avaliação do potencial mineral de rochas metabásicas e metaultramáficas da faixa Itapira-Amparo para uso em processo de carbonatação mineral no sequestro de CO2." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/92759.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A redução das emissões de gases de efeito estufa representa um grande desafio tecnológico aos modelos industriais vigentes. Neste sentido, os mecanismos de desenvolvimento limpo (MDL’s) e o seqüestro de CO2 fundamentam os planos de crescimento sustentável. Atualmente, inovadoras pesquisas consideram também o seqüestro de CO2 por meio da carbonatação mineral, onde minerais silicáticos ricos em magnésio, cálcio, ferro e manganês são convertidos em carbonatos, por meio de reações com o CO2 em estado supercrítico ou em solução. Nas proximidades do distrito industrial de Paulínia (SP), ocorrem rochas metabásicas e metaultramáficas relacionadas aos Complexos Amparo e Itapira, que representam terrenos metamórficos de grau médio a alto. Nessa área as metabásicas são representadas por anfibolitos, actinolita-xistos e hornblenditos, e são encontradas sob a forma de lentes ou camadas estiradas intercaladas a rochas quartzo-feldspáticas. As metaultramáficas ocorrem em corpos pequenos e descontínuos, muitas vezes de estrutura maciça e composição mineralógica rica em olivina, piroxênio e anfibólio. O potencial destas rochas, em duas áreas selecionadas, foi avaliado para uso em processos de carbonatação mineral, com base em análises petrográficas e litogeoquímicas, fornecendo valores da ordem 73 x 106 toneladas de CO2 seqüestrável.
Greenhouse effect gas emission reduction has been a great technological challenge to the industrial models standings. Furthermore, the clean development mechanism (CDM) and CO2 sequestration are fundamental on sustainable development in order to reach safer levels of CO2. Nowadays, innovate researchers have also considered the CO2 sequestration by mineral carbonatation, where silicates rich in Mg, Ca and Fe are transformed into carbonates. Nearby to the industrial district of Paulinia (São Paulo), high grade metabasic and ultramaphics rocks of Amparo-Itapira Complex occur. The metamorphic rocks consisting of amphibolites, actinolite-schist and hornblend-rich amphibolite are found intercalated with quartz-feldspatic rocks as lenticular layers. The ultramafic rocks present as discontinuous massive bodies are rich in olivine, pyroxene and amphibole. Carbon sequestrating potential of two selected areas, based on petrographic and litogeochemical analyses are estimated to be capable of capturing approximately 73 x 106 tons of CO2.
Vieira, Kely Regina Maximo [UNESP]. "Estudo da reação de dissolução de serpentinitos brasileiros para uso em processo de captura de carbono." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/137863.
Full textRejected by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: O arquivo submetido está sem a ficha catalográfica. A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação. Corrija estas informações e realize uma nova submissão contendo o arquivo correto. Agradecemos a compreensão. on 2016-04-07T20:05:13Z (GMT)
Submitted by KELY REGINA MAXIMO VIEIRA null (kely_eng@hotmail.com) on 2016-04-07T20:34:23Z No. of bitstreams: 1 Dissertação Kely UNESP FEG.pdf: 6196946 bytes, checksum: bf09868facff4fd8869dde5f2fcde047 (MD5)
Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-04-08T16:21:52Z (GMT) No. of bitstreams: 1 vieira_krm_me_guara.pdf: 6196946 bytes, checksum: bf09868facff4fd8869dde5f2fcde047 (MD5)
Made available in DSpace on 2016-04-08T16:21:52Z (GMT). No. of bitstreams: 1 vieira_krm_me_guara.pdf: 6196946 bytes, checksum: bf09868facff4fd8869dde5f2fcde047 (MD5) Previous issue date: 2016-03-08
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Nesta dissertação, investiga-se a reação de dissolução ácida de rochas silicatos brasileiras visando a aplicação em um processo de captura e sequestro de carbono denominado por Carbonatação Mineral. Na carbonatação mineral pela rota indireta utiliza-se ácidos, bases ou sais de amônia para a extração do magnésio, principalmente, presente na rocha silicato a fim de a formar carbonatos estáveis. Destaca-se que a etapa de dissolução ácida é uma fase limitante para o processo de carbonatação mineral, principalmente por apresentar baixa taxa de reação. O objetivo deste trabalho é utilizar o ácido clorídrico (HCl) e dois serpentinitos oriundos do estado de Goiás e Minas Gerais para avaliar o processo de dissolução ácida. Os serpentinitos foram preparados, selecionados e caracterizados para determinar a composição elementar. Aplicou-se o planejamento experimental e arranjo L9 de Taguchi na avaliação dos fatores que influenciam o processo de dissolução, tais como, temperatura do processo, concentração do HCl, tamanho médio das partículas da matéria prima e excesso de ácido. Os 9 ensaios previstos na matriz de planejamento para cada serpentinito foram executados de forma aleatória e em duplicata. Os produtos finais, resíduo sólido retido no papel filtro e solução contendo os elementos de interesse, foram analisados obtendo-se a composição elementar das soluções. Considerando-se os testes previstos na matriz de planejamento, a condição de melhor ajuste para extração de Mg foi utilizando-se a granulometria média de 69 µm, temperatura de 70°C, HCl 2 M com quatro vezes a quantidade estequiométrica. Nas soluções foram obtidas as concentrações de 29 % e 76 % de Mg para as amostras de serpentinito de Minas Gerais e de Goiás, respectivamente. Foram também avaliadas as melhores condições para extração de Fe e Ca e menor extração de Si, uma vez que o Si diminui a conversão no processo. Na análise estatística verificou-se que para a amostra de Minas Gerais todos os fatores apresentaram significância. No caso da a amostra de Goiás a temperatura no nível alto (70°C) apresentou maior significância.
In this dissertation, acid dissolution reaction of Brazilian silicate rocks was investigated aiming the implementation in a Carbon Capture and Storage process named Mineral Carbonation. In the mineral carbonation by indirect route, acids, bases or salts of ammonia are used for magnesium extraction, mainly, present in the silicate rock in order to form stable carbonates. It is noteworthy that the acid dissolution step is a limiting step in the process of mineral carbonation, mainly because of its low reaction rate. The objective of this study was to use hydrochloric acid (HCl) and two serpentinites from Goiás and Minas Gerais states to evaluate the acid dissolution process. The serpentinites were prepared, selected, and characterized to determine the elemental composition. The L9 experimental design and Taguchi arrangement were applied to evaluate the factors that influence in the dissolution process, such as process temperature, HCl concentration, average particle size of material and acid excess. The nine tests prescribed in planning matrix for each serpentinite were performed at random and in duplicate. The end products, solid residue retained on the filter paper and the solution containing the elements of interest were analyzed obtaining the elemental composition of the solutions. Considering the prevised tests on planning matrix, the best adjust condition for Mg extraction was using the average particle size of 69 µm temperature of 70°C, 2 M HCl with four times the stoichiometric amount. In the solutions, the concentrations obtained were 29 % and 76 % Mg for samples of serpentinite from Minas Gerais and Goiás, respectively. The best conditions for the extraction of Fe and Ca and lower extraction of Si were evaluated, since Si decreases the conversion in the process. In the statistical analysis was found that in Minas Gerais sample all factors were significant. In the case of Goiás sample, the temperature at the high level (70°C) showed greater significance.
Ghoorah, Manisha. "Investigating the suitability of the weak acid process for carbon dioxide mineralisation." Thesis, 2014. http://hdl.handle.net/1959.13/1051155.
Full textMineral carbonation represents a potentially suitable CO₂ abatement strategy for a country such as Australia, particularly the state of New South Wales, which is devoid of suitable geological sinks within 500 km from the cluster of coal-fired power stations but possesses ample feedstock, in the form of magnesium silicate deposits, to capture CO₂ over an estimated 300 years. This thesis examines the weak acid process, commonly known as the acetic acid route that basically encompasses the dissolution of wollastonite or serpentinite in a weak acid and subsequently carbonation with concomitant recycling of the acid. The initial phase of the study compares the efficiency of 0.1 M aqueous solutions of acetic, formic and DL-lactic acids as Ca²⁺ leaching agents from wollastonite (volume mean diameter = 17μm between 20 and 80 °C for 3 h. Metal ion analysis of the leachate, afforded on inductively coupled plasma-optical spectroscopy, revealed formic acid as being the most effective at 80 °C, in terms of extraction and rate of dissolution. Experimental calcium yields and solution pH values agree with thermodynamic predictions from OLI Analyzer Studio 3.0. Formic acid registered nearly complete extraction within 20 min, whereas acetic and DL-lactic acids achieved 60-70 % yield in the same lapse of time and temperature. The corresponding rates amount to 26(±7)x10-5, 14(±3)x10-5 and 17(±4)x10-5 mol m⁻² s⁻¹ for formic, acetic and DL-lactic acids, respectively. These results indicate an initial diffusion limitation in the silica layer formed around wollastonite particles for formic acid and a kinetic limitation for the other two acids. Scanning electron microscopic images provide further evidence for the effectiveness of formic acid on the basis of enhanced crazing in the silica layer. Additionally, the extractive process involving formic and acetic acids were modelled with ash/inert layer diffusion control and surface chemical reactions control standard shrinking core models, respectively, but the latter failed to fit experimental data. A modified version that incorporates a ‘variable activation energy’ term accounting for the occurrence of a complex network of reactions as well as varying conversion rates, successfully described dissolution in the weakly acidic media. An order of reaction of 0.45 was found to be the best fit for both cases pointing to mixed order reactions that comprise several elementary reactions. The next stage investigates the dissolution of partially and fully hydrated serpentinite specimens in 0.1 M formic acid at 80 °C Extraction was found to be dependent on particle size and degree of heat activation. Magnesium yields attained 42 % from the -25 μm forsterite-lizardite containing sample activated at 700 °C (29 % residual OH) and 66 % from the fully serpentinised antigorite mineral, which was pulverised to a particle size of -53 μm and conditioned at 720 °C (36 % residual OH). Heat treatment of lizardite and antigorite between 500 and 800 °C engenders the generation of amorphised material, forsterite and silica; enstatite forms from the amorphised material and silica at temperature exceeding 800 °C. Semi-quantitative X-ray diffraction, coupled with Fourier transform infrared spectroscopy, demonstrated that both forsterite and amorphous phases dissolve in the weak acid. However, the growth of amorphous silica formed either during forsterisation at elevated temperature or as a result of magnesium extraction, inhibits further dissolution. The complexity of carbonation in a weakly acidic medium and acid recycling constitute the focus of the last part of this study. The backbone of the acetic acid route consists of the assumption that acetic acid, with a pKa of 4.76 is weak enough to be displaced by carbonic acid (pKa1 6.4) and hence be recycled during carbonate precipitation. However, the thermodynamic framework OLI Studio Analyser 3.2 predicts that acetic acid remains stronger than carbonic acid over a temperature and pressure range of 25-200 °C and 10-200 bar, thus rendering recycling impractical. The pKa1 of carbonic varies, as function of temperature and pressure, between 6.2 and 7.2 while that of acetic acid reaches a maximum value of 5.5 from the initial 4.76. Even though dissolution yields can be maximised by using formic acid, finer particle sizes and heat activation, carbonation is unfeasible owing to the solubility of carbonates in acids. Inducing their precipitation through the addition of a base would impose additional financial burden on the process, unless chemicals are regenerated. The simulation software also shows that dissolution and carbonation of wollastonite in plain water is thermodynamically favourable at elevated, but achievable, temperatures (100 °C) and relatively low pressures (10-30 bar), which could compensate for pH swings.
"Mineral carbon dioxide sequestration: Enhancing process kinetics and a resource base assessment for minerals suitable for use in enhanced carbonation processes." COLUMBIA UNIVERSITY, 2009. http://pqdtopen.proquest.com/#viewpdf?dispub=3348434.
Full text(9820127), Shadia Moazzem. "Reduction of CO² emissions in coal-fired power plants for achieving a sustainable environment." Thesis, 2012. https://figshare.com/articles/thesis/Reduction_of_CO_emissions_in_coal-fired_power_plants_for_achieving_a_sustainable_environment/13460243.
Full textBook chapters on the topic "Mineral carbonation process"
Prentice, Dale, Iman Mehdipour, Gabriel Falzone, Stephen Raab, Dante Simonetti, and Gaurav Sant. "Field Demonstration of the Reversa™ Mineral Carbonation Process Using Coal and Natural Gas Flue Gas Streams." In The Minerals, Metals & Materials Series, 589–94. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92563-5_62.
Full textYeo, Tze Yuen, and Jie Bu. "MC Process Scale and Product Applications." In CO2 Sequestration by Ex-Situ Mineral Carbonation, 133–65. WORLD SCIENTIFIC (EUROPE), 2016. http://dx.doi.org/10.1142/9781786341600_0005.
Full textHANCHEN, M., M. DUSSELDORF, M. MAZZOTTI, T. SEWARD, and G. STORTI. "Kinetic study of silicate dissolution for the mineral carbonation process." In Greenhouse Gas Control Technologies 7, 2411–14. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044704-9/50343-8.
Full textAhn, J. H., K. S. Choi, H. Kim, S. H. Yoon, J. S. Kim, G. W. Sung, and K. H. Lee. "Synthesis of aragonite by the carbonation process using stainless refining dust in iron & Steel plants." In Developments in Mineral Processing, C6–29—C6–35. Elsevier, 2000. http://dx.doi.org/10.1016/s0167-4528(00)80043-5.
Full textConference papers on the topic "Mineral carbonation process"
Magbitang, Riza A., and Rheo B. Lamorena-Lim. "Mineral carbonation process of rocks from ophiolite complexes during the CO2-purged aqueous solutions exposure." In Annual International Conference on Chemistry, Chemical Engineering and Chemical Process. Global Science & Technology Forum (GSTF), 2013. http://dx.doi.org/10.5176/2301-3761_ccecp.38.
Full textZeng, Lingping, Mohammad Sarmadivaleh, Ali Saeedi, Ahmed Al-Yaseri, Claire Dowling, Glen Buick, and Quan Xie. "Thermodynamic Modelling on Wellbore Cement Integrity During Underground Hydrogen Storage in Depleted Gas Reservoirs." In SPE Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210639-ms.
Full textZachary, Justin, and Harvey Wen. "CO2 Sequestration by Conventional and Alternative Means." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22318.
Full textTillmann, W., and A. Brinkhoff. "Influence of Spraying Parameters on the Diamond Decomposition of HVOF-sprayed Nickel-Diamond Coatings." In ITSC2018, edited by F. Azarmi, K. Balani, H. Li, T. Eden, K. Shinoda, T. Hussain, F. L. Toma, Y. C. Lau, and J. Veilleux. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.itsc2018p0799.
Full textReports on the topic "Mineral carbonation process"
Michael J. McKelvy, Andrew V. G. Chizmeshya, Kyle Squires, Ray W. Carpenter, and Hamdallah Bearat. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/895921.
Full textAndrew V. G. Chizmeshya, Michael J. McKelvy, Kyle Squires, Ray W. Carpenter, and Hamdallah Bearat. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/924162.
Full textMichael J. McKelvy, Andrew V.G. Chizmeshya, Kyle Squires, Ray W. Carpenter, and Hamadallah Bearat. A NOVEL APPROACH TO MINERAL CARBONATION: ENHANCING CARBONATION WHILE AVOIDING MINERAL PRETREATMENT PROCESS COST. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/860811.
Full textM.J. McKelvy, J. Diefenbacher, R. Nunez, R.W. Carpenter, and A.V.G. Chizmeshya. SIMULTANEOUS MECHANICAL AND HEAT ACTIVATION: A NEW ROUTE TO ENHANCE SERPENTINE CARBONATION REACTIVITY AND LOWER CO2 MINERAL SEQUESTRATION PROCESS COST. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/840464.
Full textRueda Ramos, Laura. ESTUDIO PETROGRÁFICO Y GÉNESIS DE LAS CONCRECIONES CARBONÁTICAS (SEPTARIAS) DE LA CAPA DE MARGAS DE ALCORLO (TURONIENSE MEDIO) EN EL SINCLINAL DE TORTUERO (GUADALAJARA, ESPAÑA). Ilustre Colegio Oficial de Geólogos, July 2022. http://dx.doi.org/10.21028/lrr.2022.07.04.
Full text