Academic literature on the topic 'Mineralization rate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mineralization rate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mineralization rate"

1

DAS, BHABANI S., GERARD J. KLUITENBERG, and GRAY M. PIERZYNSKI. "TEMPERATURE DEPENDENCE OF NITROGEN MINERALIZATION RATE CONSTANT." Soil Science 159, no. 5 (May 1995): 294–300. http://dx.doi.org/10.1097/00010694-199505000-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yi, Haihe, and Chun-xiang Qian. "The Influence of Microbial Agent on the Mineralization Rate of Steel Slag." Advances in Materials Science and Engineering 2018 (December 25, 2018): 1–10. http://dx.doi.org/10.1155/2018/5048371.

Full text
Abstract:
Bacteria-based mineralization is a new technique to use the steel slag. In this article, an experimental examination was performed to find out the steel slag advancement by the addition of the microbial agent that has the possibility to accelerate mineralization ability of bacteria. It is observed that, under natural and CO2 pressure curing conditions, the carbonation rate is significantly raised when microorganisms are added to the steel slag. The increased ratio of microorganisms leads to a better carbonation rate. The reaction products formed by bacteria mineralization were analyzed with the scanning electron microscope (SEM) and X-ray diffraction (XRD), and the amount of reaction products was examined by thermogravimetric analysis. The results show that the compressive strength and carbonation speed rose with the increase in microorganism content. Bacterial could accelerate the rate of carbon sequestration in the mineralization process. The compressive strength of steel slag with 1.5% bacterial could reach up to 51.5 MPa. The micron-sized and roughness mineralization product induced by microorganisms apparently resulted in a denser and compacted structure. The carbon depth increased by 50%, and the content of calcite increased by 3 times. These mineralization products would fill in the pore of steel slag cementitious materials and form the integrated and denser structure which produces more strength.
APA, Harvard, Vancouver, ISO, and other styles
3

Tanck, E., M. E. van Dijk, R. J. Errington, L. Blankevoort, E. H. Burger, and R. Huiskes. "PROPOSAL FOR THE EFFECT OF CHONDROCYTE VOLUME ON THE MINERALIZATION RATE." Journal of Musculoskeletal Research 05, no. 01 (March 2001): 37–44. http://dx.doi.org/10.1142/s0218957701000404.

Full text
Abstract:
Mineralization of the cartilage matrix in embryonic long bones and growth plates is preceded by hypertrophy of chondrocytes. We hypothesize that the swollen hypertrophic cells exert pressure on the matrix, and that this pressure plays a role in the cartilage mineralization process. For this study, we asked the following questions. First, does the ratio of cell volume to matrix volume (CV/MV) increase from the proliferation to the hypertrophic zone in embryonic long bones? Second, is there a correlation between cell-volume increase and the mineralization rate in embryonic and postnatal long bones? The CV/MV ratios in the proliferation and hypertrophic zones in embryonic mouse metatarsals at 17 days of gestational age were determined using morphometric analyses. Confocal laser scanning microscopy was used to determine chondrocyte volumes. Cell volumes in the proliferation and hypertrophic zones of embryonic mouse metatarsals at 17 days of gestational age were compared to the ones in the metatarsal growth plates of nine-day-old mice. The mineralization rate was determined using photographs at 24-hour intervals. The CV/MV increased significantly from the proliferation to the hypertrophic zone, from 1.30±0.15 (mean ± standard deviation) to 1.80±0.18. The relative increase in cell volume from the proliferation to the hypertrophic zone was 1.6 for embryonic cells, i.e. from 370±101 mm3 to 610±107 mm3, and 2.8 for postnatal cells, i.e. from 280±41 mm3 to 786±155 mm3(p<0.05). The mineralization rate was 295±47mm/24 hours and 382±149 mm/24 hours for embryonic and postnatal metatarsals, respectively (p<0.05). The finding that chondrocyte volume increase is accompanied by a higher mineralization rate supports the hypothesis that cell hypertrophy plays an important role during the mineralization process.
APA, Harvard, Vancouver, ISO, and other styles
4

Matos, Antonio T., Isabela C. C. Diniz, Mateus P. Matos, Alisson C. Borges, and Adriana A. Pereira. "Degradation rate of anaerobically digested sewage sludge in soil." Journal of Water, Sanitation and Hygiene for Development 8, no. 1 (November 16, 2017): 17–26. http://dx.doi.org/10.2166/washdev.2017.138.

Full text
Abstract:
Abstract The objective of this study was to monitor the degradation and obtain the mineralization fraction of anaerobically digested sludge, also known as digestate, under field conditions, when applied to the surface or incorporated into the soil. Sludge was applied to a dystrophic Inceptisol at a dose of 500 kg ha–1 yr–1 of total nitrogen, where the monitoring period of the mineralization process lasted 131 days. Samples of the soil-residue mixture were collected for analysis of the total organic carbon (TOC) and easily oxidizable organic carbon (OOC), total, ammonia, nitrate and organic nitrogen (ON). The annual mineralization fractions of the digestate, estimated based on the difference between the initial and final contents of TOC, OOC and ON in samples of the material collected, were 99.5 and 100%, respectively, when incorporated with the soil or applied to the soil surface.
APA, Harvard, Vancouver, ISO, and other styles
5

Andresen, L. C., S. Bode, A. Tietema, P. Boeckx, and T. Rütting. "Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought." SOIL Discussions 1, no. 1 (November 18, 2014): 803–26. http://dx.doi.org/10.5194/soild-1-803-2014.

Full text
Abstract:
Abstract. Monomeric organic nitrogen (N) such as free amino acids (fAA) is an important resource for both plants and soil microorganisms and is, furthermore, a source of ammonium (NH4+) via microbial fAA mineralization. We compared gross fAA dynamics with gross N mineralization in a Dutch heathland soil using 15N labelling. A special focus was made on the effects of climate change factors warming and drought, followed by rewetting. Our aims were to: (1) compare fAA mineralization (NH4+ production from fAAs) with gross N mineralization, (2) assess gross fAA production rate (depolymerization) and turnover time relative to gross N mineralization rate, and (3) assess the effects of warming and drought on these rates. The turnover of fAA in the soil was ca. 3 h, which is almost two orders of magnitude faster than that of NH4+ (i.e. ca. 4 days). This suggests that fAAs is an extensively used resource by soil microorganisms. In control soil (i.e. no climatic treatment), the gross N mineralization rate (10 ± 2.9 μg N g−1 day−1) was eight-times smaller than the summed gross fAA production rate of five AAs (alanine, valine, leucine, isoleucine, proline: 127.4 to 25.0 μg N g−1 day−1). Gross fAA mineralization (3.4 ± 0.2 μg N g−1 day−1) contributed by 34% to the gross N mineralization rate and is, thus, an important component of N mineralization. In the drought treatment, gross fAA production was reduced by 65% and gross fAA mineralization by 41%, compared to control. On the other hand, gross N mineralization was unaffected by drought, indicating an increased mineralization of other soil organic nitrogen (SON) components. Warming did not significantly affect N transformations, even though that gross fAA production was more than halved. Overall our results suggest that heathland soil exposed to droughts has a shift in the composition of the SON being mineralized. Furthermore, compared to agricultural soils, fAA mineralization was relatively less important in the investigated heathland. This indicates a more complex mineralization dynamics in semi-natural ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
6

Shin, Jae-Hoon, Sang-Min Lee, and Byun-Woo Lee. "Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments in Upland Soil." Korean Journal of Soil Science and Fertilizer 48, no. 6 (December 31, 2015): 751–60. http://dx.doi.org/10.7745/kjssf.2015.48.6.751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Andresen, L. C., S. Bode, A. Tietema, P. Boeckx, and T. Rütting. "Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought." SOIL 1, no. 1 (April 14, 2015): 341–49. http://dx.doi.org/10.5194/soil-1-341-2015.

Full text
Abstract:
Abstract. Monomeric organic nitrogen (N) compounds such as free amino acids (FAAs) are an important resource for both plants and soil microorganisms and a source of ammonium (NH4+) via microbial FAA mineralization. We compared gross FAA dynamics with gross N mineralization in a Dutch heathland soil using a 15N tracing technique. A special focus was made on the effects of climate change factors warming and drought, followed by rewetting. Our aims were to (1) compare FAA mineralization (NH4+ production from FAAs) with gross N mineralization, (2) assess gross FAA production rate (depolymerization) and turnover time relative to gross N mineralization rate, and (3) assess the effects of a 14 years of warming and drought treatment on these rates. The turnover of FAA in the soil was ca. 3 h, which is almost 2 orders of magnitude faster than that of NH4+ (i.e. ca. 4 days). This suggests that FAA is an extensively used resource by soil microorganisms. In control soil (i.e. no climatic treatment), the gross N mineralization rate (10 ± 2.9 μg N g−1 day−1) was 8 times smaller than the total gross FAA production rate of five AAs (alanine, valine, leucine, isoleucine, proline: 127.4 to 25.0 μg N g−1 day−1). Gross FAA mineralization (3.4 ± 0.2 μg N g−1 day−1) contributed 34% to the gross N mineralization rate and is therefore an important component of N mineralization. In the drought treatment, a 6–29% reduction in annual precipitation caused a decrease of gross FAA production by 65% and of gross FAA mineralization by 41% compared to control. On the other hand, gross N mineralization was unaffected by drought, indicating an increased mineralization of other soil organic nitrogen (SON) components. A 0.5–1.5 °C warming did not significantly affect N transformations, even though gross FAA production declined. Overall our results suggest that in heathland soil exposed to droughts a different type of SON pool is mineralized. Furthermore, compared to agricultural soils, FAA mineralization was relatively less important in the investigated heathland. This indicates more complex mineralization dynamics in semi-natural ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
8

Hartz, T. K., and J. P. Mitchell. "607 Estimation of N Mineralization Rate of Composts and Manures." HortScience 34, no. 3 (June 1999): 552A—552. http://dx.doi.org/10.21273/hortsci.34.3.552a.

Full text
Abstract:
The rate of N mineralization from 35 samples of manure or compost was estimated by both aerobic laboratory incubation and lath house pot studies at Davis, Calif., in 1996–97. Each manure and compost sample was mixed at 2% by dry weight with a 1 loam soil: 1 coarse sand blend. The amended soil blends were moisture equilibrated under 0.025-MPa pressure then incubated aerobically at constant moisture at 25 °C for 3 (1996) or 6 months (1997); subsamples were collected monthly (1996) or bimonthly (1997) for mineral N determination. Four-liter pots were also filled with the amended soil blends and seeded with fescue (Festuca arundinacea). The pots were watered but not fertilized for 16 (1996) or 18 (1997) weeks in a lath house at ambient summer conditions. N mineralization from the pot study was calculated from total fescue biomass N plus mineral N from pot leachate, minus those quantities in pots of the unamended soil blend. N mineralization rate estimates from the two techniques were highly correlated (r2 = 0.79). Green waste composts typically mineralized <5% of total N, manure composts 5% to10%, and manures (poultry, dairy, and feedlot) 7% to 20%. After 4 months of incubation, N mineralization rate (expressed as percent of total N per month) from the composts and manures was similar to that of the unamended soil blend.
APA, Harvard, Vancouver, ISO, and other styles
9

Sierra, J. "Relationship between mineral N content and N mineralization rate in disturbed and undisturbed soil samples incubated under field and laboratory conditions." Soil Research 30, no. 4 (1992): 477. http://dx.doi.org/10.1071/sr9920477.

Full text
Abstract:
An investigation of in situ N mineralization, using undisturbed soil samples, indicated a negative relationship between the mineral N content [(NO3+NH4)-N] at the beginning of the experiment and the mineral N produced during it. This suggests that a maximum value of mineral N accumulation in intact soil cores could be calculated from the relationship between mineral N content and N mineralization rate. This value would be related to the size of the mineralizable N pool. If this hypothesis is true, the amount of mineralizable N could be estimated from in situ incubations and utilized in the modelling of N mineralization in the field. The aim of this work was to verify this hypothesis. The relationship between the mineral N content and the N mineralization rate was analysed for in situ and laboratory incubations of disturbed and undisturbed soil samples. A negative relationship between the two variables was only obtained for the experiments carried out with undisturbed samples (in the field and laboratory incubations) when the soil moisture content was not limiting for N mineralization. Futhermore, in undisturbed samples, a negative relationship between mineralization rates of consecutive incubation periods was observed, i.e. the soil sample producing relatively more, during a given period, produced relatively less in the following period. This relationship suggests a feedback mechanism operating in N mineralization which would be related to a mineralization-immobilization process in soil microsites. Thus, the N mineralization pattern was more complex than that described by initial hypothesis. The possible consequence of this feedback mechanism on in situ N dynamics is discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Cardoso, Rosileyde Golçalves Siqueira, Adriene Woods Pedrosa, Mateus Cupertino Rodrigues, Ricardo Henrique Silva Santos, Paulo Roberto Cecon, and Herminia Emilia Prieto Martinez. "Decomposition and nitrogen mineralization from green manures intercropped with coffee tree." Coffee Science 13, no. 1 (May 15, 2018): 23. http://dx.doi.org/10.25186/cs.v13i1.1344.

Full text
Abstract:
The knowledge about the rate of decomposition and nitrogen mineralization of green manures provides synchronization with the higher absorption stage by the coffee tree. The rate of decomposition and nitrogen mineralization varies according to the species of green manure and with the environmental factors. The aim of the present study was to evaluate the decomposition and nitrogen mineralization of two green manures intercropped with coffee trees for three different periods. The experiment was divided into two designs for statistical analysis, one referring to the characterization of plant material (fresh mass, dry matter, dry matter content, nitrogen concentration and accumulation in the jack bean (Canavalia ensiformis) and hyacinth bean (Dolichos lablab) and another to evaluate the rate of decomposition and N mineralization of these species. The decomposition rate decreased in both species as their growth time increased in the field. The decomposition was influenced by the phenology of green manures. Nitrogen mineralization of the jack bean decreased as the growth period in the field increased and was faster than hyacinth bean only when cut at 60 days. The N mineralization was slower than mass decomposition in both species.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mineralization rate"

1

Fitzgerald, Lydia A. "EFFECT OF BEDDING TYPE AND SOIL INCORPORATION ON NITROGEN MINERALIZATION RATE OF BROILER LITTER AMENDED SOILS." UKnowledge, 2019. https://uknowledge.uky.edu/pss_etds/123.

Full text
Abstract:
Broiler litter (BL) is a high value manure available to Kentucky crop producers to utilize as a fertilizer. The rate of BL application, timing of application, and method of application are all important factors to take into account when utilizing BL. A laboratory incubation was conducted to observe nitrogen (N) mineralization rates of BL amended soils over time under different conditions. Different application methods, application rates, watering frequencies, and bedding materials were used to determine their influence on N mineralization. Broiler litter applied on the soil surface, at lower rates, at lower watering frequency resulted in lower mineralization rates than BL that was incorporated, at higher rates and higher watering frequency. The rice hull bedding BL treatments had a significantly higher initial amount of NH4+-N than the wood-based bedding materials. The increased NH4+-N content produced a lower pH due to higher rates of nitrification. The difference in NH4+-N resulted in the rice hull BL treatments containing more inorganic N throughout the incubation. The wood-based BL contained significantly more carbon (C), zinc (Zn), and potassium (K). The results collected will help improve current nutrient recommendations and provide information that will help utilize BL more efficiently and economically.
APA, Harvard, Vancouver, ISO, and other styles
2

Samuelsson, Catrin. "Mineralization rates of organic matter in freshwater sediments when different electron acceptors dominate." Thesis, Linköping University, Department of Thematic Studies, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2417.

Full text
Abstract:

Microbial decomposition of organic matter in aquatic environments plays an important role in natural fluxes of methane and carbon dioxide because the gases are end-products in microbial energy metabolism of organic matter. Microbial metabolism depends on the use of electron donors and electron acceptors in redox reactions that generate energy for growth and maintenance. Energy yields can be used to envisage specific patterns of microbial redox reactions and these predictions depend on the hypothesis that, in a specified environment, the metabolic reaction that yields most energy will dominate over any competing reactions. The energy yield hypothesis indicates a sequential order in electron acceptor use by microbes and also make it tempting to conclude that degradation rate of organic matter is different depending on available electron acceptors. The main purpose of this thesis was to study how the presences of different electron acceptors in freshwater sediments influence organic matter decomposition. Mineralization rates of organic matter under six different conditions regarding the electron acceptor availability were investigated in a river sediment sample from Stångån, Sweden, by measuring carbon dioxide and methane production using gas chromatography. This was done during a fixed time period, in vials containing a mixture of water, sediment, buffer solution and a dominating electron acceptor. Six different metabolic processes; aerobic respiration, denitrification, manganese reduction, iron reduction, sulphate reduction and methanogenesis were included. The overall result indicates similar mineralization rates in both oxic and anoxic treatments. The result also indicates that methane formation was present in the iron reduction and methanogenesis treatments and not evident in the oxic treatments. Sulphate reduction, denitrification and manganese reduction seems to inhibit methanogenesis, but the result also indicates that no significant total mineralization was apparent when NO3- and Mn(IV) were the dominating electron acceptors. The similarities between oxic and anoxic mineralization rates indicates that organic matter degradation rates are not dependent on available electron acceptors and that degradation rates of organic matter are independent of the thermodynamically based energy yield.

APA, Harvard, Vancouver, ISO, and other styles
3

Elfar, Altamimi May. "Evaluating organic and conventional management and nitrogen rate for effects on yield, soil and plant nutrient of tomato and pac choi grown under high tunnel and in the field." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32586.

Full text
Abstract:
Doctor of Philosophy
Department of Horticulture, Forestry, and Recreation Resources
Rhonda R. Janke
The goal of this study is to clarify the influence of organic fertilizer sources on vegetable crop yield under different production systems. This research hypothesized that organic soil amendments will produce healthy and vigorous plants with similar or higher yields while improving soil organic matter levels compared to conventional amendments. Applying organic fertilizer sources can be cost-prohibitive; moreover, synchronizing timing of crop nitrogen demand with soil plant available nitrogen is essential to maximizing yield and reducing nitrogen pollution to the environment. The objectives of this study are to evaluate yield in relation to soil fertility status at different fertility rates for organic and conventional management in field and high tunnel production systems, to measure plant nutrient status in crop petioles and compare it to available mineral N levels in soil at different growing stages, and to determine the effect of nitrogen availability of organic compared to conventional fertilization on plant available nitrogen and crop yield under both systems. A latin square experimental design was conducted from 2008 to 2010 at Kansas State University Research Center in Olathe KS to evaluate an organically managed vegetable rotation of tomato (Solanum lycopersicum L. ‘Bush Celebrity’) and pac choi (Brassica rapa L. ‘Mei Qing’) under three fertility rates; control, low (composted poultry manure), and high (composted poultry manure and fish hydrolyzate) in contrast with conventionally managed soils under two production systems (field and high tunnel). The effect of these four contrasting systems was measured on plant and soil nutrient status. All plots had cover crops of rye during the winter and buckwheat in the summer between pac choi crops. Soil nitrate-N (NO₃-N) and ammonium-N (NH₄-N) were measured, as well as petiole sap nitrate (NO₃⁻). In tomato, additional soluble fertilizers had no direct effect on yield in both field and high tunnel. Compost application had a positive effect on organic matter. In pac choi, additional liquid fertilizer helped organic field plots obtain maximum yield. Soil mineral nitrogen were affected by production system and fertility source, but statistical significance varied by crop and stage. Petiole sap reflected treatment regimens but not necessarily soil N status at each plant stage. The study also addressed long term management practices on organic and conventional available nitrogen. An incubation study on the soil at the conclusion of the field experiment explored the relationship between N mineralization from potentially mineralizable nitrogen (PMN) compared to Illinois Soil Nitrogen Test (ISNT) in control and pre-plant application fertility treatment for both field and high tunnel systems. The results indicated that ISNT concentration values for all soils were below the proposed value for corn crop suggested by (Khan, 2001). ISNT correlated with PMN with the stronger correlation being in field plots. ISNT also correlated with OM in field. Fertility rate showed a significant effect on total carbon and total nitrogen in organic systems of both field and high tunnel plots. This study supports composted poultry manure to improve the fertility status of the soil and to obtain a yield equal to that of conventionally managed soil.
APA, Harvard, Vancouver, ISO, and other styles
4

Eldridge, Peter M. "The effect of nitrogen and phosphorus supply ratios and dilution rate on phosphorus uptake and mineralization in continuous flow microcosms." W&M ScholarWorks, 1990. https://scholarworks.wm.edu/etd/1539616640.

Full text
Abstract:
Continuous flow microcosms (50L volume, salinity 18-24 ppt) were used to examine the roles of heterotrophic protozoa and bacteria as phosphorus mineralizers. Nitrogen limitation was regulated by N:P supply ratios (5:1, 16:1) and growth rate was regulated by dilution rate (0.5, 0.25 volumes day&\sp{lcub}-1{rcub}&). Rates of carbon and phosphorus uptake from dissolved inorganic pools were determined using &\sp{14}&C and &\sp{lcub}32{rcub}&P tracer experiments and pre- and post-fractionation incubations. Based on uptake rates and on POP and POC values of the bacteria in the &<&1.0 &\mu&m fraction, mass balance estimates of bacterial mineralization were determined. An isotope dilution method was used to determine phosphorus mineralization in the unfractionated sample. Heterotrophic protozoan mineralization was calculated as the difference. Results showed that bacteria had a minor role as remineralizers of phosphorus, more often taking-up inorganic phosphorus than remineralizing it. Heterotrophic protozoa were the major remineralizers of phosphorus. Microcosm treatments with a greater supply of inorganic phosphorus over nitrogen had increased POP concentrations and increased phosphorus remineralization. The effect of dilution on phosphorus remineralization was temperature dependent. Greater remineralization occurred in the high dilution rate in the July through October experiments and less remineralization occurred in the high dilution rate treatments in the December and January experiments.
APA, Harvard, Vancouver, ISO, and other styles
5

Escario, Perez Sofia. "Flux hydrothermaux dans le manteau lithosphérique : étude expérimentale du processus de serpentinisation." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTG030/document.

Full text
Abstract:
L'altération hydrothermale du manteau lithosphérique dans les dorsales médio-océaniques fournit un mécanisme de transfert de chaleur et de masse entre la terre profonde et l'océan recouvrant. Le manteau lithosphérique est constituée de roches ultramafiques, également appelées péridotites. Ils comprennent plus de 70% d'olivine, de pyroxènes associés et de phases minérales mineures. La percolation de l'eau de mer dans le socle ultramafique produit l'altération de l'olivine et des pyroxènes en serpentine par le processus de serpentinisation et il est associé à des réactions d'oxydation et de carbonatation (lorsque le CO2 est présent dans le fluide). Le processus de serpentinisation présente un intérêt particulier pour la production de H2, le stockage du CO2, le développement de la vie et la production de gisements de minerai économiquement intéressants concentrés dans les fumeroles hydrothermaux. La durabilité et l'efficacité des réactions nécessitent la pénétration et le renouvellement des fluides à l'interface fluide-minéral. Les failles et les fractures des détachements océaniques sont les zones hautement perméables qui permettent à l'eau de mer de pénétrer profondément dans le manteau lithosphérique. Cependant, le processus de serpentinisation conduit à la précipitation de minéraux de faible densité qui peuvent remplir le réseau poreux, colmatant les chemins d'écoulement qui peuvent modifier les propriétés hydrodynamiques et la réactivité des roches réagi.Ces travaux de thèse visent à améliorer la compréhension des effets en retour des réactions sur les propriétés hydrodynamique du milieu dans les zones hautement perméables au cours des premières étapes de l'altération du socle ultramafique. Il se concentre en particulier sur les changements de texture et les réactions chimiques des roches ultramafiques en évaluant les effets du (i) débit et (ii) des fluides salins riches en CO2. Deux séries d'expériences de percolation réactive ont été réalisées à T = 170-190°C et P = 25MPa. La première série d'expériences consistait à injecter de l'eau de mer dans des échantillonnes de poudre d'olivine compressé sur une large gamme de débits constants. La tomographie par rayons X de haute résolution a été acquise avant et après l'expérience avec des débits élevés; afin d'évaluer les changements dans la microstructure de la roche lors de la réaction de serpentinisation. La deuxième série d'expériences consistait à injecter des fluides salins riches en CO2 dans des échantillonnes de péridotite fracturés mécaniquement.Les résultats ont permis de différencier: (1) un contrôle du débit du flux à l'échelle du pore peut contrôler la composition du fluide local et le développement de différents chemins de réaction à l'échelle de l'échantillon. (2) Le développement de différentes chemins réactifs et les changements de texture dans la roche dépend de la concentration de CO2 dissous dans la solution. (3) La formation de minéraux carbonatés (MgCO3) peut stocker du CO2 sous forme stable de minéral à long terme. (4) Un contrôle de la concentration de CO2 dissous dans le fluide et du réseau de fractures peut améliorer / limiter l'efficacité du stockage de CO2 dans les réservoirs de péridotite fracturés.Ces nouvelles données suggèrent un contrôle complexe de la structure des roches ultramafiques dans le processus de serpentinisation et fournissent de nouvelles perspectives pour le stockage potentiel du CO2 dans les réservoirs fracturés à la péridotite
The hydrothermal alteration of the mantle lithosphere at mid-ocean ridges provides a mechanism for transferring heat and mass between the deep Earth and the overlaying ocean. The mantle lithosphere is constituted by ultramafic rocks, also called Peridotites. They comprise more than 70% of olivine, associated pyroxenes and minor mineral phases. The percolation of seawater into the ultramafic basement produces the alteration of olivine and pyroxenes to serpentine through the so-called serpentinization process and is associated to oxidation and carbonation reactions, the later when CO2 is present. The serpentinization process has special interest on H2 production, CO2 storage, development of life, and the production of economically valuable ore-deposits concentrated at hydrothermal vents. The sustainability and efficiency of the reactions requires penetration and renewal of fluids at the mineral-fluid interface. Oceanic detachment faults and fractures are the highly permeable zones allowing seawater derived fluids to penetrate deeply into the mantle lithosphere. However, the serpentinization process lead to the precipitation of low density minerals that can fill the porous network, clogging flow paths efficiently that may in turn modify the hydrodynamic properties and the reactivity of the reacted rocks.This PhD thesis aims at better understanding the feedback effects of chemical reactions on the hydrodynamic rock properties occurred on highly permeable zones during the earliest stages of alteration of the ultramafic basement. It focuses in particular on the changes in texture and chemical reaction paths of ultramafic rocks by assessing the effects of (i) flow rate and (ii) CO2-rich saline fluids. Two suite of reactive percolation experiments were performed at T=170-190°C and P=25MPa. The first suite of experiments consisted in injecting artificial seawater into porous compressed olivine powder cores over a wide range of constant flow rates. X-Ray µ-tomography of high resolution was acquired before and after the experiment run with high flow rates; in order to evaluate the micro-structural changes of the rock occurred during the serpentinization reaction. The second suite of experiments consisted in injecting CO2-rich saline fluids into peridotite cores mechanically fractured.The results allowed us to differentiate: (1) That, a control of flow infiltration rate at the pore-scale can control the local fluid compositions and the development of different reaction paths at the sample-scale. (2) The development of different reaction paths and textural changes in the rock depends on the concentration of CO2 dissolved in solution. (3) The formation of carbonate minerals (MgCO3) can store CO2 in a form of stable mineral at long-term. (4) A control of the concentration of dissolved CO2(g) and the fracture network can enhance/limit the efficiency of CO2-storage in peridotite fractured reservoirs.These new supporting data suggest a complex control of the structure of the ultramafic rocks in serpentinization process and provides new insights for the potential CO2-storage in peridotite fractured reservoirs
APA, Harvard, Vancouver, ISO, and other styles
6

Bamber, Kevin William. "Nitrogen Cycling from Fall Applications of Biosolids to Winter Small Grains." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/71870.

Full text
Abstract:
Environmental concerns about winter nitrogen (N) leaching loss limit the amount of biosolids applied to winter small grains in Virginia. Ten field studies were established 2012-2014 in Virginia to determine the agronomic and environmental feasibility of fall biosolids applications to soft red winter wheat (Triticum aestivum L.). Eight studies were located in the Coastal Plain physiographic province and two in the Ridge and Valley physiographic province. The effects of eight biosolids and urea N treatments on 1) biomass production at Zadoks growth stage (GS) 25-30, 2) soil inorganic N at GS 25-30, 3) soil mineralizable N at GS 25-30,4) N use efficiency (NUE) at GS 58, 5) grain yield, 6) end-of-season soil inorganic N, and 7) estimated N recovery were studied. Anaerobically digested (AD) and lime stabilized (LS) biosolids were fall applied at estimated plant available N (PAN) rates of 100 kg N ha-1 and 50 kg N ha-1. The 50 kg N ha-1 biosolids treatments were supplemented with 50 kg N ha-1 as urea in spring. Urea N was split applied at 0, 50, 100 and 150 kg N ha-1, with 1/3 applied in fall and 2/3 in spring. Biomass at GS 25-30 increased with urea N rate and biosolids always resulted in equal or greater biomass than urea. Soil mineralizable N at GS 25-30 rarely responded to fall urea or biosolids N rate, regardless of biosolids type. Biosolids and urea applied at the agronomic N rate resulted in equal grain yield and estimated N recovery in soils where N leaching loss risk was low, regardless of biosolids type or application strategy. Lime stabilized biosolids and biosolids/urea split N application increased grain yield and estimated N recovery in soils with high or moderate N leaching loss risk. Therefore, AD and LS biosolids can be fall-applied to winter wheat at the full agronomic N rate in soils with low N leaching loss risk, while LS biosolids could be applied to winter wheat at the full agronomic N rate in soils with moderate or high N leaching loss risk.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
7

Baldwin, Joy Rosina. "Lithium and tantalum mineralization in rare-element pegmatites from southern Africa." Thesis, University of St Andrews, 1994. http://hdl.handle.net/10023/15468.

Full text
Abstract:
Lithium and tantalum mineralization in rare-element pegmatites has been studied in 4 field areas. Three field areas are within a pegmatite belt which stretches for 450 km from Steinkopf, Namaqualand in the west, to Kenhardt in the east along the Orange River in South Africa, incorporating Tantalite Valley, Namibia in the central area. This Belt is considered to be of 1200 my age. The 4th field area is in central Namibia in the Karibib-Usakos region of 500 my age. Lithium mineralization involves primary minerals, petalite and spodumene (crystallizing< 650° C) and amblygonite which crystallize from a magma +/- an aqueous fluid, and lithian mica which along with cleavelandite is one of the last mineral assemblages to form, probably these last two assemblages are replacement in origin. Petalite is dominant in the Karibib area and spodumene in Steinkopf, Namaqualand and Tantalite Valley. The Kenhardt area is poor in lithium in comparison with the western and central portions of the Pegmatite Belt. Amblygonite-montebrasite is present in Karibib and Tantalite Valley usually in association with cleavelandite and lithian mica. Hydrothermal low temperature replacements, < 400°C occur in spodumene in the Steinkopf and Tantalite Valley pegmatites, being pseudomorphed by albite and mica +/- sericite. Amblygonite-montebrasite in Karibib displays replacements of natromontebrasite (the first occurrence in Karibib, Namibia), crandallite, brazilianite and possibly cookeite. Apatite is always prominent at the contact. An unusual occurrence of Mn-tantalite lamellae, primarily parallel, lying in microlite, is intergrown with montebrasite at the Rubicon pegmatite, Karibib, suggesting simultaneous crystallization of these three minerals, i.e. Ta-dominated tantalite and microlite and LiAl(F/P04) involving late fluids rich in F, P and Ta. Mn-tantalite and Ta-rich microlite are the dominant Ta-minerals in the rare-element Li-rich pegmatites of Namaqualand, Tantalite Valley and Karibib. In contrast, columbite (Nb-rich) is prevalent in the Li-poor, less differentiated pegmatites in the eastern Pegmatite Belt near Kenhardt. Microlite replaces Mn-tantalite in Li-rich rare-element pegmatites in all three field areas. A uranmicrolite from Karibib, Namibia contains 14.35% UO2, 1.03% PbO, 56.12% Ta205, 13.18% Nb205, 0.58% Fe203, 6.87% CaO, 0.54% SrO, 0.59% MnO, 0.86% Na2O and 0.47% F. U-plumbomicrolite or Pb-uranmicrolite is intergrown with manganotantalite from the same pegmatite. Throughout one aggregate of microlite PbO varied from 21.98 to 1.57% and UO2 from 12.89 to 16.20%. Pb appears to be concentrated around the periphery of the crystal. Backscattered electron images reveal metamict textures in radioactive microlites and distinctive subspheroidal features. A uranoan microlite from Tantalite Valley, Namibia, revealed two essentially different compositions; a more hydrated rim area of 200 mum radius containing 7% higher Ta2O5, 10% lower CaO and 1.3% lower F than a main central area of slightly variable composition. Crystals of uranoan microlite from Steinkopf, Namaqualand contain remnants of a bismuth phase. Bismuth intergrowths with quartz reveal the presence of two rare-minerals, pyromorphite [Pb5(PO4) 3 C1] and m0ttramite[PbCu(VO4)OH], new data is given for these minerals. Ferro tantalite occurs at Rubicon mine. A schematic diagram is produced for the paragenetic sequence of mineral assemblage in each of the pegmatite areas in Karibib, Tantalite Valley, and Steinkopf, Namaqualand in relation to T and P of formation, and the magma and fluids effecting the crystallization sequence. Finally different fractionation trends of Ta-Nb, Mn-Fe, Rb-K and Cs-K in columbite-tantalites and lithian mica have highlighted variable paths of differentiation in contrasting rare-element pegmatites which may reflect different sources of original parental magma.
APA, Harvard, Vancouver, ISO, and other styles
8

Kranabetter, John Marty. "Pulp fibre waste as a soil amendment : rates of net carbon mineralization." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29193.

Full text
Abstract:
The potential for using RMP (refiner mechanical process) pulp mill fibre waste as a soil amendment was investigated by determining levels of net carbon mineralization. Under optimum conditions (laboratory incubation study), the pulp fibre waste, being a relatively homogeneous substrate, was found to mineralize at one rate of -0.0078 d⁻¹. In field applications the rate of net mineralization was slower, with rates of -0.0034 d⁻¹ and -0.0037 d⁻¹, as determined by soil respiration and litter bag trials, respectively. A loading effect was noted for this amendment, where increasing the levels of application was found to cause decreases in the mineralization rate. Using pulp fibre waste in forest landing rehabilitation appears to increase the levels of microbial activity in the surface horizon. The higher levels of productivity should lead to improvements in soil structure, and would be a better alternative to only tilling and fertilizing the soil.
Land and Food Systems, Faculty of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
9

Moore, Meghan. "Carbonatite-related rare-earth mineralization in the Bear Lodge alkaline complex, Wyoming: Paragenesis, geochemical and isotopic characteristics." ElSevier, 2014. http://hdl.handle.net/1993/23991.

Full text
Abstract:
The Bear Lodge alkaline complex in northeastern Wyoming (USA) is host to potentially economic rare-earth mineralization in carbonatite and carbonatite-related veins and dikes that intrude heterolithic diatreme breccias in the Bull Hill area of the Bear Lodge Mountains. The deposit is zoned and consists of pervasively oxidized material at and near the surface, which passes through a thin transitional zone at a depth of ~120-183m, and grades into unaltered carbonatites at depths greater than ~183-190m. Carbonatites in the unoxidized zone consist of coarse and fine-grained calcite that is Sr-, Mn- and inclusion-rich and are characterized by the presence of primary burbankite, early-stage parisite and synchysite with minor bastnäsite that have high (La/Nd)cn and (La/Ce)cn values. The early minerals are replaced with polycrystalline pseudomorphs consisting of secondary rare-earth fluorocarbonates and ancylite with minor monazite. Different secondary parageneses can be distinguished on the basis of the relative abundances and composition of individual minerals. Variations in key element ratios, such as (La/Nd)cn, and chondrite-normalized profiles of the rare-earth minerals and calcite record multiple stages of hydrothermal deposition involving fluids of different chemistry. A single sample of primary calcite shows mantle-like δ18O V-SMOW and δ13C V-PDB values, whereas most other samples are somewhat depleted in 13C (δ13C V-PDB ≈ –8 to –10‰) and show a small positive shift in δ18O V-SMOW due to degassing and wall-rock interaction. Isotopic re-equilibration is more pronounced in the transitional and oxidized zones; large shifts in δ18O V-SMOW (to ~ 18‰) reflect input of meteoric water during pervasive hydrothermal and supergene oxidation. The textural relations, mineral chemistry, and C and O stable-isotopic variations record a polygenetic sequence of rare-earth mineralization in the deposit. With the exception of one Pb-poor sample showing an appreciable positive shift in 208Pb/204Pb value (~39.2), the Bear Lodge carbonatites are remarkably uniform in their Nd, Sr and Pb isotopic composition: (143Nd/144Nd)i=0.512591-0.512608; εNd=0.2-0.6; (87Sr/86Sr)i=0.704555-0.704639; εSr=-1.5-2.7; (206Pb/204Pb)i=18.071-18.320; (207Pb/204Pb)i=15.543-15.593; (208Pb/204Pb)i=38.045-39.165. These isotopic characteristics indicate that the source of the carbonatitic magma was in the subcontinental lithospheric mantle, and modified by subduction-related metasomatism. Carbonatites are interpreted to be generated from small degrees of partial melt that may have been produced via interaction of upwelling asthenosphere giving a small depleted MORB component, with an EM1 component likely derived from subducted Farallon crust.
APA, Harvard, Vancouver, ISO, and other styles
10

Pereira, Magnum de Sousa. "Evaluation of carbon mineralization rates and nitrogen organic compound from housing and dispossession of small ruminants." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16925.

Full text
Abstract:
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
The determination of the mineralization rate of organic compost is necessary for planning the most efficient way to use them. Thus, this study aimed to determine the carbon and nitrogen mineralization rate from organic compost produced from sheep and goat carcasses and its slaughtering spoils. Chromic Inceptisol (Luvisols) samples were incubated at an average temperature of 30.5 Â C with doses of 0; 3.75; 7.5; 15 and 30 Mg ha-1 of organic compost. To evaluate the carbon mineralization were used 100 g of soil incubated with these doses arranged in a completely randomized design (CRD) distributed in a split plot scheme. Samples were kept in glass containers tightly closed and the C-CO2 measurements were performed during periods of 0; 1; 2; 3; 4; 5; 6; 7; 9; 11; 14; 17; 20; 23; 26; 29; 33; 37; 41; 48; 55; 69; 83; 97; 112 and 126 days after the start of incubation. To determine the nitrogen mineralization rate (N), the doses of compost were incubated with 100 g of soil and distributed in a CRD with a 5 x 10 factorial arrangement. The assessment of inorganic N were performed at 7; 14; 28; 42; 56; 70; 84; 98; 112 and 126 days after the incubation beginning. Both models, the simple exponential and the double exponential, were not efficient to explain the dynamics of C mineralization for not consider the interactions that occurs when the compost is applied to the soil. A model that considers the soil C labile and recalcitrant compartments (ls and rs), protected and unprotected compartments of the applied organic matter (OM) (pc and dc) and a p factor that modifies the rate of mineralization of soil organic matter (SOM) when the compost is applied (C0 = Cls e-kltp + Crs.e-krstp + Cpc .e-kpst + Coc .e-kdct) was more efficient to explain the dynamics of C, considering the interactions with the SOM and the OM added. The suggested model has demonstrated that the rate of SOM decomposition is approximately 10% greater in the presence of the compost and the compost mineralization rate is 0.012 day-1, explaining the 97.95% of the variability in the data. The N mineralization was very fast since 40% of the standard dose of 7.5 Mg h-1 was found in the mineral form 14 days after the incubation. However, due to losses of inorganic nitrogen by NH3 volatilization, it was not possible to estimate the actual N mineralization rate.
A determinaÃÃo da taxa de mineralizaÃÃo de compostos orgÃnicos se faz necessÃria para o planejamento da forma mais eficiente de sua utilizaÃÃo. Deste modo, objetivou-se determinar a taxa de mineralizaÃÃo de carbono e nitrogÃnio de composto orgÃnico produzido a partir de carcaÃas e despojos de abate de ovinos e caprinos. Amostras de Luvissolo CrÃmico foram incubadas à temperatura mÃdia de 30,5 ÂC com doses equivalentes a 0; 3,75; 7,5; 15 e 30 Mg ha-1 de composto orgÃnico. Para avaliaÃÃo da mineralizaÃÃo do carbono foram utilizados 100 g de solo incubados com as referidas doses dispostas em um delineamento inteiramente casualisado (DIC) distribuÃdos em esquema de parcela subdividida. As amostras foram mantidas em recipientes de vidro hermeticamente fechados sendo as mensuraÃÃes de C-CO2 realizadas nos perÃodos de 0; 1; 2; 3; 4; 5; 6; 7; 9; 11; 14; 17; 20; 23; 26; 29; 33; 37; 41; 48; 55; 69; 83; 97; 112 e 126 dias apÃs o inÃcio da incubaÃÃo. Para a determinaÃÃo da taxa de mineralizaÃÃo do nitrogÃnio (N), as doses de composto foram incubadas com 100 g de solo e distribuÃdas em um DIC dispostas em um arranjo fatorial de 5 x 10. As avaliaÃÃes do N inorgÃnicoforam realizadas aos7; 14; 28; 42; 56; 70; 84; 98; 112 e 126 dias apÃs o inÃcio da incubaÃÃo. Tanto o modelo simples exponencial quanto o modelo duplo exponencial nÃo foram eficientes para explicar a dinÃmica de mineralizaÃÃo do C por nÃo considerarem as interaÃÃes que ocorrem quando o composto à aplicado ao solo. Um modelo que considera os compartimentos de C lÃbil e recalcitrante no solo (ls e rs), compartimentos protegido e desprotegidos da MO aplicada (pc e dc) e um fator p que modifica a taxa de mineralizaÃÃo da MO do solo quando o composto à aplicado (C0 = Cls e-kltp + Crs.e-krstp + Cpc .e-kpst + Cdc .e-kdct) se mostrou mais eficiente para explicar a dinÃmica do C, considerando as interaÃÃes da MO do solo com a MO adicionada. O modelo sugerido demonstrou que a taxa de decomposiÃÃo da MO do solo à aproximadamente 10% maior na presenÃa do composto e a taxa de mineralizaÃÃo do composto à de 0,012 dia-1, explicando 97,95% da variabilidade dos dados. A mineralizaÃÃo do N mostrou-se bastante rÃpida visto que 40% da dose padrÃo de 7,5 Mg ha-1 foi encontrado na forma mineral 14 dias apÃs a incubaÃÃo. No entanto, devido Ãs perdas de nitrogÃnio inorgÃnico por volatilizaÃÃo de NH3, nÃo foi possÃvel se estimar as reais taxas de mineralizaÃÃo do N.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Mineralization rate"

1

Transbaikalia Field Meeting (1995 Irkutsk, Ulan-Ude, and Moscow, Russia). Excursion guide: Rare metal and palingenetic granitoids of Transbaikalia and related mineralization. [London: Dept. of Mineralogy, Natural History Museum?, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chartrand, F., and Tommy B. Thompson, eds. Geology and Gold, Rare Element, and Base Metal Mineralization of the Val D'or Area, Quebec*. Tulsa, Oklahoma, USA: Society of Economic Geologists, 1991. http://dx.doi.org/10.5382/gb.09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sprague, Stuart M., and James M. Pullman. Spectrum of bone pathologies in chronic kidney disease. Edited by David J. Goldsmith. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0122.

Full text
Abstract:
Histologic bone abnormalities begin very early in the course of chronic kidney disease. The KDIGO guidelines recommend that bone disease in patients with chronic kidney disease should be diagnosed on the basis of bone biopsy examination, with bone histomorphometry. They have also proposed a new classification system (TMV), using three key features of bone histology—turnover, mineralization, and volume—to describe bone disease in these patients. However, bone biopsy is still rarely performed today, as it involves an invasive procedure and highly specialized laboratory techniques. High-turnover bone disease (osteitis fibrosa cystica) is mainly related to secondary hyperparathyroidism and is characterized by increased rates of both bone formation and resorption, with extensive osteoclast and osteoblast activity, and a progressive increase in peritrabecular marrow space fibrosis. On the other hand, low-turnover (adynamic) bone disease involves a decline in osteoblast and osteoclast activities, reduced new bone formation and mineralization, and endosteal fibrosis. The pathophysiological mechanisms of adynamic bone include vitamin D deficiency, hyperphosphataemia, metabolic acidosis, inflammation, low oestrogen and testosterone levels, bone resistance to parathyroid hormone, and high serum fibroblast growth factor 23. Mixed uraemic osteodystrophy describes a combination of osteitis fibrosa and mineralization defect. In the past few decades, an increase in the prevalence of mixed uraemic osteodystrophy and adynamic bone disease has been observed.
APA, Harvard, Vancouver, ISO, and other styles
4

Skiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.

Full text
Abstract:
Bones are multifunctional passive organs of movement that supports soft tissue and directly attached muscles. They also protect internal organs and are a reserve of calcium, phosphorus and magnesium. Each bone is covered with periosteum, and the adjacent bone surfaces are covered by articular cartilage. Histologically, the bone is an organ composed of many different tissues. The main component is bone tissue (cortical and spongy) composed of a set of bone cells and intercellular substance (mineral and organic), it also contains fat, hematopoietic (bone marrow) and cartilaginous tissue. Bones are a tissue that even in adult life retains the ability to change shape and structure depending on changes in their mechanical and hormonal environment, as well as self-renewal and repair capabilities. This process is called bone turnover. The basic processes of bone turnover are: • bone modeling (incessantly changes in bone shape during individual growth) following resorption and tissue formation at various locations (e.g. bone marrow formation) to increase mass and skeletal morphology. This process occurs in the bones of growing individuals and stops after reaching puberty • bone remodeling (processes involve in maintaining bone tissue by resorbing and replacing old bone tissue with new tissue in the same place, e.g. repairing micro fractures). It is a process involving the removal and internal remodeling of existing bone and is responsible for maintaining tissue mass and architecture of mature bones. Bone turnover is regulated by two types of transformation: • osteoclastogenesis, i.e. formation of cells responsible for bone resorption • osteoblastogenesis, i.e. formation of cells responsible for bone formation (bone matrix synthesis and mineralization) Bone maturity can be defined as the completion of basic structural development and mineralization leading to maximum mass and optimal mechanical strength. The highest rate of increase in pig bone mass is observed in the first twelve weeks after birth. This period of growth is considered crucial for optimizing the growth of the skeleton of pigs, because the degree of bone mineralization in later life stages (adulthood) depends largely on the amount of bone minerals accumulated in the early stages of their growth. The development of the technique allows to determine the condition of the skeletal system (or individual bones) in living animals by methods used in human medicine, or after their slaughter. For in vivo determination of bone properties, Abstract 10 double energy X-ray absorptiometry or computed tomography scanning techniques are used. Both methods allow the quantification of mineral content and bone mineral density. The most important property from a practical point of view is the bone’s bending strength, which is directly determined by the maximum bending force. The most important factors affecting bone strength are: • age (growth period), • gender and the associated hormonal balance, • genotype and modification of genes responsible for bone growth • chemical composition of the body (protein and fat content, and the proportion between these components), • physical activity and related bone load, • nutritional factors: – protein intake influencing synthesis of organic matrix of bone, – content of minerals in the feed (CA, P, Zn, Ca/P, Mg, Mn, Na, Cl, K, Cu ratio) influencing synthesis of the inorganic matrix of bone, – mineral/protein ratio in the diet (Ca/protein, P/protein, Zn/protein) – feed energy concentration, – energy source (content of saturated fatty acids - SFA, content of polyun saturated fatty acids - PUFA, in particular ALA, EPA, DPA, DHA), – feed additives, in particular: enzymes (e.g. phytase releasing of minerals bounded in phytin complexes), probiotics and prebiotics (e.g. inulin improving the function of the digestive tract by increasing absorption of nutrients), – vitamin content that regulate metabolism and biochemical changes occurring in bone tissue (e.g. vitamin D3, B6, C and K). This study was based on the results of research experiments from available literature, and studies on growing pigs carried out at the Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences. The tests were performed in total on 300 pigs of Duroc, Pietrain, Puławska breeds, line 990 and hybrids (Great White × Duroc, Great White × Landrace), PIC pigs, slaughtered at different body weight during the growth period from 15 to 130 kg. Bones for biomechanical tests were collected after slaughter from each pig. Their length, mass and volume were determined. Based on these measurements, the specific weight (density, g/cm3) was calculated. Then each bone was cut in the middle of the shaft and the outer and inner diameters were measured both horizontally and vertically. Based on these measurements, the following indicators were calculated: • cortical thickness, • cortical surface, • cortical index. Abstract 11 Bone strength was tested by a three-point bending test. The obtained data enabled the determination of: • bending force (the magnitude of the maximum force at which disintegration and disruption of bone structure occurs), • strength (the amount of maximum force needed to break/crack of bone), • stiffness (quotient of the force acting on the bone and the amount of displacement occurring under the influence of this force). Investigation of changes in physical and biomechanical features of bones during growth was performed on pigs of the synthetic 990 line growing from 15 to 130 kg body weight. The animals were slaughtered successively at a body weight of 15, 30, 40, 50, 70, 90, 110 and 130 kg. After slaughter, the following bones were separated from the right half-carcass: humerus, 3rd and 4th metatarsal bone, femur, tibia and fibula as well as 3rd and 4th metatarsal bone. The features of bones were determined using methods described in the methodology. Describing bone growth with the Gompertz equation, it was found that the earliest slowdown of bone growth curve was observed for metacarpal and metatarsal bones. This means that these bones matured the most quickly. The established data also indicate that the rib is the slowest maturing bone. The femur, humerus, tibia and fibula were between the values of these features for the metatarsal, metacarpal and rib bones. The rate of increase in bone mass and length differed significantly between the examined bones, but in all cases it was lower (coefficient b <1) than the growth rate of the whole body of the animal. The fastest growth rate was estimated for the rib mass (coefficient b = 0.93). Among the long bones, the humerus (coefficient b = 0.81) was characterized by the fastest rate of weight gain, however femur the smallest (coefficient b = 0.71). The lowest rate of bone mass increase was observed in the foot bones, with the metacarpal bones having a slightly higher value of coefficient b than the metatarsal bones (0.67 vs 0.62). The third bone had a lower growth rate than the fourth bone, regardless of whether they were metatarsal or metacarpal. The value of the bending force increased as the animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. The rate of change in the value of this indicator increased at a similar rate as the body weight changes of the animals in the case of the fibula and the fourth metacarpal bone (b value = 0.98), and more slowly in the case of the metatarsal bone, the third metacarpal bone, and the tibia bone (values of the b ratio 0.81–0.85), and the slowest femur, humerus and rib (value of b = 0.60–0.66). Bone stiffness increased as animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. Abstract 12 The rate of change in the value of this indicator changed at a faster rate than the increase in weight of pigs in the case of metacarpal and metatarsal bones (coefficient b = 1.01–1.22), slightly slower in the case of fibula (coefficient b = 0.92), definitely slower in the case of the tibia (b = 0.73), ribs (b = 0.66), femur (b = 0.59) and humerus (b = 0.50). Bone strength increased as animals grew. Regardless of the growth point tested, bone strength was as follows femur > tibia > humerus > 4 metacarpal> 3 metacarpal> 3 metatarsal > 4 metatarsal > rib> fibula. The rate of increase in strength of all examined bones was greater than the rate of weight gain of pigs (value of the coefficient b = 2.04–3.26). As the animals grew, the bone density increased. However, the growth rate of this indicator for the majority of bones was slower than the rate of weight gain (the value of the coefficient b ranged from 0.37 – humerus to 0.84 – fibula). The exception was the rib, whose density increased at a similar pace increasing the body weight of animals (value of the coefficient b = 0.97). The study on the influence of the breed and the feeding intensity on bone characteristics (physical and biomechanical) was performed on pigs of the breeds Duroc, Pietrain, and synthetic 990 during a growth period of 15 to 70 kg body weight. Animals were fed ad libitum or dosed system. After slaughter at a body weight of 70 kg, three bones were taken from the right half-carcass: femur, three metatarsal, and three metacarpal and subjected to the determinations described in the methodology. The weight of bones of animals fed aa libitum was significantly lower than in pigs fed restrictively All bones of Duroc breed were significantly heavier and longer than Pietrain and 990 pig bones. The average values of bending force for the examined bones took the following order: III metatarsal bone (63.5 kg) <III metacarpal bone (77.9 kg) <femur (271.5 kg). The feeding system and breed of pigs had no significant effect on the value of this indicator. The average values of the bones strength took the following order: III metatarsal bone (92.6 kg) <III metacarpal (107.2 kg) <femur (353.1 kg). Feeding intensity and breed of animals had no significant effect on the value of this feature of the bones tested. The average bone density took the following order: femur (1.23 g/cm3) <III metatarsal bone (1.26 g/cm3) <III metacarpal bone (1.34 g / cm3). The density of bones of animals fed aa libitum was higher (P<0.01) than in animals fed with a dosing system. The density of examined bones within the breeds took the following order: Pietrain race> line 990> Duroc race. The differences between the “extreme” breeds were: 7.2% (III metatarsal bone), 8.3% (III metacarpal bone), 8.4% (femur). Abstract 13 The average bone stiffness took the following order: III metatarsal bone (35.1 kg/mm) <III metacarpus (41.5 kg/mm) <femur (60.5 kg/mm). This indicator did not differ between the groups of pigs fed at different intensity, except for the metacarpal bone, which was more stiffer in pigs fed aa libitum (P<0.05). The femur of animals fed ad libitum showed a tendency (P<0.09) to be more stiffer and a force of 4.5 kg required for its displacement by 1 mm. Breed differences in stiffness were found for the femur (P <0.05) and III metacarpal bone (P <0.05). For femur, the highest value of this indicator was found in Pietrain pigs (64.5 kg/mm), lower in pigs of 990 line (61.6 kg/mm) and the lowest in Duroc pigs (55.3 kg/mm). In turn, the 3rd metacarpal bone of Duroc and Pietrain pigs had similar stiffness (39.0 and 40.0 kg/mm respectively) and was smaller than that of line 990 pigs (45.4 kg/mm). The thickness of the cortical bone layer took the following order: III metatarsal bone (2.25 mm) <III metacarpal bone (2.41 mm) <femur (5.12 mm). The feeding system did not affect this indicator. Breed differences (P <0.05) for this trait were found only for the femur bone: Duroc (5.42 mm)> line 990 (5.13 mm)> Pietrain (4.81 mm). The cross sectional area of the examined bones was arranged in the following order: III metatarsal bone (84 mm2) <III metacarpal bone (90 mm2) <femur (286 mm2). The feeding system had no effect on the value of this bone trait, with the exception of the femur, which in animals fed the dosing system was 4.7% higher (P<0.05) than in pigs fed ad libitum. Breed differences (P<0.01) in the coross sectional area were found only in femur and III metatarsal bone. The value of this indicator was the highest in Duroc pigs, lower in 990 animals and the lowest in Pietrain pigs. The cortical index of individual bones was in the following order: III metatarsal bone (31.86) <III metacarpal bone (33.86) <femur (44.75). However, its value did not significantly depend on the intensity of feeding or the breed of pigs.
APA, Harvard, Vancouver, ISO, and other styles
5

Origin and ages of mineralization of Bayan Obo, the world's largest rare earth ore deposit, Inner Mongolia, China. [Denver, Colo.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

T, Chao E. C., and Geological Survey (U.S.), eds. Origin and ages of mineralization of Bayan Obo, the world's largest rare earth ore deposit, Inner Mongolia, China. [Denver, Colo.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

OÆconnor, G. Characterizing the Forms, Solubilities, Bioavailabilities, and Mineralization Rates of Phosphorus in Biosolids, Commercial Fertilizers, and Manures Phase ... Werf Report 99-pum-2t (Werf Report). IWA Publishing (Intl Water Assoc), 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Geology and gold, rare element, and base metal mineralization of the Val d'Or area, Quebec: Guidebook prepared for Society of Economic Geologists field conference, 30 May-2 June 1991. Fort Collins, Colo: Society of Economic Geologists, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mineralization rate"

1

Akachukwu, Doris, Michael Adedapo Gbadegesin, Philippa Chinyere Ojimelukwe, and Christopher John Atkinson. "Biochar for Climate Change Adaptation: Effect on Heavy Metal Composition of Telfairia occidentalis Leaves." In African Handbook of Climate Change Adaptation, 1401–21. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_202.

Full text
Abstract:
AbstractGas flaring is a key contributor of greenhouse gases that causes global warming and climate change. Adaptation measures for tackling impacts of climate change have gained much research interest. This chapter assessed vegetable farmers’ perception of gas flaring and the effect of biochar remediation on the heavy metal composition of cultivated Telfairia occidentalis. A gas-flared area, Ohaji/Egbema L.G.A of Imo State, and a non-gas-flared area, Umudike, Ikwuano L.G.A, were selected for this research. Structured questionnaire was used to elicit information from 120 respondents. Soils were collected from the study sites and transported to the greenhouse. Five different rates, 0 t ha−1, 7.1 t ha−1, 13.9 t ha−1, 20.9 t ha−1, and 28.0 t ha−1, of palm bunch biochar were applied to the soils in plastic buckets. After 2 weeks of mineralization, two viable seeds of Telfairia occidentalis were planted in each bucket and watered every other day for 8 weeks. The result revealed that 63% of vegetable farmers where female, while 37% were male in the gas-flared area. A total of 97% of the farmers had knowledge of gas flaring. A total decrease of 55% percent income, 90% yield, and 67% market quality of vegetable farmers was attributed to gas-flared activities. The plant height of cultivated vegetables increased every 2 weeks with greater increase in the test plant. Heavy metal concentration (Pb, and Cr) decreased with increasing biochar rate and was significantly lower for 28.0 t ha−1. Biochar can enhance soil fertility and help immobilize heavy metals. The effect of biochar application on the heavy metal composition is dependent on the rate of application. Biochar use could be a cheap adaptation measure in the face of a changing climate.
APA, Harvard, Vancouver, ISO, and other styles
2

Boivin, G., and P. J. Meunier. "Changes in Bone Remodeling Rate Influence the Degree of Mineralization of Bone Which is a Determinant of Bone Strength: Therapeutic Implications." In Noninvasive Assessment of Trabecular Bone Architecture and the Competence of Bone, 123–27. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0651-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pentecost, A. "Coccolith Accumulation Rates: Cretaceous to Recent." In Mechanisms and Phylogeny of Mineralization in Biological Systems, 369–73. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68132-8_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Humbert, W., M. Masson-Pevent, J. C. Voegel, J. Hemmerle, and P. Pevet. "Scanning and Transmission Electron Microscopy, X-ray Microanalysis and Electron Diffraction of Pineal Concretions in Aging Rats." In Mechanisms and Phylogeny of Mineralization in Biological Systems, 327–31. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68132-8_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guido, Adriano, Adelaide Mastandrea, Fabio Tosti, and Franco Russo. "Importance of Rare Earth Element Patterns in Discrimination Between Biotic and Abiotic Mineralization." In Advances in Stromatolite Geobiology, 453–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10415-2_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pannier, J., G. Hofman, and L. Vanparys. "Optimization of a nitrogen advice system: Target values as a function of N-mineralization rates." In Progress in Nitrogen Cycling Studies, 353–58. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5450-5_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shen, P., Y. Shen, T. Liu, G. Li, and Q. Zeng. "Rare-earth element and noble gas studies of Kuoerzhenkuola gold field, Xinjiang, China: A mantle connection for mineralization." In Mineral Deposit Research: Meeting the Global Challenge, 1335–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rosolem, Ciro A., Antonio P. Mallarino, and Thiago A. R. Nogueira. "Considerations for Unharvested Plant Potassium." In Improving Potassium Recommendations for Agricultural Crops, 147–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59197-7_6.

Full text
Abstract:
AbstractPotassium (K) is found in plants as a free ion or in weak complexes. It is easily released from living or decomposing tissues, and it should be considered in fertilization programs. Several factors affect K cycling in agroecosystems, including soil and fertilizer K contributions, plant K content and exports, mineralization rates from residues, soil chemical reactions, rainfall, and time. Soil K+ ions can be leached, remain as exchangeable K, or migrate to non-exchangeable forms. Crop rotations that include vigorous, deep-rooted cover crops capable of exploring non-exchangeable K in soil are an effective strategy for recycling K and can prevent leaching below the rooting zone in light-textured soils. The amount of K released by cover crops depends on biomass production. Potassium recycled with non-harvested components of crops also varies greatly. Research with maize, soybean, and wheat has shown that 50–60% of K accumulated in vegetative tissues is released within 40–45 days. A better understanding of K cycling would greatly improve the efficacy of K management for crop production. When studying K cycling in agricultural systems, it is important to consider: (1) K addition from fertilizers and organic amendments; (2) K left in residues; (3) K partitioning differences among species; (4) soil texture; (5) soil pools that act as temporary sources or sinks for K. In this chapter, the role of cash and cover crops and organic residues on K cycling are explored to better understand how these factors could be integrated into making K fertilizer recommendations.
APA, Harvard, Vancouver, ISO, and other styles
9

Malyukova, N., V. Kim, and R. Tulyaev. "Zonation of polymetallic, rare-earth, molybdenum, zirconium, beryllium and tantalum-niobium mineralization in the Ak-Tyuz ore deposits (Northern Tien Shan)." In Mineral Deposit Research: Meeting the Global Challenge, 1323–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stalder, Marcel, and Abraham Rozendaal. "Trace and rare earth element chemistry of garnet and apatite as discriminant for Broken Hill-Type mineralization, Namaqua Province, South Africa." In Mineral Deposit Research: Meeting the Global Challenge, 699–702. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_178.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mineralization rate"

1

"Nitrogen Mineralization Rate of Industrially Manufactured Organic Fertilizers on Alfisol in Southwestern Nigeria." In International Conference on Advances in Agricultural, Biological & Environmental Sciences. International Institute of Chemical, Biological & Environmental Engineering, 2015. http://dx.doi.org/10.15242/iicbe.c0715102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zebker, Molly, Jingyi Chen, and Marc Hesse. "Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series." In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alekseeva, Natalia, Svetlana Evgrafova, Anna Detsura, Alina Guzeva, and Irina Fedorova. "AN EXPERIMENTAL ASSESSMENT OF THE AVAILABILITY AND MINERALIZATION RATE OF ORGANIC MATTER OF SEDIMENTS IN WATER BODIES OF PERMAFROST ECOSYSTEMS." In 20th International Multidisciplinary Scientific GeoConference Proceedings SGEM 2020. STEF92 Technology, 2020. http://dx.doi.org/10.5593/sgem2020/3.1/s12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barrè, Yves, and Audrey Hertz. "Immobilization of Inorganic Ion-Exchanger Into Biopolymer Foams: Application to Cesium Sorption." In ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icem2013-96081.

Full text
Abstract:
Nickel-potassium ferrocyanide (along with other ferrocyanide sub-products, as shown by mineralization, SEM-EDX analyses) has been immobilized in highly porous discs of chitin for the sorption of Cs(I) from near neutral solutions. The immobilization process allows synthesizing stable materials that can bind up to 80 mg Cs g−1 (i.e., 240 mg Cs g−1 ion-exchanger). The pseudo-second order rate equation fits well kinetic profiles: the rate coefficient increases with the flow rate of recirculation (to force the access to potentially non-interconnected pores), as an evidence of the control of uptake kinetics by diffusion properties. Preliminary tests performed on 137Cs spiked solutions confirm the efficiency of the material for the treatment of effluents bearing radionuclides.
APA, Harvard, Vancouver, ISO, and other styles
5

King, S. M., Md M. Rahman, A. K. Krick, L. D. Branco, E. Olceroglu, and M. McCarthy. "Biotemplated Nanostructured Surfaces for Enhanced Phase Change Heat Transfer." In ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icnmm2012-73190.

Full text
Abstract:
The fabrication and characterization of biotemplated nanostructured coatings based on the Tobacco mosaic virus for enhanced phase-change heat transfer is reported. A simple room temperature nanofabrication process, using the self-assembly and mineralization of the Tobacco mosaic virus (TMV), has been implemented to create superhydrophilic surfaces. Using this technique, a variety of structured surfaces have been fabricated and characterized showing enhanced surface wettability and heat transfer characteristics. High-speed images of droplet impact evaporation on flat and hierarchical samples have been recorded, showing increased wetting and evaporation for the nanostructured surfaces. The addition of nanostructures increases the heat transfer rate by more than a factor of three as compared to the flat surfaces, and hierarchical surfaces exhibit heat transfer rates more than an order of magnitude larger than flat non-structured surfaces. Additionally, an increase in Leidenfrost temperature of 100°C as compared to flat samples has been recorded. TMV nanostructures were also assembled onto the walls of heated minichannels, promoting continuous bubble detachment as well as reduced slug formation and instabilities during flow boiling. While bare minichannel exhibits nearly complete dry-out, the nanostructured channels maintain annular flow at similar loadings. This work demonstrates the feasibility of enhancing phase-change heat transfer using TMV structured coatings.
APA, Harvard, Vancouver, ISO, and other styles
6

Veronda, Brenda, and Matthew Dingens. "The State of Permanganate With Relation to In Situ Chemical Oxidation." In The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7002.

Full text
Abstract:
In Situ Chemical Oxidation (ISCO) with permanganate had its beginnings over 10 years ago. Since that time, many sites have been successfully treated for organic compounds including chlorinated ethenes (perchloroethylene, trichloroethylene, etc.) phenols, explosives such as RDX, and many other organics. The successful application of ISCO with permanganate requires the integration of many site-specific factors into the remedial design. ISCO with permanganate is an effective technology, not only for its oxidative properties and persistence, but also for its application flexibility to remediate soil and groundwater. The merits of any type of treatment technology can be assessed in terms of effectiveness, ease of use, reaction rate, and cost. The use of permanganate for in-situ chemical oxidation results in the complete mineralization of TCE and PCE and can result in treatment levels below detection limits. Permanganate is a single component oxidizer, which is easily handled, mixed and distributed to the subsurface. Permanganate is also inexpensive to design and implement as compared to other technologies. This presentation will provide a general overview of the application and safety aspects of ISCO with permanganate. This paper will discuss the advantages and limitations of this technology, typical cost ranges, site evaluation and application technologies.
APA, Harvard, Vancouver, ISO, and other styles
7

Khatuntseva, Yu Yu, I. V. Cherepukhina, N. S. Gorbunova, and A. I. Gromovik. "Composition of microbial communities of leached chernozem depending on agricultural crops." In РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.04.

Full text
Abstract:
A large role in the creation of soil fertility and water-resistant structure, in the processes of humus synthesis and mineralization, as well as in the provision of agricultural plants with elements of mineral nutrition, belongs to soil microorganisms. For leached chernozem, the influence of field crops on the main groups of microorganisms, which are involved in the formation of effective and potential soil fertility, and associated enzymes was established. The purpose of the work is to study the effect of agricultural plants on the structure of the microbial community of the soil and the activity of enzymes involved in the formation of effective and potential soil fertility. Soil samples were taken from the 0-25 cm layer. They differed in anthropogenic load: virgin soil and soil where crops were cultivated. To count the number of soil microorganisms in the crops and their rhizospheres, we used the method of culturing successive dilutions of the soil suspension on selective nutrient media. The catalase activity of the soil was determined by the gasometric method. It is based on measuring the decay rate of hydrogen peroxide when it is interconnected with the soil in terms of the amount of oxygen released. The method for determining phosphatase activity is based on the quantitative calculation of inorganic phosphorus, which is formed by the breakdown of organic phosphorus compounds under the action of phosphatases.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Zhekun, Xing Ding, Mingxing Ling, and Weidong Sun. "Hydrothermal Processes Facilitate Rare Metal Fractionation and Mineralization." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.3155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chou, Kathy, Grace Kim, and Marjolein C. H. van der Meulen. "The Effects of Vitamin D Deficiency on Histomorphometry and Strength of Rat Vertebrae." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53519.

Full text
Abstract:
Vitamin D3 is integral to both bone remodeling and calcium homeostasis [1]. With vitamin D deficiency, rickets develops during growth and osteomalacia results in adulthood [2]; in both cases, mineralization is altered and bones are more prone to fracture. Although the degenerative effects of vitamin D deficiency on trabecular architecture have been studied, investigations examining both compromised tissue material properties and mechanical properties in the vertebrae of growing animals are scarce. Therefore, the objective of this study was to investigate cancellous bone architecture and mechanical property changes caused by altered mineralization through vitamin D deficiency in growing rats.
APA, Harvard, Vancouver, ISO, and other styles
10

Akkus, Ozan, Fran Adar, and Mitchell B. Schaffler. "Increased Collagen Mineralization Affects the Yield Stress But Not the Yield Strain in Cortical Bone of Rats: Implications for Age-Related Tissue Embrittlement." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32599.

Full text
Abstract:
It has been well documented that the fracture susceptibility of cortical bone increases significantly with age [1]. Although the age-related decline in the fracture resistance of the cortical bone is attributed to reduced bone quantity; a substantial overlap in the bone mass of normal subjects and those sustaining fractures suggests that bone mass alone does not identify the fracture risk on an individual basis [2]. Therefore, the conceptual framework should be improved to include bone quality measures in addition to bone quantity to refine fracture risk assessment. In this study, Raman microspectroscopy was used to assess two key variables of bone tissue quality in aging rat cortical bone: the relative amount of mineral with respect to the amount of collagen (i.e. collagen mineralization) and the mineral crystallinity (i.e. size and stoichiometric perfection of mineral crystals). In this regard the first aim of this study was to investigate age-related changes in the extent of mineralization of collagen fibers and to test its relationship to elastic deformability of cortical bone tissue. The second aim of the study was to investigate age-related changes in the mineral crystallinity and to test its relationship to elastic deformability of cortical bone tissue. The first hypothesis of this study is that both collagen mineralization and mineral crystallinity will increase with age. The second hypothesis of this study was that age-related changes in compositional properties will compromise the elastic deformation capacity of cortical bone tissue.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mineralization rate"

1

Barnes, E. M., L. A. Groat, and H. Falck. A review of the Late Cretaceous Little Nahanni Pegmatite Group and associated rare element mineralization in the Selwyn Basin area, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/224554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Analyses of rare earth element and uranium mineralization in Bokan Mountain archive sample splits: Reevaluation of older data (1984-1987) with newer analytical techniques. Alaska Division of Geological & Geophysical Surveys, 2010. http://dx.doi.org/10.14509/20601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography