Academic literature on the topic 'Mineraloge'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mineraloge.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mineraloge"

1

Hoppe, G. "Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin Teil 4: Das Mineralogische Museum der Universität Berlin unter Christian Samuel Weiss von 1810 bis 1856." Fossil Record 4, no. 1 (January 1, 2001): 3–27. http://dx.doi.org/10.5194/fr-4-3-2001.

Full text
Abstract:
Die Universitätsgründung in Berlin von 1810 war verbunden mit der Übernahme des Lehrbetriebes der aufgelösten Bergakademie, die nur noch in Form des Bergeleveninstituts bzw. Bergelevenklasse für die Finanzierung der Ausbildung der Bergeleven weiter bestand, sowie mit der Übernahme des von der Bergakademie genutzten Königlichen Mineralienkabinetts der preußischen Bergverwaltung als Mineralogisches Museum der Universität. Infolge des Todes von D. L. G. Karsten im Jahre 1810 erhielt der Leipziger Physiker und Mineraloge C. S. Weiss den Lehrstuhl für Mineralogie, den er bis zu seinem Tode 1856 innehatte. Weiss entwickelte die Lehre Werners, die die Mineralogie einschließlich Geologie umfasste, in kristallographischer Hinsicht weiter, während sich später neben ihm zwei seiner Schüler anderen Teilgebieten der Mineralogie annahmen, G. Rose der speziellen Mineralogie und E. Beyrich der geologischen Paläontologie. Der Ausbau der Sammlungen durch eigene Aufsammlungen, Schenkungen und Käufe konnte in starkem Maße fortgesetzt werden, auch zunehmend in paläontologischer Hinsicht, sodass das Mineralogische Museum für das ganze Spektrum der Lehre gut bestückt war. Der streitbare Charakter von Weiss verursachte zahlreiche Reibungspunkte. <br><br> History of the Geoscience Institutes of the Natural History Museum in Berlin. Part 4 <br><br> The establishment of the University in Berlin in 1810 resulted in the adoption of the teaching of the dissolved Bergakademie and of the royal Mineralienkabinett of the Prussian mining department, which was used by the Bergakademie before it became the Mineralogical Museum of the University. The Bergakademie continued to exist only as Bergeleveninstitut or Bergelevenklasse for financing the education of the mining students. The physicist and mineralogist C. S. Weiss was offered the chair of mineralogy after the death of D. L. G. Karsten 1810; he had the position to his death in 1856. Weiss developped the crystallographic part of the science of Werner which included mineralogy and geology. Two of his pupils progressed two other parts of mineralogy, G. Rose the speciel mineralogy and E. Beyrich the geological paleontology. The enlargement of the collections continued on large scale by own collecting, donations and purchases, also more paleontological objects, so that the Mineralogical Museum presented a good collection of the whole spectrum of the field. The pugnacious nature of Weiss resulted in many points of friction. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.20010040102" target="_blank">10.1002/mmng.20010040102</a>
APA, Harvard, Vancouver, ISO, and other styles
2

Hoppe, Günter. "Friedrich Tamnau (1802--1879) -- Mineraloge, Mineralsammler und Mäzen." Mitteilungen aus dem Museum für Naturkunde in Berlin. Geowissenschaftliche Reihe 7, no. 1 (October 10, 2004): 45–59. http://dx.doi.org/10.1002/mmng.4860070104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoppe, G. "Friedrich Tamnau (1802–1879) – Mineraloge, Mineralsammler und Mäzen." Fossil Record 7, no. 1 (January 1, 2004): 45–59. http://dx.doi.org/10.5194/fr-7-45-2004.

Full text
Abstract:
Der Berliner Bankier Friedrich Tamnau betätigte sich neben seinem Beruf sein ganzes Leben lang als Mineraloge und mit großem finanziellem Aufwand als Mineralsammler. Seine berühmten Sammlungsbestände stellte er Fachleuten großzügig zur Verfügung. Eine erste große Sammlung verkaufte er 1841 der Berliner Universität. Seine noch größere zweite Sammlungsbeständte er am Lebensende testamentarisch der Berliner Technischen Hochschule. Außerdem gründete er die Tamnau-Stiftung, die der Finanzierung von Auslandsreisen zum Sammeln und Bearbeiten von Mineralen diente. <br><br> The banker Friedrich Tamnau, Berlin, was active as a mineralogist during his entire life while at the same time conducting his profession. He also a large financial imput into the collection of minerals. He generously offered his famous collection to scinetists for study. He sold his first large collection to the University of Berlin. A the end of his life he presented by testament a second even larger collection to the Technical University of Berlin. In addition he founded the Tamnau-Foundation to support foreign travel to collect and study minerals. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.20040070104" target="_blank">10.1002/mmng.20040070104</a>
APA, Harvard, Vancouver, ISO, and other styles
4

Hoppe, G. "Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin. Teil 3: Von A. G. Werner und R. J. Haüy zu C. S. Weiss – Der Weg von C. S. Weiss zum Direktor des Mineralogischen Museums der Berliner Universität." Fossil Record 3, no. 1 (January 1, 2000): 3–25. http://dx.doi.org/10.1002/mmng.20000030102.

Full text
Abstract:
Abstract. Der Berufung von C. S. Weiss an die Universität Berlin im Jahre 1810 gingen Entwicklungen voraus, die durch die Kristallographie des Franzosen R. J. Haüy, besonders durch dessen Lehrbuch der Mineralogie, ausgelöst wurden. Sie stehen mit der Übersetzung dieses Lehrbuchs im Zusammenhang und führten zur Qualifizierung von C. S. Weiss zum Mineralogen und Kristallographen sowie zur weiteren Entwicklung der Kristallographie innerhalb des Lehrgebäudes der Mineralogie. Den Anstoß gab der mit dem Berliner Mineralogen D. L. G. Karsten befreundete Geologe L. v. Buch, der die Kristallographie Haüys als Erster kennen lernte. Als dessen stark kristallographisch orientiertes Lehrbuch der Mineralogie erschien, entschloss sich Karsten, eine kommentierte Übersetzung desselben zu organisieren. Weiss, der hierfür gewonnen werden konnte, bildete sich zunächst an der Bergakademie Freiberg weiter aus, wobei er die Lehre des führenden Mineralogen A. G. Werner voll in sich aufnahm. Im Verlaufe der Mitarbeit an der Übersetzung gelangte Weiss gegenüber den atomistischen Vorstellungen Haüys zu Ansichten über die Gesetzmäßigkeiten des Kristallbaues. die sich auf Kants Naturphilosophie gründeten. Mit Haüy, den er in Paris näher kennen lernte, kam es deshalb zum Bruch. Seine "dynamische" Kristallographie baute Weiss mathematisch aus und vermochte bereits weit in die Gesetzmäßigkeiten des Kristallbaues einzudringen. Dadurch schuf er die Voraussetzungen für seine Berufung auf den für Karsten vorgesehenen Berliner Mineralogie-Lehrstuhl, der durch dessen frühen Tod frei wurde. doi:10.1002/mmng.20000030102x
APA, Harvard, Vancouver, ISO, and other styles
5

Hoppe, G. "Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin. Teil 3: Von A. G. Werner und R. J. Haüy zu C. S. Weiss – Der Weg von C. S. Weiss zum Direktor des Mineralogischen Museums der Berliner Universität." Fossil Record 3, no. 1 (January 1, 2000): 3–25. http://dx.doi.org/10.5194/fr-3-3-2000.

Full text
Abstract:
Der Berufung von C. S. Weiss an die Universität Berlin im Jahre 1810 gingen Entwicklungen voraus, die durch die Kristallographie des Franzosen R. J. Haüy, besonders durch dessen Lehrbuch der Mineralogie, ausgelöst wurden. Sie stehen mit der Übersetzung dieses Lehrbuchs im Zusammenhang und führten zur Qualifizierung von C. S. Weiss zum Mineralogen und Kristallographen sowie zur weiteren Entwicklung der Kristallographie innerhalb des Lehrgebäudes der Mineralogie. Den Anstoß gab der mit dem Berliner Mineralogen D. L. G. Karsten befreundete Geologe L. v. Buch, der die Kristallographie Haüys als Erster kennen lernte. Als dessen stark kristallographisch orientiertes Lehrbuch der Mineralogie erschien, entschloss sich Karsten, eine kommentierte Übersetzung desselben zu organisieren. Weiss, der hierfür gewonnen werden konnte, bildete sich zunächst an der Bergakademie Freiberg weiter aus, wobei er die Lehre des führenden Mineralogen A. G. Werner voll in sich aufnahm. Im Verlaufe der Mitarbeit an der Übersetzung gelangte Weiss gegenüber den atomistischen Vorstellungen Haüys zu Ansichten über die Gesetzmäßigkeiten des Kristallbaues. die sich auf Kants Naturphilosophie gründeten. Mit Haüy, den er in Paris näher kennen lernte, kam es deshalb zum Bruch. Seine "dynamische" Kristallographie baute Weiss mathematisch aus und vermochte bereits weit in die Gesetzmäßigkeiten des Kristallbaues einzudringen. Dadurch schuf er die Voraussetzungen für seine Berufung auf den für Karsten vorgesehenen Berliner Mineralogie-Lehrstuhl, der durch dessen frühen Tod frei wurde. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.20000030102" target="_blank">10.1002/mmng.20000030102x</a>
APA, Harvard, Vancouver, ISO, and other styles
6

Okrusch, Martin, and Hans Ulrich Bambauer. "From the Fortschritte der Mineralogie to the European Journal of Mineralogy: a case history." European Journal of Mineralogy 22, no. 6 (December 23, 2010): 897–908. http://dx.doi.org/10.1127/0935-1221/2010/0022-2047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Freedman, R., S. Herron, V. Anand, M. Herron, D. May, and D. Rose. "New Method for Determining Mineralogy and Matrix Properties From Elemental Chemistry Measured by Gamma Ray Spectroscopy Logging Tools." SPE Reservoir Evaluation & Engineering 18, no. 04 (November 25, 2015): 599–608. http://dx.doi.org/10.2118/170722-pa.

Full text
Abstract:
Summary Methods for predicting mineralogy from logging-tool measurements have been an active area of research for several decades. In spite of these efforts, methods for predicting quantitative mineralogy including clay types from well-logging data were not fully achieved. The introduction of geochemical logging tools in the 1980s offered promise; however, early versions of geochemical logging tools did not measure elemental chemistry with enough accuracy and precision to enable reliable and quantitative determination of mineralogy. Recent advances in geochemical-logging-tool technology now enable accurate and robust measurements of the chemical elemental concentrations that are needed to determine continuous quantitative and detailed logs of mineralogy. This paper presents a novel approach for determining more accurate and more detailed mineralogy from an elemental spectroscopy logging tool. This work was made possible by three recent developments: the introduction of a new neutron-induced gamma ray spectroscopy logging tool, a new research database consisting of chemistry and mineralogy measured on cores acquired worldwide from conventional and unconventional reservoirs, and a new model-independent inversion method that overcomes the limitations of previous model-dependent methods. The model-independent inversion makes use of the database that includes clean sands, shaly sands, shales, carbonates, and complex mixed lithologies. The database contains laboratory measurements of dry-weight elemental chemistry and mineralogy measured by transmission Fourier-transform infrared (FTIR) spectroscopy. The database is used to derive a model-independent mapping function that accurately represents the complex functional relationship between the elemental concentrations and the mineral concentrations. After the mapping function is determined from the database, one can use it to predict quantitative mineralogy from elemental concentrations derived from the logging-tool measurements. Unlike previous inversion methods, the model-independent mapping function does not have any adjustable parameters or require any user inputs such as mineral properties or endpoints. The mapping function is used to predict continuous logs of matrix densities plus concentrations of 14 minerals (i.e., illite, smectite, kaolinite, chlorite, quartz, calcite, dolomite, ankerite, plagioclase, orthoclase, mica, pyrite, siderite, and anhydrite) from eight dry-weight elemental concentrations derived from the logging tool. The new method was applied to well-log data acquired worldwide in numerous conventional and unconventional reservoirs with a wide variety of complex mineralogies. The predicted mineralogies and matrix densities are generally found to be consistent with core-derived mineralogies and matrix densities.
APA, Harvard, Vancouver, ISO, and other styles
8

Kokkaliari, Maria, and Ioannis Iliopoulos. "Application of Near-Infrared Spectroscopy for the identification of rock mineralogy from Kos Island, Aegean Sea, Greece." Bulletin of the Geological Society of Greece 55, no. 1 (January 3, 2020): 290. http://dx.doi.org/10.12681/bgsg.20708.

Full text
Abstract:
Near-Infrared spectroscopy (NIR) is a useful tool for direct and on-site identification of rock mineralogy in spite of the difficulties arising in spectral evaluation, due to limited availability of spectral libraries at the time. Especially in the field, a functional methodology for the identification and evaluation if possible, of the geologic materials, is of interest to many researchers. However, several different parameters (such as grain size, color, mineralogy, texture, water content etc.) can affect the spectroscopic properties of the samples resulting in spectral variability. The subject of the present work focuses in various lithotypes (monzodiorite, diorite, altered diorite, actinolite schist, cataclasite, slate) from Kos Island, Aegean Sea, in Greece, all bearing hydrous minerals in various amounts. The evaluation of the results obtained from NIR spectroscopy offered important qualitative information about the mineralogy of the lithotypes examined. The important asset of the method is that no sample preparation was necessary. From the reflectance spectra, the NIR-active minerals that were identified include chlorite, micas, amphiboles and epidotes. Petrographic and mineralogic analyses were also employed in order to confirm the NIR results and provide more detailed information about the mineralogy of the samples, the grain size and the orientation of the minerals. Correlation of wavelength positions at ~1400 nm with loss on ignition (LOI) values led us to relate the various lithotypes in terms of their petrological affinities. NIR spectroscopy was proved to be a useful tool, especially for the mineralogic identification of rocks underwent low- to medium grade metamorphism, from greenschist to amphibolite facies.
APA, Harvard, Vancouver, ISO, and other styles
9

Graham, Shaun, and Nynke Keulen. "Nanoscale Automated Quantitative Mineralogy: A 200-nm Quantitative Mineralogy Assessment of Fault Gouge Using Mineralogic." Minerals 9, no. 11 (October 29, 2019): 665. http://dx.doi.org/10.3390/min9110665.

Full text
Abstract:
Effective energy-dispersive X-ray spectroscopy analysis (EDX) with a scanning electron microscope of fine-grained materials (submicrometer scale) is hampered by the interaction volume of the primary electron beam, whose diameter usually is larger than the size of the grains to be analyzed. Therefore, mixed signals of the chemistry of individual grains are expected, and EDX is commonly not applied to such fine-grained material. However, by applying a low primary beam acceleration voltage, combined with a large aperture, and a dedicated mineral classification in the mineral library employed by the Zeiss Mineralogic software platform, mixed signals could be deconvoluted down to a size of 200 nm. In this way, EDX and automated quantitative mineralogy can be applied to investigations of submicrometer-sized grains. It is shown here that reliable quantitative mineralogy and grain size distribution assessment can be made based on an example of fault gouge with a heterogenous mineralogy collected from Ikkattup nunaa Island, southern West Greenland.
APA, Harvard, Vancouver, ISO, and other styles
10

Casetou-Gustafson, Sophie, Cecilia Akselsson, Stephen Hillier, and Bengt A. Olsson. "The importance of mineral determinations to PROFILE base cation weathering release rates: a case study." Biogeosciences 16, no. 9 (May 7, 2019): 1903–20. http://dx.doi.org/10.5194/bg-16-1903-2019.

Full text
Abstract:
Abstract. Accurate estimates of base cation weathering rates in forest soils are crucial for policy decisions on sustainable biomass harvest levels and for calculations of critical loads of acidity. The PROFILE model is one of the most frequently used methods to quantify weathering rates, where the quantitative mineralogical input has often been calculated by the A2M (“Analysis to Mineralogy”) program based solely on geochemical data. The aim of this study was to investigate how uncertainties in quantitative mineralogy, originating from modeled mineral abundance and assumed stoichiometry, influence PROFILE weathering estimate, by using measured quantitative mineralogy by X-ray powder diffraction (XRPD) as a reference. Weathering rates were determined for two sites, one in northern (Flakaliden) and one in southern (Asa) Sweden. At each site, 3–4 soil profiles were analyzed at 10 cm depth intervals. Normative quantitative mineralogy was calculated from geochemical data and qualitative mineral data with the A2M program using two sets of qualitative mineralogical data inputs to A2M: (1) a site-specific mineralogy based on information about mineral identification and mineral chemical composition as determined directly by XRPD and electron microprobe analysis (EMPA), and (2) regional mineralogy, representing the assumed minerals present and assumed mineral chemical compositions for large geographical areas in Sweden, as per previous published studies. Arithmetic means of the weathering rates determined from A2M inputs (WA2M) were generally in relatively close agreement with those (WXRPD) determined by inputs based on direct XRPD and EMPA measurements. The hypothesis that using site-specific instead of regional mineralogy will improve the confidence in mineral data input to PROFILE was supported for Flakaliden. However, at Asa, site-specific mineralogies reduced the discrepancy for Na between WA2M and WXRPD but produced larger and significant discrepancies for K, Ca and Mg. For Ca and Mg the differences between weathering rates based on different mineralogies could be explained by differences in the content of some specific Ca- and Mg-bearing minerals, in particular amphibole, apatite, pyroxene and illite. Improving the accuracy in the determination of these minerals would reduce weathering uncertainties. High uncertainties in mineralogy, due for example to different A2M assumptions, had surprisingly little effect on the predicted weathering of Na- and K-bearing minerals. This can be explained by the fact that the weathering rate constants for the minerals involved, e.g. K feldspar and micas, are similar in PROFILE. Improving the description of the dissolution rate kinetics of the plagioclase mineral group as well as major K-bearing minerals (K feldspars and micas) should be a priority to help improve future weathering estimates with the PROFILE model.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mineraloge"

1

Breitfelder, Gerd [Verfasser]. "Johann Carl Wilhelm Voigt – seine wissenschaftliche Anschauung, Kommunikation und Kooperation als Mineraloge des Herzogtums Sachsen-Weimar-Eisenach / Gerd Breitfelder." Aachen : Shaker, 2006. http://d-nb.info/1166514242/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stokratskaya, Lidia. "Lorenz von Pansner (1777–1851): Sein Wirken als Mineraloge in Russland im Zeitraum von 1800 bis 1836, seine wissenschaftlichen Arbeiten und seine Briefkorrespondenzen." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-223512.

Full text
Abstract:
Im Rahmen dieser Arbeit wurden der Lebenslauf, die Reisetätigkeit, der wissenschaftliche und berufliche Werdegang Lorenz von Pansners sowie seine Bedeutung für den Aufbau der Mineralogie in Russland im 19. Jahrhundert erschlossen und analysiert. Es wurde auch seine Rolle bei der Gründung der Russischen Mineralogischen Gesellschaft analysiert. Die Grundlage dafür bildeten 57 bisher nicht bekannte Briefe von Pansner und seine wissenschaftlichen Publikationen. Verzeichnisse von in den Briefen auftretenden Personen-, Orts-, Mineral- und Gesteinsnamen sowie ein Stichwortverzeichnis sollen die Erschließung der Briefe ermöglichen, wie eine chronologisch-thematische Übersicht über den Textkorpus in Form von Konspekten und eine Liste von Kommentaren und Erläuterungen. Es wurde auch die Einordnung Pansners in die Reihe anderer multidisziplinärer Wissenschaftler des 19. Jahrhunderts sowie in die wirtschaftlichen, politischen und gesellschaftlichen Umbrüche in der Zeit zwischen den Napoleonischen Kriegen und der Deutschen Revolution unternommen.
APA, Harvard, Vancouver, ISO, and other styles
3

Brenner, Thomas Lafayette. "The fortaleza de minas nickel, copper and platinoids deposit : ore types, tectonics and volcanological aspects = A jazida de níquel, cobre e platinóides de fortaleza de minas : aspectos tectônicos, vulcanológicos e tipos de minérios /." Rio Claro : [s.n.], 2006. http://hdl.handle.net/11449/103043.

Full text
Abstract:
Orientador: Sebastião Gomes de Carvalho
Banca: Aroldo Misi
Banca: Yociteru Hasui
Banca: Jorge Silva Bettencourt
Banca: Antenor Zanardo
O presente trabalho reúne 3 artigos científicos, já formalizados para publicação em revistas internacionais, foi confeccionado para ser apresentado como tese de doutorado
Artigos em inglês, introdução e resumo em português
Resumo: O depósito de Fortaleza de Minas vem sendo estudado a mais de 20 anos desde a sua descoberta em 1983 e apresenta similaridades com outros depósitos komatiíticos arqueanos descritos na literatura. Sua configuração atual reflete ação de processos metamórficos e deformacionais diversos gerando novos tipos de minério sem, no entanto, perder sua identidade primária komatiítica e permitindo reconstruir sua faciologia vulcanológica. Contexto regional A região de Fortaleza de Minas corresponde a um bloco cratônico arqueano retrabalhado na Faixa Móvel Brasília de idade neoproterozóica. Os terrenos granito-greenstone afloram em meio à metasedimentos supracrustais proterozóicos dos grupos Araxá e Canastra que compõe a nappe de Passos. O bloco arqueano corresponde ao limite sul do antigo Craton do Paramirim fazendo contato com o cinturão granulítico de Alfenas a Sul. Estudos geológicos e geofísicos recentes demonstram que esta área corresponde a uma zona de junção entre dois blocos crustais, denominados Brasília e São Paulo, que representam duas paleo-placas separadas pela zona de sutura de Alterosa. No bloco Brasília ocorrem os greenstone belts de Morro do Ferro e Pihum-i. As idades obtidas para estes greenstone belts estão distribuídas entre 2,8 e 2,9 Ga e 2,9 e 3,1 Ga respectivamente e são discutidas no capítulo 3. O greenstone belt do Morro do Ferro ocorre como faixas descontínuas e estreitas estruturadas em quilhas sinclinais representando as raízes desta seqüência greenstone. Estão fortemente deformadas e cortadas pelo sistema sinistral de falhas transcorrentes Campo do Meio responsável pela estruturação sigmoidal da região (capítulo 2) (Fig. 1, pg. 33 e Fig. 1, pg.4). O Greenstone Belt Morro do Ferro é representado por derrames komatiíticos e mais restritamente toleíticos com intercalações subordinadas de sedimentos químicos exalativos...(Resumo completo, clicar acesso eletrônico abaixo)
Abstract: After 20 years of exploration and mining in the Fortaleza de Minas nickel deposit (formerly known as O'Toole) a better understanding of the geological framework and the volcanic environment was achieved. The different ore types observed in the deposit and its distribution revealed the original volcanic setting for the ore formation and also the geological evolution and transformation of the different ore types. The nickel mineralization is classified as a Type 1 deposit (Lesher and Keays, 2002). It is associated to an open trough structure of lava pathway. Later metamorphism and deformation obliterated most of the original volcanic textures and promoted a strong stretching of the ore zone and remobilization of the massive breccia ore along a major shear zone installed at the base of an upper fractionated host flow unit in contact with a footwall BIF. In the Neoproterozoic Brasiliano Cycle (0.6 Ga) a new ore type was formed of hydrothermal origin with extremely high nickel grades and PGE nuggests...(Complete abstract, click electronic address below)
Doutor
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Jingyao. "Optimization of the use of diamond indicator minerals in diamond exploration in kimberlites." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668786.

Full text
Abstract:
Ti-rich minerals occur in xenoliths of metasomatized mantle peridotites, MARID and PIC. Xenocrysts produced by disaggregation during the intrusion have equivalent compositions. Early crystallization in the first intrusive stage in kimberlites and related rocks produces olivine phenocrysts that may have trapped inclusions of co-crystallizing rutile, Mg-rich ilmenite to geikielite and chromite. Geikielite may replace Ti-bearing minerals of the xenocrystic suite, producing a suite of magnesian ilmenites of intermediate compositions that follow an Mg enrichment trend depending on the grade of interaction xenocrysts/magma. Phlogopite microphenocrysts can start to crystallize in this stage. A second magmatic stage produces saturation in pyrophanite, that can precipitate or react with all the above Ti-rich minerals, producing crystallization of a suite of intermediate manganoan ilmenites whose compositions depend on that of the replaced Ti-mineral and the grade of interaction of the magma with the above crystals. Lately in this stage, qandilite-ulvöspinel-magnetite start to crystallize, together with perovskite, along with phlogopite microphenocrysts. Finally, the crystallization of ulvöspinel-magnetite crystals may be produced in disequilibria, inducing the development of atoll textures. Groundmass phlogopite crystallize in the late magmagtic stage. Monticellite can be formed in this stage. Interstitial glass can be produced at the end of this stage. Subsolidus hydrothermal processes are widespread in most of the kimberlites, with replacement of the early minerals by hydrous and carbonic fluids of kimberlitic provenance. Olivines and glass are replaced by serpentines and carbonates. A sequence of ilmenites (geikielite followed by pyrophanite) can precipitate directly or replace the above Ti-bearing minerals. Spinels and perovskites may also be replaced by Ti hydrogarnets and late perovskite or kassite accompanied by aeschynite. The composition of the replacing ilmenite depends on that of the replaced mineral. Hence, these ilmenites can retain Nb, Cr, Zr when replacing rutile or perovskite, chromite or crichtonite. Therefore, the trace composition of ilmenite cannot be used to extract petrogenetic information. Mg- or Mn-ilmenites cannot be used as DIM because they are very late minerals formed during the intrusion. When plotting the composition of these minerals in the existing IUGS classification diagrams there is an extensive overlap among kimberlites and related rocks. Thus the existing classification diagrams are not useful and we propose some amendments to the existing classification.
APA, Harvard, Vancouver, ISO, and other styles
5

Müller-Kelwing, Karin. "Eberhard Rimann." Böhlau Verlag, 2020. https://slub.qucosa.de/id/qucosa%3A75071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hood, Christopher Thomas Saul. "Mineralogy, paragenesis, and mineralogic zonation of the Silver Queen vein system, Owen Lake, central British Columbia." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/29878.

Full text
Abstract:
The Silver Queen mine, southeast of Houston, B.C., consists of a series of epithermal base- and precious-metal bearing veins hosted by Late Cretaceous volcanic rocks of the Tip Top Hill formation. Mineralogically, the veins are complex, displaying several discrete mineralizing stages characterized by the presence of certain sulfide and gangue species. The complexity of the vein mineralogy has presented a problem in assessing the systemic evolution of the hydrothermal system. This study describes in detail the nature of the mineralogy, dividing the assemblages present into four distinct paragenetic stages. Particular attention was paid to the occurrence of potentially economic phases (e.g. electrum). Sulfide phases which were compositionally sensitive to trace element variations were examined by electron microprobe to determine variations on single grain and deposit scales. Microbeam analysis also assisted in the identification of several sulfosalt species. Evaluation of the mineralogy and paragenesis allowed for the assessment of the evolution of the deposit. Paragenetically, the mineralization is divided into four distinct stages. The first stage is characterized by fine grained pyrite and quartz mineralization, with hematite abundant in the assemblage in the central segment of the most extensive (Number Three) vein. Barite, svanbergite, and hinsdalite become abundant towards the south end of the Number Three vein, with marcasite more abundant towards the north. Stage II is dominated by the presence of massive sphalerite and layered carbonate (calcite in the south, manganoan carbonates in the north). Stage III, however, is more complex. Mineralization consists of chalcopyrite, galena, fahlores (tetrahedrite-tennantite), electrum, quartz, and sulfosalts. Included in the sulfosalt assemblage are the unusual Pb-Bi-Cu-Ag species berryite, matildite, gustavite, and aikinite. The final stage of mineralization is volumetrically minor and is dominated by fine-grained quartz, pyrobitumen, and calcite. Minor element trends in tetrahedrites and sphalerites reveal a mineralizing fluid with a high degree of compositional variability. Tetrahedrite grains show well developed oscillatory compositional zoning in Sb, As, Bi, Ag, and Cu, while sphalerites are commonly visually well layered. The latter was found to be the main repository for the unusual metals Ga, Ge, and In, which are found in anomalous levels in Silver Queen ore. The Silver Queen veins are proposed to have evolved from fluids originating at depth to the south of the Number Three vein. Pulses of metal-bearing fluids interacted with cooler groundwaters, producing the observed distribution of assemblages. The presence of Ga, Ge, and In may have been sourced in an organic-rich layer exposed in several locales in the Silver Queen mine area.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
7

Müller-Kelwing, Karin. "Walther Fischer." Böhlau Verlag, 2020. https://slub.qucosa.de/id/qucosa%3A75045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nayem, Saleh Lehbib. "Estudio Geológico y Metalogenético del Basamento Precámbrico del Sahara Occidental." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/402471.

Full text
Abstract:
En el Sáhara Occidental hay dos unidades principales: la cobertera sedimentaria del Fanerozoico y un basamento cristalino que forma parte del cratón del África Occidental, constituido desde el Paleoarcaico al Paleoproterozoico. A su vez, en el basamento se ha definido una serie de dominios o terranes, delimitados por fallas regionales, que responden a microcontinentes que colisionaron principalmente durante la orogenia Birimiense y la Hercínica. Los primeros estadios de granitización parecen producirse entre el Paleoproterozoico y el Mesoproterozoico dependiendo del dominio, pero el primer gran episodio de plutonismo de tipo TTG generalizado es en la orogenia Leoniana (hacia 3 Ga). Se forman importantes depósitos de BIF en cuencas de “greenstone belts”. El ciclo Liberiense comienza con diques y “sills” ultrabásicos asociados a una pluma mantélica, que evoluciona a una LIP constituida por enjambres de diques de diabasa; en el resto de sectores se produce la individualización de los microcontinentes. El final del ciclo implica la colisión parcial de algunos de estos dominios y procesos de subducción que generan magmatismo calcoalcalino. El proceso de rift en el límite Arcaico- Proterozoico produce magmatismo alcalino saturado y subsaturado, con indicios de elementos raros. Localmente se individualizan cuencas sedimentarias submarinas en las que se forman depósitos importantes de BIF. Durante el Paleoproterozoico se produce la convergencia de la mayoría de las microplacas; en las zonas de suprasubducción se produce un magmatismo calcoalcalino; con el cierre de los océanos y la colisión continental se forman complejos ofiolíticos, a veces con mineralizaciones de Cr-PGE y depósitos de oro orogénico. Esta orogenia produce la cratonización de la mayor parte de los dominios. Los granitos alcalinos asociados al rift posterior son en cambio estériles. El magmatismo calcoalcalino asociado a la orogenia Kibariense en el margen occidental del crató n no par ece haber gener ado depósitos, pero los granitos alcalinos que cierran el ciclo contienen concentraciones muy altas de REE y Nb. La orogenia Panafricana determina la aparición de magmatismo calcoalcalino en el borde occidental del cratón, así como una nueva colisión con el dominio oriental de los Mauritánides, que se cratoniza. El proceso de rifting subsecuente genera rocas alcalinas saturadas y subsaturadas estériles. Los márgenes continentales así formados facilitan la sedimentación de series de plataforma del Paleozoico, en los que se encuentran mineralizaciones de Fe oolítico en el Devónico inferior. Durante la orogenia hercínica se produce la colisión continental de todos estos dominios y Laurussia, formándose el supercontinente de Pangea. En este contexto los cabalgamientos asociados pueden formar mineralizaciones de oro orogénico, y pueden darse mineralizaciones de Cr podiforme (PGE) en ofiolitas. Finalmente, la apertura del Atlántico N desde el Triásico superior-Jurásico produce el desarrollo de carbonatitas en el dominio más occidental de los Mauritánides, asimismo con mineralización de elementos raros. Los márgenes continentales así formados permiten el desarrollo de series de plataforma ricas en yacimientos de fosfatos y con potencial para petróleo. En el curso de este t rabajo se han descubierto varios depósitos minerales, pr incipalmente en el basamento del Precámbrico. Los depósitos de menas metálicas más interesantes son los siguientes: a) Los depósitos ortomagmáticos de Cr- PGE -Ti-V en el complejo estratiforme de Bir Malhat, con continuidades de decenas de km b) Los depósitos de Cr-PGE en cromititas podiformes en contextos oceánicos del Proterozoico de los Mauritánides. c) Los depósitos de Au-(PGE) orogénico asociados a zonas de cizalla, tanto en forma de listwänitas-birbiritas, sistemas filonianos o mineralizaciones estratoligadas asociadas a los mismos, correspondiendo a cizallas formadas en épocas panafricanas (dominios de Tifariti-Bir Lehlu-Ain ben Tili y de Sfariat) o hercínicas (Mauritánides). d) Los depósitos de BIF en series submarinas; si bien estos depósitos se encuentran en todos los dominios, los más interesantes por su continuidad y leyes se encuentran en las zonas de Sfariat y Miyec-Ijil. e) depósitos de Nb-Ta-LREE-U-Fe-V- P-Mo en carbonatitas, importantes tanto en las de edades del Proterozoico como en las del Cretácico. f) depósitos de Nb-Ta-F-HREE-U-Th en rocas alcalinas saturadas o subsaturadas, preferentmente en las enriquecidas en F. g) depósitos de Fe oolítico en las series de plataforma del Devónico inferior, de grandes reservas. h) depósitos de fosforitas y petróleo asociados a la cuenca sedimentaria de El Aaiún. i) Depósitos de U-(REE??) de edad Cuaternario , asociados a calcretas y ferricretas.
Two main geological units are distinguished in Western Sahara: a Phanerozoic sedimentary cover and a cryst a lline basement o f Paleoarchean to Paleoproterozoic age. This basement is a part of the Reguibat ridge, in the Western Africa craton. An ensemble of domains (or terranes) are distinguished in the basement. These domains are limited by regional fauls and correspond to old microcontinents collisioned mainly during the Birimian and Hercynian orogenies. Earlier granitization stages were produced in the Paleoarchean and the Mesoarchean depending on the domain, but the first generalized episode of TTG plutonism occurs in the Leonian orogeny ( circa 3 Ga). Important BIF deposits formed in greenstone belt basins. The Liberian cycle start with the intrusion of ultrabasic sills and dykes, associated with a mantle plume. This scenario evolved to a LIP made up by a dense network of diabase dykes; the individualization of the microcontinents took place in the rest of the area. Convergence of some of these microplates pr oduced subduction and a calc-alkaline magnatism and finally a collision between some of these domains at the end of this cycle. Rifting at the limit Archean-Proterozoic generated saturated and subsaturated alkaline magmatism. Showings of rare- element mineralization occur in these rocks. Submarine sedimentary basins are locally developed, and contain important BIF deposits. Most of the microplates converged during the Paleoproterozoic; calc-alkaline magmatism do occur in the suprasubduction zones; closing of the oceans and subsequent continental collision is associated with development of Cr- (PGE) bearing ophiolitic suites. Regional shear zones are associated with orogeenic gold deposits. This Birimain orogen produced the cratonization of most of the domains.. Alkaline granites intruded in a rft stage at the end of the orogeny, but they are barren. Calc-alkaline magmatism is also present during the Kibarian and Panafrican orogeny at the west border of the WAC, and is not mineralized; however, the alkaline granites of the rifting closing the Kibaran orogeny contain high concentrations of Nb and REE; those at the end of the end of the Panafrican are devoid of mineralization.. The continental margins of the craton allowed the sedimentation of thick platform series during the Paleozoic. The lower Devonian series hosts oolitic iron deposits. The general collision of all these domains and Laurussia during the Hercynian orogeny produced the Pangea supercontinent. In this context, the thrusts can carry orogenic gold deposits, and podiform Cr-(PGE) deposits outcrop in ophiolites. Finally, the opening of the North Atlantic since the Upper Triassic-Jurassic produced carbonatites at the western end of the WAC ; these carbonatites are enriched in rare elements. The continental margins formed in this epoch allowed the sedimentation of platform series thaht contain phospate deposits and have potential to contain oil. Western Sahara has a large potential for ore deposits, and some of them have been discovered during the development of this memory; most of them are hosted in the Precambrian materials: a) Stratiform Cr-PGE -Ti-V deposits associated with the Bir Malhat complex, and their continuity overpass 20 km. b) Podiform Cr-PGE chromitite deposits were produced in the Proterozoic of the Mauritanids. c) Orogenic gold deposits (Au-(PGE) are associated with the regional shear zones. There are several styles of mineralization: listwänites- birbirites, vein systems, or stratabound mineralizations replacing favourable host rocks in the vicinity of shear zones formed during the Birimian orogeny (Tifariti-Bir Lehlu-Ain ben Tili and Sfariat domains) o the Hercynian (Mauritanids). d) BIF deposits in submarine series. These deposits occur in most of the domains, but the Sfariat and Miyec-Ijil domains contain most of the largest reserves. e) Deposits of rare elements as Nb-Ta- LREE-U-Fe-V-P-Mo occur in the Proterozoic and Cretaceous carbonatites. f) Deposits of Nb-Ta-F-HREE-U-Th are found in undersaturated or saturated alkaline rocks, mainly in those enriched in F. g) Oolitic iron deposits have large reserves in the platform series of the Lower Devonian. h) World-class stratiform phosphorite deposits occur in the Paleogene El Aaiún sedimentary basin, which has also potential for oil deposits. i) Calcrete and ferricrete U-(REE??) deposits of Quaternary age.
APA, Harvard, Vancouver, ISO, and other styles
9

Coelho, Fernando de Mattos. "Aspectos geológicos e mineralógicos da Mina de diamantes de Romaria, Minas Gerais." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/44/44144/tde-24022011-113204/.

Full text
Abstract:
A Mina de diamantes de Romaria está localizada no perímetro urbano da cidade de Romaria, na região oeste de Minas Gerais. Durante os trabalhos de mineração executados nos últimos cem anos, foi lavrada uma área de aproximadamente 1 km2 de sedimentos. O local está situado na borda NE da Bacia do Paraná, na margem direita do Rio Bagagem, entre os Ribeirões Água Suja e Marrecos. Neste local vem sendo lavrado um conglomerado polimítico da Formação Uberaba, Grupo Bauru, pertencente ao Cretáceo Superior. Ele é constituído por clastos de micaxistos, anfibolitos, filitos e veios pegmatóides do Pré-Cambriano; arenitos da Formação Botucatu e basaltos da Formação Serra Geral. Possui matriz areno-argilosa onde foram identificadas as fases caulinita, illita e quartzo por difratometria. Sua espessura na área da mina oscila em torno de 6 m. Os minerais pesados separados do conglomerado diamantífero amostrado nas Frentes de Lavra 2 (Ferraria), 6 (Mangueiras) e na Cata exploratória do Sarkis, situada fora da área minerada, são constituídos em sua maior parte por fases opacas, entre as quais se destaca a magnetita, representando 50% em volume do concentrado. Outras fases opacas incluem hematita, ilmenita e fragmentos de lateritos. Entre as fases transparentes, destacase a granada que ocorre nas cores vermelha clara, vermelha escura, roxa, violeta e laranja, além de outros minerais derivados de rochas do embasamento cristalino. Análises químicas realizadas pela microssonda eletrônica revelaram que a ilmenita contém teores de MgO (7,4 - 11,4 % em peso) e de Cr2O3 (0,0 - 2,9 % em peso) típicos de rochas kimberlíticas. Da mesma forma, as granadas correspondem a piropos ricos em Cr2O3 (0,2 - 6,7 % em peso) correspondendo aos grupos G9 (lherzolitos), G5 e G4 (piroxenitos) e G10 (harzburgitos), sendo semelhantes a granadas das principais províncias kimberlíticas conhecidas. O diamante, por sua vez, contém microestruturas típicas semelhantes a diamantes de outras localidades. Foram identificadas trígonos em faces octaédricas, bem como microestruturas de simetria senária semelhantes às observadas em diamantes do lamproíto Argyle, na Austrália. Foram descritas microestruturas quadráticas nos cristais cúbicos, e degraus resultantes da dissolução de planos de crescimento cristalino em superfícies curvas de cristais rombododecaédricos. Atualmente a mina está paralisada desde 1984 devido a uma dívida contraída pela Extratífera de Diamantes do Brasil (EXDIBRA) com o Banco Nacional de Desenvolvimento Social. Apesar do potencial mineral existente no local, qualquer tentava de lavra só poderá ser executada mediante a quitação desta dívida.
The diamond Mine of Romaria is located in the northeast border of the Paraná Sedimentary Basin, nearby the town of Romaria, in western Minas Gerais State, Brazil. The mining place is situated on the right side of the Bagagem River, comprising an area of 1 km2 between the Água Suja and Marrecos streams. At this place diamonds have been washed from a Cretaceous polimictic conglomerate of the Uberaba Formation, Bauru Group, since the end of the nineteen century. This heterogeneous diamond-bearing conglomerate contains large conglomerate blocks of several lithologies with dimensions up to 0.80 m, set in an arenous-clayish matrix where kaolinite, illite and quartz have identified among the clasts such as mica and staurolite schists, phyllites and amphibolites of the Araxá Group, quartzites of the Canastra Group, arenites of the Botucatu Formation and basalts of the Serra Geral Formation. The concentrates obtained by washing the conglomerate contains large amounts of opaques phases mainly magnetite which may reach up to 50% in volume. Other opaques are represented by hematite, ilmenite, rutile, limonite as well as rock fragments of mica schists and complex intergrowths of laterites. The mineralogical assemblages of the transparent phases include staurolite, amphibole, epidote, kyanite, monazite, tourmaline, zircon and diamond as well. Electron micro probe analyses revealed that the ilmenites contain MgO (7.4-11.4 wt%) and Cr2O3 (0.0-2.9 wt%) contents similar to their counterparts of kimberlites from worldwide localities. Moreover, garnets are chromium rich pyropes with Cr2O3 ranging from 0.2 up to 6.7 wt %. The use discriminating diagrams revealed that most of the analysed sampled plot in the fields G9 and G3-G5 corresponding to lherzolitic and pyroxenitic parageneses, respectively. The plots include some rare G10 (harzbugitic) and G0 (unclassified) samples corresponding to garnets derived from rocks of the crystalline basement. Although diamonds have not been mined in the last years a small parcel produced by local diggers (garimpeiros) was available for physical studies including color and crystalline morphology. Several microstructures have been observed in octahedral crystal such as trigons and a pseudo-hexagonal microstructure observed in diamonds from lamproites. Cubic crystals showing the combination of the cube and dodecahedral revealed microstructures of square symmetry. Concerning dodecahedral crystal hillocks produced by dissolution were observed on the rounded faces of the samples. Presently the Mine of Romaria is closed since 1984 due to an old debt contracted by late owner Extratífera de Diamantes do Brasil (EXDIBRA) with the Brazilian Federal Agency of the Banco Nacional de Desenvolvimento Social (BNDES).
APA, Harvard, Vancouver, ISO, and other styles
10

Dias, Carlos Augusto Tavares [UNESP]. "Geologia e mineralogia de pegmatito mineralizado em estanho e metais associados (Nb, Ta, Zn, Cu, Pb), Mina Bom Futuro, Rondônia." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/92891.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:26:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-06-15Bitstream added on 2014-06-13T18:54:23Z : No. of bitstreams: 1 dias_cat_me_rcla.pdf: 1344683 bytes, checksum: 1acaaa814f2b0f234d70b3f93d51ba24 (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A mina Bom Futuro é atualmente uma das maiores produtora de estanho do país, com uma produção média anual nos últimos 10 anos de cerca de 2400 toneladas de estanho. As atividades industriais de extração de cassiterita na mina se concentram no morro Bom Futuro e adjacências, em depósitos primários e secundários, respectivamente. No morro Bom Futuro são reconhecidos dois pipes brechados alojados em gnaisses e anfibolitos, que são cortados por diques radiais e anelares de pórfiros graníticos com topázio, os quais são incluídos na Suíte Intrusiva Granitos Últimos de Rondônia (998 a 974 Ma). Pelo menos duas fases distintas de mineralização primária de estanho são identificadas com idades 40Ar/39Ar em zinnwaldita de 994±3 Ma e 993±3 Ma e são representadas por lentes, veios e vênulas de pegmatito e de quartzo. O pegmatito estudado ocorre na porção nordeste do morro, onde aparece hospedado em brechas de pipe e dique de topázio riólito pórfiro e cortado por dique de topázio granito pórfiro. Trata-se de um dique com mais de 200 m de comprimento, espessura variando 3 a 12 metros e de atitude geral N20E/45°SE. Na seção estudada com detalhe, o pegmatito mostra um zoneamento interno bem distinto, dado por camadas ou leitos subconcordantes entre si e com as paredes do dique. Pelo menos três zonas foram reconhecidas com base na mineralogia dominante, são elas do muro ao teto: zona do quartzo e topázio, zona do feldspato potássico e mica, e zona granítica (quartzo e feldspato potássico). Uma provável quarta zona não foi observada, mas segundo os garimpeiros, um leito de até 10 cm de espessura de cassiterita maciça ocorre de modo descontínuo junto ao muro do corpo. A estrutura das zonas é maciça e a granulação varia de média a grossa na zona granítica para grossa a muito grossa ou gigante (?) nas outras...
The mine Bom Futuro is currently one of the largest tin producer in the country with an average annual production over the past 10 years around 2400 tonnes of tin. The extraction industrial activities of cassiterite concentrate on the hill Bom Futuro and surrounding areas in primary and secondary deposits, respectively. On the hill Bom Futuro two breccia pipes are recognized hosted in gneisses and amphibolites, which are cut by radial and ring dikes of granite porphyry with topaz, which are included in the Intrusive Suite Latest Granites of Rondônia (998-974 Ma). At least two distinct phases of primary tin mineralization are identified with zinnwaldita 40Ar/39Ar ages of 994 ± 3 Ma and 993 ± 3 Ma and is represented by lenses, veins and venules of quartz and pegmatite. The studied pegmatite occurs in the northeastern portion of the hill, where it appears hosted in breccias pipe and topaz rhyolite porphyry dike cut by topaz granite porphyry dike. It is a dike over 200 meters in length, thickness ranging 3-12 meters and general attitude N20E/45 ° SE. In the studied section in detail, the pegmatite shows a very distinct internal zoning, given by layers or beds sub concordant among themselves and with the walls of the dike. At least three zones were recognized based on the dominant mineralogy, they are from the wall to the ceiling: zone of quartz and topaz, zone of mica and feldspar, and granitic zone (quartz and feldspar).A possible fourth zone was not observed, but according to the miners, a bed with 10 cm thick of massive cassiterite occurs discontinuously along the wall of the body. The structure of the zones are massive and the granulation varies from medium to coarse in the granite zone and coarse to very coarse or giant (?) In the other two. The primary mineralogy is relatively simple: the quartz is gray to milky white, the... (Complete abstract click electronic access below)
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Mineraloge"

1

Bolewski, Andrzej. Mineralogia i geochemia środowiska: Environmental mineralogy and geochemistry. Kraków: Wydawnictwo Oddziału Polskiej Akademii Nauk, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Minerals: A very short introduction. Oxford, UK: Oxford University Press, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Perkins, Dexter. Mineralogy. 3rd ed. Upper Saddle River: Prentice Hall, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mineralogy. Upper Saddle River, N.J: Prentice Hall, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dexter, Perkins. Mineralogy. 2nd ed. Upper Saddle River, N.J: Prentice Hall, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Perkins, Dexter. Mineralogy. 3rd ed. Upper Saddle River: Prentice Hall, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matthes, Siegfried. Mineralogie. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-26804-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Okrusch, Martin, and Hartwig E. Frimmel. Mineralogy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-57316-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matthes, Siegfried. Mineralogie. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-87508-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okrusch, Martin, and Siegfried Matthes. Mineralogie. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-34660-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Mineraloge"

1

Bambauer, H. U., U. Förstner, H. Pollmann, P. R. Buseck, J. R. Anderson, H. FöRster, G. Deissmann, et al. "Environmental Mineralogy. Radiation Mineralogy." In Advanced Mineralogy, 267–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-18154-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hochella, Michael F. "Mineralogy." In Encyclopedia of Earth Sciences Series, 943–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hochella, Michael F. "Mineralogy." In Encyclopedia of Earth Sciences Series, 1–6. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_308-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gupta, Alok Krishna. "Mineralogy." In Origin of Potassium-rich Silica-deficient Igneous Rocks, 11–67. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2083-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lewis, Douglas W., and David McConchie. "Mineralogy." In Analytical Sedimentology, 130–63. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2636-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wakefield, Andre. "Mineralogy." In Encyclopedia of Early Modern Philosophy and the Sciences, 1–4. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-20791-9_175-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matthes, Siegfried. "Einführung und Grundbegriffe." In Mineralogie, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-08768-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Klemd, Reiner. "Flüssigkeitseinschlüsse in Mineralen." In Mineralogie, 173–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-08768-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matthes, Siegfried. "Die magmatische Abfolge." In Mineralogie, 183–299. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-08768-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matthes, Siegfried. "Die sedimentäre Abfolge, Sedimente und Sedimentgesteine." In Mineralogie, 301–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-08768-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mineraloge"

1

Keulen, Nynke. "Nanoscale Automated Quantitative Mineralogy: A 200 nm Quantitative Mineralogy Assessment of Fine-grained Material with Mineralogic." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wood, R. Seth, Bryan C. Chakoumakos, Linda C. Kah, Brenda M. Pracheil, and Allison M. Fortner. "MINERALOGY MATTERS: ASSESSING THE MINERALOGIC HETEROGENEITY OF OTOLITH PAIRS USING NEUTRON DIFFRACTION, RAMAN SPECTROSCOPY, AND X-RAY DIFFRACTION." In 67th Annual Southeastern GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018se-312747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gaffey, Michael J., Eduardo Telles, Renato Dupke, and Daniela Lazzaro. "Mineralogy of Asteroids." In XV SPECIAL COURSES AT THE NATIONAL OBSERVATORY OF RIO DE JANEIRO. AIP, 2011. http://dx.doi.org/10.1063/1.3636041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shavers, Ethan, Abduwasit Ghulam, and John Encarnacion. "CARBONATITE WEATHERING MINERALOGY." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-287256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dræge, A., C. Peltonen, and I. Brevik. "Mineralogy Derived Shale Stiffness." In 69th EAGE Conference and Exhibition incorporating SPE EUROPEC 2007. European Association of Geoscientists & Engineers, 2007. http://dx.doi.org/10.3997/2214-4609.201401650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wiitablake, Leah Marie, and Natalie Bursztyn. "MANAGEABLE MOLECULAR MINERALOGY: DEVELOPING A USER-FRIENDLY INTERACTIVE MINERALOGY GAME FOR MOBILE DEVICES." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-283520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guetni, Imane, Claire Marlière, and David Rousseau. "Chemical EOR in Low Permeability Sandstone Reservoirs: Impact of Clay Content on the Transport of Polymer and Surfactant." In SPE Western Regional Meeting. SPE, 2021. http://dx.doi.org/10.2118/200784-ms.

Full text
Abstract:
Abstract Application of chemical enhanced oil recovery (C-EOR) processes to low-permeability sandstone reservoirs (in the 10-100 mD range) can be very challenging as strong retention and difficult in-depth propagation of polymer and surfactant can occur. Transport properties of C-EOR chemicals are particularly related to porous media mineralogy (clay content). The present experimental study aimed at identifying base mechanisms and providing general recommendations to design economically viable C-EOR injection strategies in low permeability clayey reservoirs. Polymer and surfactant injection corefloods were conducted using granular packs (quartz and clay mixtures) with similar petrophysical characteristics (permeability 70-130 mD) but having various mineralogical compositions (pure quartz sand, sand with 8 wt-% kaolinite and sand with 8 wt-% smectite). The granular packs were carefully characterized in terms of structure (SEM) and specific surface area (BET). The main observables from the coreflood tests were the resistance and residual resistance factors generated during the chemical injections, the irreversible polymer retention and the surfactant retention in various injection scenarios (polymer alone, surfactant alone, polymer and surfactant). A first, the impact of the clay contents on the retention of polymer and surfactant considered independently was examined. Coreflood results have shown that retention per unit mass of rock strongly increased in presence of both kaolinite and smectite, but not in the same way for both chemicals. For polymer, retention was about twice higher with kaolinite than with smectite, despite the fact that the measured specific surface area of the kaolinite was about 5 times less than that of the smectite. Conversely, for surfactant, retention was much higher with smectite than with kaolinite. Secondly, the impact of the presence of surfactant on the polymer in-depth propagation and retention was investigated in pure quartz and kaolinite-bearing porous media. In both mineralogies, the resistance factor quickly stabilized when polymer was injected alone whereas injection of larger solution volumes was required to reach stabilization when surfactant was present. In pure quartz, polymer retention was shown, surprisingly, to be one order of magnitude higher in presence of surfactant whereas with kaolinite, surfactant did not impact polymer retention. The results can be interpreted by considering adsorption-governed retention. The mechanistic pictures being that (a) large polymer macromolecules are not able to penetrate the porosity of smectite aggregates, whereas surfactant molecules can, and (b) that surfactant and polymer mixed adsorbed layers can be formed on surfaces with limited affinity for polymer. Overall, this study shows that C-EOR can be applied in low permeability reservoirs but that successful injection strategies will strongly depend on mineralogy.
APA, Harvard, Vancouver, ISO, and other styles
8

Raponi, Andrea, Francesca Zambon, Eleonora Ammannito, Mauro Ciarniello, Alessandro Frigeri, Filippo Giacomo Carrozzo, Federico Tosi, et al. "MINERALOGY OF CERES' CONIRAYA QUADRANGLE." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-282641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Udvardi, B., R. Géber, I. Kocserha, and L. A. Gömze. "Geopolymer preparation from aluminum dross." In Modern Problems of Theoretical, Experimental and Applied Mineralogy (Yushkin Readings — 2020). Institute of Geology FRC Komi SC UB RAS, 2020. http://dx.doi.org/10.19110/98491-014-134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gerasimov, A. M., A. V. Arsentyev, and O. V. Eremina. "Targeted structure modification of layered silicates." In Modern Problems of Theoretical, Experimental and Applied Mineralogy (Yushkin Readings — 2020). Institute of Geology FRC Komi SC UB RAS, 2020. http://dx.doi.org/10.19110/98491-014-329-330.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mineraloge"

1

McClenaghan, M. B., R. C. Paulen, J. M. Rice, H. E. Campbell, and M. Ross. Till geochemistry and mineralogy. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/306140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dallimore, S. R., and D. G. Pare. Mineralogy of Sand Units. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DISSELKAMP RS. HANFORD WASTE MINERALOGY REFERENCE REPORT. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/991924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bilot, I., J. B. Percival, A. Laudadio, and P. Kabanov. Mineralogy of shales, central Sverdrup Basin. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/299487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

A. Sanchez. Mineralogic Model (MM3.0) Report. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/838646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Labonté, M. Resolution of the mineralogy of coal samples. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/207481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harris, D. C. Mineralogy of the Sulphurets - Brucejack Lake area, B.c. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/131204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bish, D. L., and D. T. Vaniman. Mineralogic summary of Yucca Mountain, Nevada. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/59793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

C. Lum. Mineralogic Model (MM3.0) Analysis Model Report. Office of Scientific and Technical Information (OSTI), February 2002. http://dx.doi.org/10.2172/837104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wallace, G. M. The Mineralogy of the Mcgerrigle Plutonic Complex, Gaspe, Quebec. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography