Academic literature on the topic 'Mineraloge'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mineraloge.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mineraloge"
Hoppe, G. "Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin Teil 4: Das Mineralogische Museum der Universität Berlin unter Christian Samuel Weiss von 1810 bis 1856." Fossil Record 4, no. 1 (January 1, 2001): 3–27. http://dx.doi.org/10.5194/fr-4-3-2001.
Full textHoppe, Günter. "Friedrich Tamnau (1802--1879) -- Mineraloge, Mineralsammler und Mäzen." Mitteilungen aus dem Museum für Naturkunde in Berlin. Geowissenschaftliche Reihe 7, no. 1 (October 10, 2004): 45–59. http://dx.doi.org/10.1002/mmng.4860070104.
Full textHoppe, G. "Friedrich Tamnau (1802–1879) – Mineraloge, Mineralsammler und Mäzen." Fossil Record 7, no. 1 (January 1, 2004): 45–59. http://dx.doi.org/10.5194/fr-7-45-2004.
Full textHoppe, G. "Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin. Teil 3: Von A. G. Werner und R. J. Haüy zu C. S. Weiss – Der Weg von C. S. Weiss zum Direktor des Mineralogischen Museums der Berliner Universität." Fossil Record 3, no. 1 (January 1, 2000): 3–25. http://dx.doi.org/10.1002/mmng.20000030102.
Full textHoppe, G. "Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin. Teil 3: Von A. G. Werner und R. J. Haüy zu C. S. Weiss – Der Weg von C. S. Weiss zum Direktor des Mineralogischen Museums der Berliner Universität." Fossil Record 3, no. 1 (January 1, 2000): 3–25. http://dx.doi.org/10.5194/fr-3-3-2000.
Full textOkrusch, Martin, and Hans Ulrich Bambauer. "From the Fortschritte der Mineralogie to the European Journal of Mineralogy: a case history." European Journal of Mineralogy 22, no. 6 (December 23, 2010): 897–908. http://dx.doi.org/10.1127/0935-1221/2010/0022-2047.
Full textFreedman, R., S. Herron, V. Anand, M. Herron, D. May, and D. Rose. "New Method for Determining Mineralogy and Matrix Properties From Elemental Chemistry Measured by Gamma Ray Spectroscopy Logging Tools." SPE Reservoir Evaluation & Engineering 18, no. 04 (November 25, 2015): 599–608. http://dx.doi.org/10.2118/170722-pa.
Full textKokkaliari, Maria, and Ioannis Iliopoulos. "Application of Near-Infrared Spectroscopy for the identification of rock mineralogy from Kos Island, Aegean Sea, Greece." Bulletin of the Geological Society of Greece 55, no. 1 (January 3, 2020): 290. http://dx.doi.org/10.12681/bgsg.20708.
Full textGraham, Shaun, and Nynke Keulen. "Nanoscale Automated Quantitative Mineralogy: A 200-nm Quantitative Mineralogy Assessment of Fault Gouge Using Mineralogic." Minerals 9, no. 11 (October 29, 2019): 665. http://dx.doi.org/10.3390/min9110665.
Full textCasetou-Gustafson, Sophie, Cecilia Akselsson, Stephen Hillier, and Bengt A. Olsson. "The importance of mineral determinations to PROFILE base cation weathering release rates: a case study." Biogeosciences 16, no. 9 (May 7, 2019): 1903–20. http://dx.doi.org/10.5194/bg-16-1903-2019.
Full textDissertations / Theses on the topic "Mineraloge"
Breitfelder, Gerd [Verfasser]. "Johann Carl Wilhelm Voigt – seine wissenschaftliche Anschauung, Kommunikation und Kooperation als Mineraloge des Herzogtums Sachsen-Weimar-Eisenach / Gerd Breitfelder." Aachen : Shaker, 2006. http://d-nb.info/1166514242/34.
Full textStokratskaya, Lidia. "Lorenz von Pansner (1777–1851): Sein Wirken als Mineraloge in Russland im Zeitraum von 1800 bis 1836, seine wissenschaftlichen Arbeiten und seine Briefkorrespondenzen." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-223512.
Full textBrenner, Thomas Lafayette. "The fortaleza de minas nickel, copper and platinoids deposit : ore types, tectonics and volcanological aspects = A jazida de níquel, cobre e platinóides de fortaleza de minas : aspectos tectônicos, vulcanológicos e tipos de minérios /." Rio Claro : [s.n.], 2006. http://hdl.handle.net/11449/103043.
Full textBanca: Aroldo Misi
Banca: Yociteru Hasui
Banca: Jorge Silva Bettencourt
Banca: Antenor Zanardo
O presente trabalho reúne 3 artigos científicos, já formalizados para publicação em revistas internacionais, foi confeccionado para ser apresentado como tese de doutorado
Artigos em inglês, introdução e resumo em português
Resumo: O depósito de Fortaleza de Minas vem sendo estudado a mais de 20 anos desde a sua descoberta em 1983 e apresenta similaridades com outros depósitos komatiíticos arqueanos descritos na literatura. Sua configuração atual reflete ação de processos metamórficos e deformacionais diversos gerando novos tipos de minério sem, no entanto, perder sua identidade primária komatiítica e permitindo reconstruir sua faciologia vulcanológica. Contexto regional A região de Fortaleza de Minas corresponde a um bloco cratônico arqueano retrabalhado na Faixa Móvel Brasília de idade neoproterozóica. Os terrenos granito-greenstone afloram em meio à metasedimentos supracrustais proterozóicos dos grupos Araxá e Canastra que compõe a nappe de Passos. O bloco arqueano corresponde ao limite sul do antigo Craton do Paramirim fazendo contato com o cinturão granulítico de Alfenas a Sul. Estudos geológicos e geofísicos recentes demonstram que esta área corresponde a uma zona de junção entre dois blocos crustais, denominados Brasília e São Paulo, que representam duas paleo-placas separadas pela zona de sutura de Alterosa. No bloco Brasília ocorrem os greenstone belts de Morro do Ferro e Pihum-i. As idades obtidas para estes greenstone belts estão distribuídas entre 2,8 e 2,9 Ga e 2,9 e 3,1 Ga respectivamente e são discutidas no capítulo 3. O greenstone belt do Morro do Ferro ocorre como faixas descontínuas e estreitas estruturadas em quilhas sinclinais representando as raízes desta seqüência greenstone. Estão fortemente deformadas e cortadas pelo sistema sinistral de falhas transcorrentes Campo do Meio responsável pela estruturação sigmoidal da região (capítulo 2) (Fig. 1, pg. 33 e Fig. 1, pg.4). O Greenstone Belt Morro do Ferro é representado por derrames komatiíticos e mais restritamente toleíticos com intercalações subordinadas de sedimentos químicos exalativos...(Resumo completo, clicar acesso eletrônico abaixo)
Abstract: After 20 years of exploration and mining in the Fortaleza de Minas nickel deposit (formerly known as O'Toole) a better understanding of the geological framework and the volcanic environment was achieved. The different ore types observed in the deposit and its distribution revealed the original volcanic setting for the ore formation and also the geological evolution and transformation of the different ore types. The nickel mineralization is classified as a Type 1 deposit (Lesher and Keays, 2002). It is associated to an open trough structure of lava pathway. Later metamorphism and deformation obliterated most of the original volcanic textures and promoted a strong stretching of the ore zone and remobilization of the massive breccia ore along a major shear zone installed at the base of an upper fractionated host flow unit in contact with a footwall BIF. In the Neoproterozoic Brasiliano Cycle (0.6 Ga) a new ore type was formed of hydrothermal origin with extremely high nickel grades and PGE nuggests...(Complete abstract, click electronic address below)
Doutor
Xu, Jingyao. "Optimization of the use of diamond indicator minerals in diamond exploration in kimberlites." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668786.
Full textMüller-Kelwing, Karin. "Eberhard Rimann." Böhlau Verlag, 2020. https://slub.qucosa.de/id/qucosa%3A75071.
Full textHood, Christopher Thomas Saul. "Mineralogy, paragenesis, and mineralogic zonation of the Silver Queen vein system, Owen Lake, central British Columbia." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/29878.
Full textScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Müller-Kelwing, Karin. "Walther Fischer." Böhlau Verlag, 2020. https://slub.qucosa.de/id/qucosa%3A75045.
Full textNayem, Saleh Lehbib. "Estudio Geológico y Metalogenético del Basamento Precámbrico del Sahara Occidental." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/402471.
Full textTwo main geological units are distinguished in Western Sahara: a Phanerozoic sedimentary cover and a cryst a lline basement o f Paleoarchean to Paleoproterozoic age. This basement is a part of the Reguibat ridge, in the Western Africa craton. An ensemble of domains (or terranes) are distinguished in the basement. These domains are limited by regional fauls and correspond to old microcontinents collisioned mainly during the Birimian and Hercynian orogenies. Earlier granitization stages were produced in the Paleoarchean and the Mesoarchean depending on the domain, but the first generalized episode of TTG plutonism occurs in the Leonian orogeny ( circa 3 Ga). Important BIF deposits formed in greenstone belt basins. The Liberian cycle start with the intrusion of ultrabasic sills and dykes, associated with a mantle plume. This scenario evolved to a LIP made up by a dense network of diabase dykes; the individualization of the microcontinents took place in the rest of the area. Convergence of some of these microplates pr oduced subduction and a calc-alkaline magnatism and finally a collision between some of these domains at the end of this cycle. Rifting at the limit Archean-Proterozoic generated saturated and subsaturated alkaline magmatism. Showings of rare- element mineralization occur in these rocks. Submarine sedimentary basins are locally developed, and contain important BIF deposits. Most of the microplates converged during the Paleoproterozoic; calc-alkaline magmatism do occur in the suprasubduction zones; closing of the oceans and subsequent continental collision is associated with development of Cr- (PGE) bearing ophiolitic suites. Regional shear zones are associated with orogeenic gold deposits. This Birimain orogen produced the cratonization of most of the domains.. Alkaline granites intruded in a rft stage at the end of the orogeny, but they are barren. Calc-alkaline magmatism is also present during the Kibarian and Panafrican orogeny at the west border of the WAC, and is not mineralized; however, the alkaline granites of the rifting closing the Kibaran orogeny contain high concentrations of Nb and REE; those at the end of the end of the Panafrican are devoid of mineralization.. The continental margins of the craton allowed the sedimentation of thick platform series during the Paleozoic. The lower Devonian series hosts oolitic iron deposits. The general collision of all these domains and Laurussia during the Hercynian orogeny produced the Pangea supercontinent. In this context, the thrusts can carry orogenic gold deposits, and podiform Cr-(PGE) deposits outcrop in ophiolites. Finally, the opening of the North Atlantic since the Upper Triassic-Jurassic produced carbonatites at the western end of the WAC ; these carbonatites are enriched in rare elements. The continental margins formed in this epoch allowed the sedimentation of platform series thaht contain phospate deposits and have potential to contain oil. Western Sahara has a large potential for ore deposits, and some of them have been discovered during the development of this memory; most of them are hosted in the Precambrian materials: a) Stratiform Cr-PGE -Ti-V deposits associated with the Bir Malhat complex, and their continuity overpass 20 km. b) Podiform Cr-PGE chromitite deposits were produced in the Proterozoic of the Mauritanids. c) Orogenic gold deposits (Au-(PGE) are associated with the regional shear zones. There are several styles of mineralization: listwänites- birbirites, vein systems, or stratabound mineralizations replacing favourable host rocks in the vicinity of shear zones formed during the Birimian orogeny (Tifariti-Bir Lehlu-Ain ben Tili and Sfariat domains) o the Hercynian (Mauritanids). d) BIF deposits in submarine series. These deposits occur in most of the domains, but the Sfariat and Miyec-Ijil domains contain most of the largest reserves. e) Deposits of rare elements as Nb-Ta- LREE-U-Fe-V-P-Mo occur in the Proterozoic and Cretaceous carbonatites. f) Deposits of Nb-Ta-F-HREE-U-Th are found in undersaturated or saturated alkaline rocks, mainly in those enriched in F. g) Oolitic iron deposits have large reserves in the platform series of the Lower Devonian. h) World-class stratiform phosphorite deposits occur in the Paleogene El Aaiún sedimentary basin, which has also potential for oil deposits. i) Calcrete and ferricrete U-(REE??) deposits of Quaternary age.
Coelho, Fernando de Mattos. "Aspectos geológicos e mineralógicos da Mina de diamantes de Romaria, Minas Gerais." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/44/44144/tde-24022011-113204/.
Full textThe diamond Mine of Romaria is located in the northeast border of the Paraná Sedimentary Basin, nearby the town of Romaria, in western Minas Gerais State, Brazil. The mining place is situated on the right side of the Bagagem River, comprising an area of 1 km2 between the Água Suja and Marrecos streams. At this place diamonds have been washed from a Cretaceous polimictic conglomerate of the Uberaba Formation, Bauru Group, since the end of the nineteen century. This heterogeneous diamond-bearing conglomerate contains large conglomerate blocks of several lithologies with dimensions up to 0.80 m, set in an arenous-clayish matrix where kaolinite, illite and quartz have identified among the clasts such as mica and staurolite schists, phyllites and amphibolites of the Araxá Group, quartzites of the Canastra Group, arenites of the Botucatu Formation and basalts of the Serra Geral Formation. The concentrates obtained by washing the conglomerate contains large amounts of opaques phases mainly magnetite which may reach up to 50% in volume. Other opaques are represented by hematite, ilmenite, rutile, limonite as well as rock fragments of mica schists and complex intergrowths of laterites. The mineralogical assemblages of the transparent phases include staurolite, amphibole, epidote, kyanite, monazite, tourmaline, zircon and diamond as well. Electron micro probe analyses revealed that the ilmenites contain MgO (7.4-11.4 wt%) and Cr2O3 (0.0-2.9 wt%) contents similar to their counterparts of kimberlites from worldwide localities. Moreover, garnets are chromium rich pyropes with Cr2O3 ranging from 0.2 up to 6.7 wt %. The use discriminating diagrams revealed that most of the analysed sampled plot in the fields G9 and G3-G5 corresponding to lherzolitic and pyroxenitic parageneses, respectively. The plots include some rare G10 (harzbugitic) and G0 (unclassified) samples corresponding to garnets derived from rocks of the crystalline basement. Although diamonds have not been mined in the last years a small parcel produced by local diggers (garimpeiros) was available for physical studies including color and crystalline morphology. Several microstructures have been observed in octahedral crystal such as trigons and a pseudo-hexagonal microstructure observed in diamonds from lamproites. Cubic crystals showing the combination of the cube and dodecahedral revealed microstructures of square symmetry. Concerning dodecahedral crystal hillocks produced by dissolution were observed on the rounded faces of the samples. Presently the Mine of Romaria is closed since 1984 due to an old debt contracted by late owner Extratífera de Diamantes do Brasil (EXDIBRA) with the Brazilian Federal Agency of the Banco Nacional de Desenvolvimento Social (BNDES).
Dias, Carlos Augusto Tavares [UNESP]. "Geologia e mineralogia de pegmatito mineralizado em estanho e metais associados (Nb, Ta, Zn, Cu, Pb), Mina Bom Futuro, Rondônia." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/92891.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A mina Bom Futuro é atualmente uma das maiores produtora de estanho do país, com uma produção média anual nos últimos 10 anos de cerca de 2400 toneladas de estanho. As atividades industriais de extração de cassiterita na mina se concentram no morro Bom Futuro e adjacências, em depósitos primários e secundários, respectivamente. No morro Bom Futuro são reconhecidos dois pipes brechados alojados em gnaisses e anfibolitos, que são cortados por diques radiais e anelares de pórfiros graníticos com topázio, os quais são incluídos na Suíte Intrusiva Granitos Últimos de Rondônia (998 a 974 Ma). Pelo menos duas fases distintas de mineralização primária de estanho são identificadas com idades 40Ar/39Ar em zinnwaldita de 994±3 Ma e 993±3 Ma e são representadas por lentes, veios e vênulas de pegmatito e de quartzo. O pegmatito estudado ocorre na porção nordeste do morro, onde aparece hospedado em brechas de pipe e dique de topázio riólito pórfiro e cortado por dique de topázio granito pórfiro. Trata-se de um dique com mais de 200 m de comprimento, espessura variando 3 a 12 metros e de atitude geral N20E/45°SE. Na seção estudada com detalhe, o pegmatito mostra um zoneamento interno bem distinto, dado por camadas ou leitos subconcordantes entre si e com as paredes do dique. Pelo menos três zonas foram reconhecidas com base na mineralogia dominante, são elas do muro ao teto: zona do quartzo e topázio, zona do feldspato potássico e mica, e zona granítica (quartzo e feldspato potássico). Uma provável quarta zona não foi observada, mas segundo os garimpeiros, um leito de até 10 cm de espessura de cassiterita maciça ocorre de modo descontínuo junto ao muro do corpo. A estrutura das zonas é maciça e a granulação varia de média a grossa na zona granítica para grossa a muito grossa ou gigante (?) nas outras...
The mine Bom Futuro is currently one of the largest tin producer in the country with an average annual production over the past 10 years around 2400 tonnes of tin. The extraction industrial activities of cassiterite concentrate on the hill Bom Futuro and surrounding areas in primary and secondary deposits, respectively. On the hill Bom Futuro two breccia pipes are recognized hosted in gneisses and amphibolites, which are cut by radial and ring dikes of granite porphyry with topaz, which are included in the Intrusive Suite Latest Granites of Rondônia (998-974 Ma). At least two distinct phases of primary tin mineralization are identified with zinnwaldita 40Ar/39Ar ages of 994 ± 3 Ma and 993 ± 3 Ma and is represented by lenses, veins and venules of quartz and pegmatite. The studied pegmatite occurs in the northeastern portion of the hill, where it appears hosted in breccias pipe and topaz rhyolite porphyry dike cut by topaz granite porphyry dike. It is a dike over 200 meters in length, thickness ranging 3-12 meters and general attitude N20E/45 ° SE. In the studied section in detail, the pegmatite shows a very distinct internal zoning, given by layers or beds sub concordant among themselves and with the walls of the dike. At least three zones were recognized based on the dominant mineralogy, they are from the wall to the ceiling: zone of quartz and topaz, zone of mica and feldspar, and granitic zone (quartz and feldspar).A possible fourth zone was not observed, but according to the miners, a bed with 10 cm thick of massive cassiterite occurs discontinuously along the wall of the body. The structure of the zones are massive and the granulation varies from medium to coarse in the granite zone and coarse to very coarse or giant (?) In the other two. The primary mineralogy is relatively simple: the quartz is gray to milky white, the... (Complete abstract click electronic access below)
Books on the topic "Mineraloge"
Bolewski, Andrzej. Mineralogia i geochemia środowiska: Environmental mineralogy and geochemistry. Kraków: Wydawnictwo Oddziału Polskiej Akademii Nauk, 2000.
Find full textMatthes, Siegfried. Mineralogie. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-26804-9.
Full textOkrusch, Martin, and Hartwig E. Frimmel. Mineralogy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-57316-7.
Full textMatthes, Siegfried. Mineralogie. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-87508-3.
Full textOkrusch, Martin, and Siegfried Matthes. Mineralogie. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-34660-6.
Full textBook chapters on the topic "Mineraloge"
Bambauer, H. U., U. Förstner, H. Pollmann, P. R. Buseck, J. R. Anderson, H. FöRster, G. Deissmann, et al. "Environmental Mineralogy. Radiation Mineralogy." In Advanced Mineralogy, 267–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-18154-2_5.
Full textHochella, Michael F. "Mineralogy." In Encyclopedia of Earth Sciences Series, 943–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_308.
Full textHochella, Michael F. "Mineralogy." In Encyclopedia of Earth Sciences Series, 1–6. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_308-1.
Full textGupta, Alok Krishna. "Mineralogy." In Origin of Potassium-rich Silica-deficient Igneous Rocks, 11–67. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2083-1_2.
Full textLewis, Douglas W., and David McConchie. "Mineralogy." In Analytical Sedimentology, 130–63. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2636-0_8.
Full textWakefield, Andre. "Mineralogy." In Encyclopedia of Early Modern Philosophy and the Sciences, 1–4. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-20791-9_175-1.
Full textMatthes, Siegfried. "Einführung und Grundbegriffe." In Mineralogie, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-08768-8_1.
Full textKlemd, Reiner. "Flüssigkeitseinschlüsse in Mineralen." In Mineralogie, 173–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-08768-8_10.
Full textMatthes, Siegfried. "Die magmatische Abfolge." In Mineralogie, 183–299. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-08768-8_11.
Full textMatthes, Siegfried. "Die sedimentäre Abfolge, Sedimente und Sedimentgesteine." In Mineralogie, 301–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-08768-8_12.
Full textConference papers on the topic "Mineraloge"
Keulen, Nynke. "Nanoscale Automated Quantitative Mineralogy: A 200 nm Quantitative Mineralogy Assessment of Fine-grained Material with Mineralogic." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.675.
Full textWood, R. Seth, Bryan C. Chakoumakos, Linda C. Kah, Brenda M. Pracheil, and Allison M. Fortner. "MINERALOGY MATTERS: ASSESSING THE MINERALOGIC HETEROGENEITY OF OTOLITH PAIRS USING NEUTRON DIFFRACTION, RAMAN SPECTROSCOPY, AND X-RAY DIFFRACTION." In 67th Annual Southeastern GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018se-312747.
Full textGaffey, Michael J., Eduardo Telles, Renato Dupke, and Daniela Lazzaro. "Mineralogy of Asteroids." In XV SPECIAL COURSES AT THE NATIONAL OBSERVATORY OF RIO DE JANEIRO. AIP, 2011. http://dx.doi.org/10.1063/1.3636041.
Full textShavers, Ethan, Abduwasit Ghulam, and John Encarnacion. "CARBONATITE WEATHERING MINERALOGY." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-287256.
Full textDræge, A., C. Peltonen, and I. Brevik. "Mineralogy Derived Shale Stiffness." In 69th EAGE Conference and Exhibition incorporating SPE EUROPEC 2007. European Association of Geoscientists & Engineers, 2007. http://dx.doi.org/10.3997/2214-4609.201401650.
Full textWiitablake, Leah Marie, and Natalie Bursztyn. "MANAGEABLE MOLECULAR MINERALOGY: DEVELOPING A USER-FRIENDLY INTERACTIVE MINERALOGY GAME FOR MOBILE DEVICES." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-283520.
Full textGuetni, Imane, Claire Marlière, and David Rousseau. "Chemical EOR in Low Permeability Sandstone Reservoirs: Impact of Clay Content on the Transport of Polymer and Surfactant." In SPE Western Regional Meeting. SPE, 2021. http://dx.doi.org/10.2118/200784-ms.
Full textRaponi, Andrea, Francesca Zambon, Eleonora Ammannito, Mauro Ciarniello, Alessandro Frigeri, Filippo Giacomo Carrozzo, Federico Tosi, et al. "MINERALOGY OF CERES' CONIRAYA QUADRANGLE." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-282641.
Full textUdvardi, B., R. Géber, I. Kocserha, and L. A. Gömze. "Geopolymer preparation from aluminum dross." In Modern Problems of Theoretical, Experimental and Applied Mineralogy (Yushkin Readings — 2020). Institute of Geology FRC Komi SC UB RAS, 2020. http://dx.doi.org/10.19110/98491-014-134.
Full textGerasimov, A. M., A. V. Arsentyev, and O. V. Eremina. "Targeted structure modification of layered silicates." In Modern Problems of Theoretical, Experimental and Applied Mineralogy (Yushkin Readings — 2020). Institute of Geology FRC Komi SC UB RAS, 2020. http://dx.doi.org/10.19110/98491-014-329-330.
Full textReports on the topic "Mineraloge"
McClenaghan, M. B., R. C. Paulen, J. M. Rice, H. E. Campbell, and M. Ross. Till geochemistry and mineralogy. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/306140.
Full textDallimore, S. R., and D. G. Pare. Mineralogy of Sand Units. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132221.
Full textDISSELKAMP RS. HANFORD WASTE MINERALOGY REFERENCE REPORT. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/991924.
Full textBilot, I., J. B. Percival, A. Laudadio, and P. Kabanov. Mineralogy of shales, central Sverdrup Basin. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/299487.
Full textA. Sanchez. Mineralogic Model (MM3.0) Report. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/838646.
Full textLabonté, M. Resolution of the mineralogy of coal samples. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/207481.
Full textHarris, D. C. Mineralogy of the Sulphurets - Brucejack Lake area, B.c. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/131204.
Full textBish, D. L., and D. T. Vaniman. Mineralogic summary of Yucca Mountain, Nevada. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/59793.
Full textC. Lum. Mineralogic Model (MM3.0) Analysis Model Report. Office of Scientific and Technical Information (OSTI), February 2002. http://dx.doi.org/10.2172/837104.
Full textWallace, G. M. The Mineralogy of the Mcgerrigle Plutonic Complex, Gaspe, Quebec. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120415.
Full text