Academic literature on the topic 'Minimal pair'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Minimal pair.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Minimal pair"

1

McEvoy, Kevin, and S. Barry Cooper. "On minimal pairs of enumeration degrees." Journal of Symbolic Logic 50, no. 4 (December 1985): 983–1001. http://dx.doi.org/10.2307/2273985.

Full text
Abstract:
For sets of natural numbers A and B, A is enumeration reducible to B if there is some effective algorithm which when given any enumeration of B will produce an enumeration of A. Gutteridge [5] has shown that in the upper semilattice of the enumeration degrees there are no minimal degrees (see Cooper [3]), and in this paper we study those pairs of degrees with gib 0. Case [1] constructed a minimal pair. This minimal pair construction can be relativised to any gib, and following a suggestion of Jockusch we can also fix one of the degrees and still construct the pair. These methods yield an easier proof of Case's exact pair theorem for countable ideals. 0″ is an upper bound for the minimal pair constructed in §1, and in §2 we improve this bound to any Σ2-high Δ2 degree. In contrast to this we show that every low degree c bounds a degree a which is not in any minimal pair bounded by c. The structure of the co-r.e. e-degrees is isomorphic to that of the r.e. Turing degrees, and Gutteridge has constructed co-r.e. degrees which form a minimal pair in the e-degrees. In §3 we show that if a, b is any minimal pair of co-r.e. degrees such that a is low then a, b is a minimal pair in the e-degrees (and so Gutteridge's result follows). As a corollary of this we can embed any countable distributive lattice and the two nondistributive five-element lattices in the e-degrees below 0′. However the lowness assumption is necessary, as we also prove that there is a minimal pair of (high) r.e. degrees which is not a minimal pair in the e-degrees (under the isomorphism). In §4 we present more concise proofs of some unpublished work of Lagemann on bounding incomparable pairs and embedding partial orderings.As usual, {Wi}i ∈ ω is the standard listing of the recursively enumerable sets, Du is the finite set with canonical index u and {‹ m, n ›}m, n ∈ ω is a recursive, one-to-one coding of the pairs of numbers onto the numbers. Capital italic letters will be variables over sets of natural numbers, and lower case boldface letters from the beginning of the alphabet will vary over degrees.
APA, Harvard, Vancouver, ISO, and other styles
2

HIRSCHFELDT, DENIS R. "A MINIMAL PAIR IN THE GENERIC DEGREES." Journal of Symbolic Logic 85, no. 1 (November 12, 2019): 531–37. http://dx.doi.org/10.1017/jsl.2019.77.

Full text
Abstract:
AbstractWe show that there is a minimal pair in the nonuniform generic degrees, and hence also in the uniform generic degrees. This fact contrasts with Igusa’s result that there are no minimal pairs for relative generic computability and answers a basic structural question mentioned in several papers in the area.
APA, Harvard, Vancouver, ISO, and other styles
3

Birkar, Caucher, and Zhengyu Hu. "Polarized pairs, log minimal models, and Zariski decompositions." Nagoya Mathematical Journal 215 (September 2014): 203–24. http://dx.doi.org/10.1017/s0027763000010953.

Full text
Abstract:
AbstractWe continue our study of the relation between log minimal models and various types of Zariski decompositions. Let (X,B) be a projective log canonical pair. We will show that (X,B) has a log minimal model if eitherKX+Bbirationally has a Nakayama–Zariski decomposition with nef positive part, or ifKX+Bis big and birationally has a Fujita–Zariski or Cutkosky–Kawamata–Moriwaki–Zariski decomposition. Along the way we introduce polarized pairs (X,B+P), where (X,B) is a usual projective pair and wherePis nef, and we study the birational geometry of such pairs.
APA, Harvard, Vancouver, ISO, and other styles
4

Birkar, Caucher, and Zhengyu Hu. "Polarized pairs, log minimal models, and Zariski decompositions." Nagoya Mathematical Journal 215 (September 2014): 203–24. http://dx.doi.org/10.1215/00277630-2781096.

Full text
Abstract:
AbstractWe continue our study of the relation between log minimal models and various types of Zariski decompositions. Let (X,B) be a projective log canonical pair. We will show that (X,B) has a log minimal model if either KX + B birationally has a Nakayama–Zariski decomposition with nef positive part, or if KX +B is big and birationally has a Fujita–Zariski or Cutkosky–Kawamata–Moriwaki–Zariski decomposition. Along the way we introduce polarized pairs (X,B +P), where (X,B) is a usual projective pair and where P is nef, and we study the birational geometry of such pairs.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Zaiyue. "Extending the cooper minimal pair theorem." Journal of Computer Science and Technology 16, no. 1 (January 2001): 77–85. http://dx.doi.org/10.1007/bf02948855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Trout, J. D. "Vowel environments in minimal pair sequences." Journal of the Acoustical Society of America 100, no. 4 (October 1996): 2688–89. http://dx.doi.org/10.1121/1.417025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Trout, J. D. "Fundamental frequency in minimal pair sentences." Journal of the Acoustical Society of America 99, no. 4 (April 1996): 2547–74. http://dx.doi.org/10.1121/1.415153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Csima, Barbara F., and Antonio Montalbán. "A minimal pair of $K$-degrees." Proceedings of the American Mathematical Society 134, no. 05 (October 4, 2005): 1499–502. http://dx.doi.org/10.1090/s0002-9939-05-08086-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barlow, Jessica A., and Judith A. Gierut. "Minimal Pair Approaches to Phonological Remediation." Seminars in Speech and Language 23, no. 1 (2002): 057–68. http://dx.doi.org/10.1055/s-2002-24969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hashizume, Kenta. "Relations between two log minimal models of log canonical pairs." International Journal of Mathematics 31, no. 13 (October 10, 2020): 2050103. http://dx.doi.org/10.1142/s0129167x20501037.

Full text
Abstract:
We study relations between two log minimal models of a fixed lc pair. For any two log minimal models of an lc pair constructed with log MMP, we prove that there are small birational models of the log minimal models which can be connected by a sequence of flops, and the two log minimal models share some properties. We also give examples of two log minimal models of an lc pair which have different properties.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Minimal pair"

1

Przulj, Natasa. "Minimal hereditary dominating pair graphs." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0026/MQ50365.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khani, Mohsen. "The first order theory of a dense pair and a discrete group." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/the-first-order-theory-of-a-dense-pair-and-a-discrete-group(01e5c6b4-fe53-49c9-8b88-6c47c0ac2f6f).html.

Full text
Abstract:
In this thesis we have shown that a seemingly complicated mathematical structure can exhibit 'tame behaviour'. The structure we have dealt with is a field (a space in which there are addition and multiplication which satisfy natural properties) together with a dense subset (a subset which has spread in all parts of the this set, as Q does in R) and a discrete subset (a subset comprised of single points which keep certain distances from one another). This tameness is essentially with regards to not being trapped with the 'Godel phenomeonon' as the Peano arithmetic does.
APA, Harvard, Vancouver, ISO, and other styles
3

Pahel, Douglas Jude. "CP violating effects in W and Z boson pair production at the International Linear Collider in the minimal supersymmetric standard model /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2005. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zolotareva, Tatiana. "Construction de surfaces à courbure moyenne constante et surfaces minimales par des méthodes perturbatives." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX003/document.

Full text
Abstract:
Cette thèse s'inscrit dans l'étude des sous-variétés minimales et à courbure moyenne constante et de l'influence de la géométrie de la variété ambiante sur les solutions de ce problème.Dans le premier chapitre, en suivant les idées de F. Almgren, on propose une généralisation de la notion d'hypersurface de courbure moyenne constante à toutes codimensions. En dimension n-k on définie les sous-variétés à courbure moyenne constante comme les points critiques de la fonctionnelle de k-volume des bords des variétés minimales de dimension k+1. On prouve l'existence dans une variété riemannienne compacte de dimension n de sous-variétés à courbure moyenne constante de codimension n-k pour tout k < n qui sont des perturbations des sphères géodésiques de petit volume.Dans le deuxième chapitre, on s'intéresse aux surfaces minimales à bords libres dans la boule unité de l'espace euclidien de dimension 3, c'est-à-dire aux surfaces minimales plongées dans la boule unité dont le bord rencontre la sphère unité orthogonalement. On démontre l'existence de deux famille géométriquement distinctes de telles surfaces qui sont indexées par un entier n assez grand, qui représente le nombre de composantes connexes du bord de ces surfaces. Nous donnons en particulier une deuxième preuve d'un résultat de A. Fraser et R. Schoen concernant l'existence de telles surfaces.Un des résultats fondamentaux de la théorie des surfaces à courbure moyenne constante est le théorème de Hopf qui affirme que les seules sphères topologiques à courbure moyenne constante dans l'espace euclidien de dimension 3 sont les sphères rondes. Dans le troisième chapitre, on propose une construction dans une variété riemannienne de dimension 3 d'une famille de sphères topologiques à courbure moyenne constante qui ne sont pas convexes et dont la courbure moyenne est très grande
The subject of this thesis is the study of minimal and constant mean curvature submanifolds and of the influence of the geometry of the ambient manifold on the solutions of this problem.In the first chapter, following the ideas of F. Almgren, we propose a generalization of the notion of hypersurface with constant mean curvature to all codimensions. In codimension n-k we define constant mean curvature submanifolds as the critical points of the functional of the k - dimensional volume of the boundaries of k+1 - dimensional minimal submanifolds. We prove the existence in compact n-dimensional manifolds of n-k codimensional submanifolds with constant mean curvature for all k
APA, Harvard, Vancouver, ISO, and other styles
5

Semu, Mitiku Kassa. "On minimal pairs of compact convex sets and of convex functions /." [S.l. : s.n.], 2002. http://www.gbv.de/dms/zbw/36225754X.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hashizume, Kenta. "On the non-vanishing conjecture and existence of log minimal models." Kyoto University, 2017. http://hdl.handle.net/2433/228227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dautriche, Isabelle. "Weaving an ambiguous lexicon." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB112/document.

Full text
Abstract:
Il y a (au moins) deux questions fondamentales que l’on est amené à se poser lorsqu’on étudie le langage: comment acquiert-on le langage? —le problème d’apprentissage —et pourquoi les langues du monde partagent certaines propriétés mais pas d’autres? —le problème typologique. Dans cette thèse, j’entreprends de relier ces deux domaines en me focalisant sur le lexique, l’ensemble des mots de notre langue et leur sens associés, en posant les questions suivantes: pourquoi le lexique est-il tel qu’il est? Et est-ce que les propriétés du lexique peuvent être (en partie) expliquées par la façon dont les enfants apprennent leur langue? Un des aspects les plus frappants du lexique est que les mots que nous utilisons sont ambigus et peuvent être confondus facilement avec d’autres. En effet, les mots peuvent avoir plusieurs sens (par exemple, les homophones) et sont représentés par un ensemble limité de sons qui augmentent la possibilité qu’ils soient confondus (par exemple, les paires minimales). L’existence de ces mots semble présenter un problème pour les enfants qui apprennent leur langue car il a été montré qu’ils ont des difficultés à apprendre des mots dont les formes sonores sont proches et qu’ils résistent à l’apprentissage des mots ayant plusieurs sens. En combinant une approche computationnelle et expérimentale, je montre, quantitativement, que les mots du lexique sont, en effet, plus similaires que ce qui serait attendu par chance, et expérimentalement, que les enfants n’ont aucun problème à apprendre ces mots à la condition qu’ils apparaissent dans des contextes suffisamment distincts. Enfin, je propose que l’étude des mots ambigus permet de révéler des éléments importants du mécanisme d’apprentissage du langage qui sont actuellement absents des théories actuelles. Cet ensemble d’études suggère que les mots ambigus et les mots similaires, bien que présents dans le langage, n’apparaissent pas arbitrairement dans le langage et que leur organisation reflète (en partie) la façon dont les enfants apprennent leur langue
Modern cognitive science of language concerns itself with (at least) two fundamental questions: how do humans learn language? —the learning problem —and why do the world’s languages exhibit some properties and not others? —the typology problem. In this dissertation, I attempt to link these two questions by looking at the lexicon, the set of word-forms and their associated meanings, and ask why do lexicons look the way they are? And can the properties exhibited by the lexicon be (in part) explained by the way children learn their language? One striking observation is that the set of words in a given language is highly ambiguous and confusable. Words may have multiple senses (e.g., homonymy, polysemy) and are represented by an arrangement of a finite set of sounds that potentially increase their confusability (e.g., minimal pairs). Lexicons bearing such properties present a problem for children learning their language who seem to have difficulty learning similar sounding words and resist learning words having multiple meanings. Using lexical models and experimental methods in toddlers and adults, I present quantitative evidence that lexicons are, indeed, more confusable than what would be expected by chance alone. I then present empirical evidence suggesting that toddlers have the tools to bypass these problems given that ambiguous or confusable words are constrained to appear in distinct context. Finally, I submit that the study of ambiguous words reveal factors that were currently missing from current accounts of word learning. Taken together this research suggests that ambiguous and confusable words, while present in the language, may be restricted in their distribution in the lexicon and that these restrictions reflect (in part) how children learn languages
APA, Harvard, Vancouver, ISO, and other styles
8

Cherfi, Mohamed. "Estimation par minimum de Ø-divergences." Paris 6, 2010. http://www.theses.fr/2010PA066389.

Full text
Abstract:
Le travail présenté dans cette thèse porte sur les problèmes d’estimation par minimum de -divergence. Dans un premier temps, nous considérons le problème d’estimation pour des modèles paramétriques dans le cas de données censurées. Les méthodes proposées sont basées sur la représentation duale des divergences entre mesures. Nous introduisons de nouveaux critères de sélection de modèles basés sur les divergences qui englobent le critère d’Akaike. Enfin, nous proposons aussi des méthodes d’estimation dans les modèles de régression non-linéaire semi-paramétriques.
APA, Harvard, Vancouver, ISO, and other styles
9

Mazet, Laurent. "Construction de surfaces minimales par résolution du problème de Dirichlet." Phd thesis, Université Paul Sabatier - Toulouse III, 2004. http://tel.archives-ouvertes.fr/tel-00007780.

Full text
Abstract:
Le cadre de cette thèse est la théorie des surfaces minimales. En 2001, C. Cosin et A. Ros démontrent que, si un polygone borde un disque immergé, ce polygone est le polygone de flux d'un r-noide Alexandrov-plongé symétrique de genre 0. Leur démonstration se fonde sur l'étude de l'espace de ces surfaces minimales. Notre travail présente une démonstration plus constructive de leur résultat. Notre méthode repose sur la résolution du problème de Dirichlet pour l'équation des surfaces minimales. A cette fin, nous étudions la convergence de suites de solutions de cette équation. Nous définissons la notion de lignes de divergence de la suite qui sont les points ou la suite des gradients est non-bornées. L'étude de ces lignes permet de conclure sur la convergence d'une suite. Les r-noides sont alors construits comme les surfaces conjuguées aux graphes de solutions du problème de Dirichlet sur des domaines fixés par les polygones. Dans une seconde partie, nous montrons que, sous l'hypothèse de border un disque immergé, un polygone est aussi le polygone de flux d'un r-noide Alexandrov-plongé symétrique de genre $1$. La démonstration repose sur une amélioration des idées de celle du premier résultat, elle nécessite entre autre la résolution d'un problème de période. Cette résolution passe par l'étude du comportement limite de certaines suites de surfaces minimales.
APA, Harvard, Vancouver, ISO, and other styles
10

Royer, Martin. "Optimalité statistique du partitionnement par l'optimisation convexe." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS442/document.

Full text
Abstract:
Ces travaux traitent de la problématique du partitionnement d'un ensemble d'observations ou de variables en groupes d'éléments similaires. Elle sert de nombreuses applications essentielles comme la classification de gènes en biologie ou l'apprentissage automatique en analyse d'image. Les travaux modélisent la notion de similarité entre éléments pour analyser les propriétés statistiques d'algorithmes de partitionnement, comme l'estimateur des K-moyennes. Ce dernier est équivalent au maximum de vraisemblance quand les groupes considérés sont homoscedastiques ; dans le cas contraire, on s'aperçoit que l'estimateur est biaisé, en ce qu'il tend à séparer les groupes ayant une plus grande dispersion. En utilisant une formulation équivalente qui fait intervenir l'optimisation semi-définie positive, on propose une correction opérationnelle de ce biais. On construit et étudie ainsi des algorithmes de complexité polynomiale qui sont quasi-minimax pour le partitionnement exact dans les deux contextes étudiés. Ces résultats s'interprètent dans le cadre de modèles standards comme le modèle de mélange ou le modèle à variables latentes, et s'étendent à de nouveaux modèles plus généraux et plus robustes, les modèles $G$-block. Les contrôles peuvent être adaptés au nombre intrinsèque de groupes, ainsi qu'à la dimension effective de l'espace des données. Ils apportent une meilleure compréhension d'estimateurs classiques du partitionnement comme les estimateurs spectraux. Ils sont appuyés par des expériences extensives sur données de synthèse, ainsi que sur des jeux de données réelles. Enfin lorsqu'on cherche à améliorer l'efficacité computationnelle des algorithmes étudiés, on peut utiliser une connexion forte avec le domaine de l'optimisation convexe et notamment exploiter des techniques de relaxation de faible rang motivées par des problématiques de grande dimension
This work focuses on the problem of point and variable clustering, that is the grouping of either similar vectors or similar components of a vector in a metric space. This has applications in many relevant fields including pattern recognition in image analysis or gene expression data classification. Through adequate modeling of the similarity between points or variables within a cluster we analyse the statistical properties of known clustering algorithms such as K-means.When considering homoscedastic elements for all groups the K-means algorithm is equivalent to a maximum-likelihood procedure. Otherwise the algorithm shows bias in the sense that it tends to separate groups with larger dispersion, regardless of actual group separation. By using a semi definite positive reformulation of the estimator, we suggest a pattern of correction for the algorithm that leads to the construction of computational algorithm with quasiminimax properties for hard clustering of points or variables.Those results can be studied under the classical mixture model or latent variables model, and can be extended to more general and robust class of $G$-block models. The stochastic controls can be made adaptive to the unknown number of classes as well as to the effective dimension of the problem. They help understand the behavior of the class of spectral estimators that are also widely used for clustering problems. They are supported by extensive simulation studies as well as data analysis stemming from the biological field.When focus is brought on the computational aspect of those algorithms, we exploit ideas based on a strong connexion with the domain of convex optimisation and specifically the technique of low-rank relaxation, of importance when dealing with high dimensional problems
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Minimal pair"

1

Pržulj, Nataša. Minimal hereditary dominating pair graphs. Toronto: University of Toronto, Dept. of Computer Science, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Łubowicz, Anna. The phonology of contrast. Oakville, CT: Equinox Pub., 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

The phonology of contrast. Oakville, CT: Equinox Pub., 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

The role and representation of minimal contrast and the phonetics-phonology interaction. München: Lincom Europa, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Horn, Roni. Roni Horn: Pair objects I, II, II. Paris: Galerie Lelong, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Horn, Roni. Roni Horn: Including the installation Pair field and selections from the work To place by Roni Horn and the essay, Roni Horn: being double by Nancy Spector. Tilburg: De Pont, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Using minimal pairs in practical phonology. Colchester: Alphabet, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pietramaggiori, Giorgio, and Saja Scherer, eds. Minimally Invasive Surgery for Chronic Pain Management. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50188-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Congress, Trades Union. Wage rage: A report on what is making Britain's low paid angry. [London]: TUC, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pearson, Philip. Twilight robbery: Low-paid workers in Britain today. London: Pluto, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Minimal pair"

1

Lempp, S., M. Lerman, and F. Weber. "Minimal Pair Constructions and Iterated Trees of Strategies." In Logical Methods, 512–54. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0325-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bie, Rongfang, and Guohua Wu. "A Minimal Pair in the Quotient Structure M/NCup." In Lecture Notes in Computer Science, 53–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73001-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Soskova, Mariya Ivanova. "A Generic Set That Does Not Bound a Minimal Pair." In Lecture Notes in Computer Science, 746–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11750321_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Soare, Robert I. "The Minimal Pair Method and Embedding Lattices into the R.E. Degrees." In Perspectives in Mathematical Logic, 151–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-02460-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ambos-Spies, Klaus, Steven Homer, and Robert I. Soare. "Minimal pairs and complete problems." In STACS 90, 24–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-52282-4_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pallaschke, Diethard, and Ryszard Urbański. "Minimal Pairs of Convex Sets." In Pairs of Compact Convex Sets, 49–90. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9920-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pallaschke, Diethard, and Ryszard Urbański. "The Cardinality of Minimal Pairs." In Pairs of Compact Convex Sets, 91–126. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9920-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schechter, Martin. "Sandwich Pairs." In Minimax Systems and Critical Point Theory, 1–5. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4902-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsurkov, Vladimir, and Anatoli Mironov. "Extremal Vector Pairs and Matrices." In Minimax Under Transportation Constrains, 169–246. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4060-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ambos-Spies, Klaus. "Minimal pairs for polynomial time reducibilities." In Computation Theory and Logic, 1–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-18170-9_149.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Minimal pair"

1

Novarita, Erwanto, Lasmiatun, and M. Rama Sanjaya. "The Ability of Students in Understanding Minimal Pair." In International Conference on Progressive Education (ICOPE 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200323.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glassman, M. S., and M. B. Starkey. "Speech therapy using computer based minimal consonant pair discrimination." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Setyadi, Ary. "The Type of Indonesian Language Phoneme in “Minimal Pair”." In Proceedings of the First International Conference on Culture, Literature, Language Maintenance and Shift, CL-LAMAS 2019, 13 August 2019, Semarang, Central Java, Indonesia. EAI, 2019. http://dx.doi.org/10.4108/eai.13-8-2019.2290196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schatz, Thomas, Vijayaditya Peddinti, Xuan-Nga Cao, Francis Bach, Hynek Hermansky, and Emmanuel Dupoux. "Evaluating speech features with the minimal-pair ABX task (II): resistance to noise." In Interspeech 2014. ISCA: ISCA, 2014. http://dx.doi.org/10.21437/interspeech.2014-228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Holz, Heiko, Maria Chinkina, and Laura Vetter. "Optimizing the Quality of Synthetically Generated Pseudowords for the Task of Minimal-Pair Distinction." In 2018 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2018. http://dx.doi.org/10.1109/slt.2018.8639037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Lei, Qianyong Gao, Qiubing Liang, Jiahong Yuan, and Yang Liu. "Automatic Scoring Minimal-Pair Pronunciation Drills by Using Recognition Likelihood Scores and Phonological Features." In SLaTE 2019: 8th ISCA Workshop on Speech and Language Technology in Education. ISCA: ISCA, 2019. http://dx.doi.org/10.21437/slate.2019-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Das, Arindam. "Heavy Majorana neutrino pair productions at the LHC in minimal $U(1)$ extended Standard Model." In The 39th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.340.0851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vlasenko, Dmitry. "Top quark pair production at linear collider in the minimal gauge extension of the SM." In The XXth International Workshop High Energy Physics and Quantum Field Theory. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.138.0034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schatz, Thomas, Vijayaditya Peddinti, Francis Bach, Aren Jansen, Hynek Hermansky, and Emmanuel Dupoux. "Evaluating speech features with the minimal-pair ABX task: analysis of the classical MFC/PLP pipeline." In Interspeech 2013. ISCA: ISCA, 2013. http://dx.doi.org/10.21437/interspeech.2013-441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ravani, B., and Q. J. Ge. "Computation of Spatial Displacements From Geometric Features." In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0065.

Full text
Abstract:
Abstract This paper develops the theoretical foundation for computations of spatial displacements from the simple geometric features of points, lines, planes and their combinations. Using an oriented projective three space with a Clifford Algebra, all these three features are handled in a similar fashion. Furthermore, issues related to uniqueness of computations and minimal number of required features are discussed. It is shown that contrary to the common intuition, specification of a minimum of four points (planes) or three lines (each pair being non-planar) are necessary for computation of a unique displacement. Only when the sense of the orientations of these features are specified then the minimal number of required features reduces to three for points and planes and two for lines. The results, in addition to their theoretical interest in computational geometry of motion, have application in robot calibration.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Minimal pair"

1

Esposito, Christopher, Edward Leamer, and Jerry Nickelsburg. Who Paid Los Angeles' Minimum Wage? A Side-by-Side Minimum Wage Experiment in Los Angeles County. Cambridge, MA: National Bureau of Economic Research, June 2021. http://dx.doi.org/10.3386/w28966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography