To see the other types of publications on this topic, follow the link: Missions, oceania.

Dissertations / Theses on the topic 'Missions, oceania'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 35 dissertations / theses for your research on the topic 'Missions, oceania.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Darch, John. "The influence of British Protestant missionaries on the development of the British Empire in Africa and the Pacific circa 1865 to circa 1885." Thesis, University of Wales Trinity Saint David, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.683148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hilton, Richard Daniel. "Non-ocean applications of multi-mission satellite altimeter data." Thesis, De Montfort University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.422592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Izenson, Shawn M. "Application of the systems engineering approach to the conversion of ocean surveillance vessels into hydrographic survey, buoy tending, and general oceanography missions for the National Oceanic and Atmospheric Administration." Master's thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-04272010-020107/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

POINT, GRAZIELLA. "Medecins du monde : ocean indien et madagascar." Clermont-Ferrand 1, 1994. http://www.theses.fr/1994CLF1M021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harries, James Osmar. "Pragmatic theory applied to Christian mission in Africa : with special reference to Luo responses to ‘bad’ in Gem, Kenya." Thesis, University of Birmingham, 2007. http://etheses.bham.ac.uk//id/eprint/15/.

Full text
Abstract:
Linguistic research showing dependence on context in deriving language meaning discloses the integral linking of the Luo language with their departed ancestors and the upholding of customary laws. Meaning and impact being transformed in the process of translation from one context to another explains the severe limitations found in previous attempts at cross-cultural understanding between Western and Luo (African) peoples. Studying Luo people’s understanding of ‘bad’ in the light of the above reveals much that often remains invisible to Westerners. ‘Bad’ arises from the activities of ghosts acting through people’s hearts often as a result of breaking taboos. Cleansing, especially of ghosts, through prayer, keeping customary laws and salvation are used to counteract such ‘bad’. Conventional Biblical and mission hermeneutics are, in failing to account for pragmatic linguistics, found seriously wanting. Forces and powers being spiritually based in a monistic worldview amongst the Luo render clear cross-cultural communication with a rationalist and monotheist West impossible. Theological education based on African languages is advocated as the way to engage the challenges of Christianity with Luo ways of life in a way that will result in a deeply rooted African church, and a moral, vibrant, intellectually and economically active African society.
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Tai-Fang. "Net Surface Flux Budget Over Tropical Oceans Estimated from the Tropical Rainfall Measuring Mission (TRMM)." W&M ScholarWorks, 2003. https://scholarworks.wm.edu/etd/1539626825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Allen, David William. "Development of a Value System and Mission Architecture for the Exploration of the Oceans of Europa." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/78175.

Full text
Abstract:
Of all of the bodies in the solar system, Europa is perhaps the most enticing. Based on several lines of evidence, Europa, a moon of Jupiter, is believed to have an ocean of liquid water beneath several kilometers of ice. This ocean is likely in contact with Europa's rocky core, making Europa's ocean one of the most likely places for life to exist in the solar system outside of Earth. This thesis provides an outline of the technology required for a mission that travels to Europa, penetrates the ice, and explores the ocean below. In order to create this outline, this thesis first provides background on previous missions to the outer planets. A discussion of the science requirements is presented and then a value system by which designs are evaluated is developed. Current technologies and the design alternatives are presented and evaluated using the value system. A final mission architecture and concept of operations are then presented.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
8

Allen, David W. "Development of a Value System and Mission Architecture for the Exploration of the Oceans of Europa." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/78175.

Full text
Abstract:
Of all of the bodies in the solar system, Europa is perhaps the most enticing. Based on several lines of evidence, Europa, a moon of Jupiter, is believed to have an ocean of liquid water beneath several kilometers of ice. This ocean is likely in contact with Europa's rocky core, making Europa's ocean one of the most likely places for life to exist in the solar system outside of Earth. This thesis provides an outline of the technology required for a mission that travels to Europa, penetrates the ice, and explores the ocean below. In order to create this outline, this thesis first provides background on previous missions to the outer planets. A discussion of the science requirements is presented and then a value system by which designs are evaluated is developed. Current technologies and the design alternatives are presented and evaluated using the value system. A final mission architecture and concept of operations are then presented.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Sabia, Roberto. "Sea surface salinity retrieval error budget within the esa soil moisture and ocean salinity mission." Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/30542.

Full text
Abstract:
L’oceanografia per satèl•lit ha esdevingut una integració consolidada de les tècniques convencionals de monitorització in situ dels oceans. Un coneixement precís dels processos oceanogràfics i de la seva interacció és fonamental per tal d’entendre el sistema climàtic. En aquest context, els camps de salinitat mesurats regularment constituiran directament una ajuda per a la caracterització de les variacions de la circulació oceànica global. La salinitat s’utilitza en models oceanogràfics predictius, pero a hores d’ara no és possible mesurar-la directament i de forma global. La missió Soil Moisture and Ocean Salinity (SMOS) (en català, humitat del sòl i salinitat de l’oceà) de l’Agència Espacial Europea pretén omplir aquest buit mitjançant la implementació d’un satèl•lit capaç de proveir aquesta informació sinòpticament i regular. Un nou instrument, el Microwave Imaging Radiometer by Aperture Synthesis (MIRAS) (en català, radiòmetre d’observació per microones per síntesi d’obertura), ha estat desenvolupat per tal d’observar la salinitat de la superfície del mar (SSS) als oceans a través de l’adquisició d’imatges de la radiació de microones emesa al voltant de la freqüència de 1.4 GHz (banda L). SMOS portarà el primer radiòmetre orbital, d’òrbita polar, interferomètric 2D i es llençarà a principis de 2009. Així com a qualsevol altra estimació de paràmetres geofísics per teledetecció, la recuperació de la salinitat és un problema invers que implica la minimització d’una funció de cost. Per tal d’assegurar una estimació fiable d’aquesta variable, la resta de paràmetres que afecten a la temperatura de brillantor mesurada s’ha de tenir en compte, filtrar o quantificar. El producte recuperat seran doncs els mapes de salinitat per a cada passada del satèl•lit sobre la Terra. El requeriment de precisió proposat per a la missió és de 0.1 ‰ després de fer el promig en finestres espaciotemporals de 10 dies i de 20x20. En aquesta tesi de doctorat, diversos estudis s’han dut a terme per a la determinació del balanç d’error de la salinitat de l’oceà en el marc de la missió SMOS. Les motivacions de la missió, les condicions de mesura i els conceptes bàsics de radiometria per microones es descriuen conjuntament amb les principals característiques de la recuperació de la salinitat. Els aspectes de la recuperació de la salinitat que tenen una influència crítica en el procés d’inversió són: • El biaix depenent de l’escena en les mesures simulades, • La sensibilitat radiomètrica (soroll termal) i la precisió radiomètrica, • La definició de la modelització directa banda L • Dades auxiliars, temperatura de la superfície del mar (SST) i velocitat del vent, incerteses, • Restriccions en la funció de cost, particularment en el terme de salinitat, i • Promig espacio-temporal adequat. Un concepte emergeix directament de l’enunciat del problema de recuperació de la salinitat: diferents ajustos de l’algoritme de minimització donen resultats diferents i això s’ha de tenir en compte. Basant-se en aquesta consideració, la determinació del balanç d’error s’ha aproximat progressivament tot avaluant l’extensió de l’impacte de les diferents variables, així com la parametrització en termes d’error de salinitat. S’ha estudiat l’impacte de diverses dades auxiliars provinents de fonts diferents sobre l’error SSS final. Això permet tenir una primera impressió de l’error quantitatiu que pot esperar-se en les mesures reals futures, mentre que, en un altre estudi, s’ha investigat la possibilitat d’utilitzar senyals derivats de la reflectometria per tal de corregir les incerteses de l’estat del mar en el context SMOS. El nucli d’aquest treball el constitueix el Balanç d’Error SSS total. S’han identificat de forma consistent les fonts d’error i s’han analitzat els efectes corresponents en termes de l’error SSS mig en diferents configuracions d’algoritmes. Per una altra banda, es mostren els resultats d’un estudi de la variabilitat horitzontal de la salinitat, dut a terme utilitzant dades d’entrada amb una resolució espacial variable creixent. Això hauria de permetre confirmar la capacitat de la SSS recuperada per tal reproduir característiques oceanogràfiques mesoscàliques. Els principals resultats i consideracions derivats d’aquest estudi contribuiran a la definició de les bases de l’algoritme de recuperació de la salinitat.
Satellite oceanography has become a consolidated integration of conventional in situ monitoring of the oceans. Accurate knowledge of the oceanographic processes and their interaction is crucial for the understanding of the climate system. In this framework, routinely-measured salinity fields will directly aid in characterizing the variations of the global ocean circulation. Salinity is used in predictive oceanographic models, but no capability exists to date to measure it directly and globally. The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission aims at filling this gap through the implementation of a satellite that has the potential to provide synoptically and routinely this information. A novel instrument, the Microwave Imaging Radiometer by Aperture Synthesis, has been developed to observe the sea surface salinity (SSS) over the oceans by capturing images of the emitted microwave radiation around the frequency of 1.4 GHz (L-band). SMOS will carry the first-ever, polar-orbiting, space-borne, 2-D interferometric radiometer and will be launched in early 2009. Like whatsoever remotely-sensed geophysical parameter estimation, the retrieval of salinity is an inverse problem that involves the minimization of a cost function. In order to ensure a reliable estimation of this variable, all the other parameters affecting the measured brightness temperature will have to be taken into account, filtered or quantified. The overall retrieved product will thus be salinity maps in a single satellite overpass over the Earth. The proposed accuracy requirement for the mission is specified as 0.1 ‰ after averaging in a 10-day and 2ºx2º spatio-temporal boxes. In this Ph.D. Thesis several studies have been performed towards the determination of an ocean salinity error budget within the SMOS mission. The motivations of the mission, the rationale of the measurements and the basic concepts of microwave radiometry have been described along with the salinity retrieval main features. The salinity retrieval issues whose influence is critical in the inversion procedure are: • Scene-dependent bias in the simulated measurements, • Radiometric sensitivity (thermal noise) and radiometric accuracy, • L-band forward modeling definition, • Auxiliary data, sea surface temperature (SST) and wind speed, uncertainties, • Constraints in the cost function, especially on salinity term, and • Adequate spatio-temporal averaging. A straightforward concept stems from the statement of the salinity retrieval problem: different tuning and setting of the minimization algorithm lead to different results, and complete awareness of that should be assumed. Based on this consideration, the error budget determination has been progressively approached by evaluating the extent of the impact of different variables and parameterizations in terms of salinity error. The impact of several multi-sources auxiliary data on the final SSS error has been addressed. This gives a first feeling of the quantitative error that should be expected in real upcoming measurements, whilst, in another study, the potential use of reflectometry-derived signals to correct for sea state uncertainty in the SMOS context has been investigated. The core of the work concerned the overall SSS Error Budget. The error sources are consistently binned and the corresponding effects in terms of the averaged SSS error have been addressed in different algorithm configurations. Furthermore, the results of a salinity horizontal variability study, performed by using input data at increasingly variable spatial resolution, are shown. This should assess the capability of retrieved SSS to reproduce mesoscale oceanographic features. Main results and insights deriving from these studies will contribute to the definition of the salinity retrieval algorithm baseline.
APA, Harvard, Vancouver, ISO, and other styles
10

Chambon, Philippe. "Contribution à l'estimation des précipitations tropicales : préparation aux missions Megha-Tropiques et Global Precipitation Measurement." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00659418.

Full text
Abstract:
Les précipitations résultent d'un phénomène atmosphérique caractérisé par une variabilité spatiale et temporelle forte. Cette variabilité dans la distribution des pluies et des évènements intenses a des impacts en hydrologie de surface variés selon les régions du monde. Toute modification du climat tropical est associée à une modification du cycle de l'eau et de l'énergie dans ces régions. Dans un contexte de changement climatique, il est donc important de développer des outils permettant d'estimer quantitativement les précipitations, à l'échelle du globe, à la fois sur les surfaces continentales et les surfaces océaniques. Les travaux présentés dans cette thèse s'intéressent à l'observation des précipitations depuis l'espace. En effet, la mesure des pluies nécessite une densité d'observations élevée qui, sur l'ensemble des Tropiques, n'est accessible qu'à partir d'observations spatiales. Depuis plusieurs décades, les moyens satellitaires à disposition ont beaucoup évolué et offrent aujourd'hui une densité d'observations de plus en plus fortes. Grâce aux nouvelles missions déployées telles que Megha-Tropiques au sein de la future constellation GPM (Global Precipitation Measurement), on a accès à un ensemble de systèmes d'observations qui amène à une densité accrue d'observations spatiales. L'estimation quantitative des précipitations n'était possible qu'à l'échelle mensuelle, il est maintenant envisageable d'estimer la pluie par satellite à des échelles de temps de plus en plus fines. Cette thèse s'intéresse aux échelles 1 ̊/1-jour, échelle clé pour les études météorologiques et hydrologiques. Il existe un large spectre de méthodes d'estimation de précipitations par satellite, de qualité inégale. Dans un premier temps, une analyse des produits issus des développements les plus récents montre que leur qualité a atteint un degré suffisant pour être utilisé de manière quantitative aux échelles de temps pertinentes en météorologie. Il apparaît également qu'à ces échelles de temps, il est nécessaire d'utiliser les estimations de cumuls de précipitations conjointement avec leurs barres d'erreurs. Une nouvelle méthode d'estimations de précipitations sur l'ensemble de la ceinture tropicale, appelée TAPEER (Tropical Amount of Precipitation with an Estimate of ERrors), est donc développée dans le but d'estimer des cumuls de pluie et leurs erreurs associées à l'échelle 1 ̊/1-jour. Cette approche est fondée sur une méthode de fusion de données de l'imagerie Infrarouge d'une constellation de satellites géostationnaires et d'estimations de taux de pluie issues de radiomètres Micro-ondes d'une constellation de satellites défilant. Des techniques de modélisations sont mises en oeuvre afin d'associer une erreur aux cumuls de pluie produits. Une investigation détaillée du bilan d'erreur de la méthode TAPEER montre que les sources principales d'incertitudes sont liées à l'échantillonnage et aux biais systématiques sur les taux de pluie d'intensité moyenne. Une étude sur l'été 2009 révèle l'importance de l'utilisation de la barre d'erreur dans l'analyse de la distribution des pluies, en particulier pour les plus forts cumuls sur la ceinture tropicale.
APA, Harvard, Vancouver, ISO, and other styles
11

Tzortzi, Eleni. "Sea surface salinity in the Atlantic Ocean from the SMOS mission and its relation to freshwater fluxes." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/377301/.

Full text
Abstract:
Spatially dense sea surface salinity (SSS) measurements have recently begun to be made from space through the ESA SMOS mission. In this PhD, the sub-annual to interannual SSS distribution and variability is characterized, and its relationship with surface freshwater fluxes, i.e. Evaporation minus Precipitation (E-P) and river outflow (R) is investigated. Given its link to the Meridional Overturning Circulation, the focus is on the Tropical/ Subtropical Atlantic, which encompasses the dynamically different E-dominated Subtropics and P-dominated Tropics. The global and Atlantic SSS variability on different time scales and controlling processes are reviewed, including a description of how SSS is remotely sensed by satellites. The research initially examines the Tropical Atlantic SSS variability using the first year (2010) of SMOS data. This reveals that the variability in 2010 is dominated by eastern/western basin SSS regions ("poles") close to the major Amazon/Orinoco and Congo/Niger rivers. The poles show seasonal ranges up to 6.5 pss and out-of-phase by 6 months seasonal cycles that largely compensate each other, playing a key role in the Tropical Atlantic salinity budget. The growing SMOS record also reveals new aspects of the interannual variability of the SSS seasonal cycle during 2010-2012 and its phase-relationship with E, P, and R. It also shows that the E/W poles' seasonal compensation holds at multi-annual time scales. Next, a novel analysis of the spatio-temporal characteristic scales of SSS from SMOS over the Tropical/Subtropical Atlantic basin is presented. By examining how quickly consistent SSS changes evolve, regions with time persistent and, likewise, spatially homogeneous SSS variations, on sub-annual to interannual time scales, are identified. The spatial scales of SSS in the region are anisotropic, and persist for up to 3-4 months over most of the basin. Determination of SSS time and space scales of variability also provides insights into the controlling mechanisms of SSS. Finally, focusing on the freshwater forcing term of the salt budget equation, E-P is estimated from satellite SSS variations to explore whether and where SMOS can capture the main characteristics of E-P distribution in the region.
APA, Harvard, Vancouver, ISO, and other styles
12

Tuozzolo, Stephen. "A study of river discharge estimation methods for the forthcoming Surface Water and Ocean Topography (SWOT) mission." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu154150483606865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Steley, Dennis. "Unfinished: The Seventh-day Adventist mission in the South Pacific, excluding Papua New Guinea, 1886-1986. (Volumes I and II)." Thesis, University of Auckland, 1990. http://wwwlib.umi.com/dissertations/fullcit/9100749.

Full text
Abstract:
The Seventh-day Adventist Church, incorporated in the United States in 1863, was driven by the belief that it was God's 'remnant church' with the work of warning the world of the imminent return of Christ. When that mission was finished the second coming would occur. In 1886 following a visit by an elderly layman, John I Tay, the whole population of Pitcairn Island desired to join the SDA church. As a result in 1890 Adventist mission work began in the South Pacific Islands. By 1895 missions had been founded in six island groups. However difficulties, both within and without the mission's control, ensured that membership gains were painfully slow in the first decades of Adventist mission in Polynesia. However before World War II the Solomons became one of the most successful Adventist mission areas in the world. After 1945 Adventism also prospered in such places as Fiji, Samoa and Tonga. Education provided the key to the gaining of accessions in a number of countries, while in others a health-medical emphasis proved important in attracting converts. Since World War II public evangelism and the use of various programmes such as welfare, radio evangelism, and the efforts of lay members contributed to sharp membership gains in most countries of the region. Of no small consequence in hindering Adventist growth was the opposition of other churches who regarded them as pariahs because of their theology and 'proselytizing'. Adventist communities tended to be introverted, esoteric and isolationist. Nevertheless Pacific islanders adapted aspects of the usually uncompromising Adventist culture. Unity of faith, practice and procedure was a valuable Adventist asset which was promoted by a centralized administration. After a century in the Pacific region its membership there has a reputation among other Adventists for its continued numeric growth and for the ferver its committment to Adventism. Nevertheless Adventism in the region faces a number of problems and its aim of finishing the Lord's work remains unfinished.
Subscription resource available via Digital Dissertations
APA, Harvard, Vancouver, ISO, and other styles
14

Young, Grace Calvert. "Missiles & misconceptions : why we know more about the dark side of the Moon than the depths of the ocean." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92685.

Full text
Abstract:
Thesis: S.B. in Mechanical & Ocean Engineering, Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 46-50).
Tens of billions of dollars are spent on manned and unmanned missions probing deeper into space, while 95% of Earth's oceans remain unexplored. The more intensive focus on space exploration is a historically recent phenomenon. For millennia until the mid-20th century, space and ocean exploration proceeded roughly at the same pace, driven by military and commercial interests as well as simple curiosity. Both date back to early civilization when star-gazers scanned the skies, and sailors and free-divers scoured the seas. Since the 1960s, however, the trajectories of exploration diverged dramatically. Cold War-inspired geopolitical-military imperatives propelled government funding of space research to an extraordinary level, while ocean exploration stagnated in comparison. Moreover, although the Cold War ended more than 20 years ago, the disparity in research efforts remains vast despite evidence that accelerating changes in our marine ecosystems directly threatens our wellbeing. This thesis reviews the history of space and ocean exploration through the Cold War to the present. It also dispels persistent misconceptions that led to the disparity in resources allocated between space and ocean exploration and argues for prioritizing ocean research.
by Grace Calvert Young.
S.B. in Mechanical & Ocean Engineering
APA, Harvard, Vancouver, ISO, and other styles
15

Dinnat, Emmanuel. "De la determination de la salinite de surface des oceans a partir de mesures radiometriques hyperfrequences en bande L." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00003277.

Full text
Abstract:
La télédétection par satellite est aujourd'hui une composante à part entière de l'océanographie. Elle permet d'effectuer des mesures de vents, de température de surface (SST), de couleur de l'eau, de topographie, ... avec des couvertures spatiales et temporelles bien supérieures à celles obtenues par des méthodes in situ. Cependant, il n'existe pas à l'heure actuelle de mesure satellitaire de salinité de surface des océans (SSS), et celle-ci reste sous échantillonnée à la fois spatialement et temporellement. La salinité étant un paramètre important pour la circulation des masses d'eau océaniques, son observation globale et régulière constituerait un apport conséquent à l'océanographie physique. C'est pourquoi de nombreuses équipes scientifiques à travers le monde relèvent actuellement le défi technologique de la télédétection de la SSS par satellite, et particulièrement en Europe grâce à la mission de l'Agence Spatiale Européenne « Soil Moisture and Ocean Salinity » (SMOS). Au cours de ma thèse, j'ai étudié la faisabilité de la mesure de la SSS à l'aide d'un radiomètre hyperfréquence en bande L (i.e. fréquence = 1.4 GHz <=> longueur d'onde = 21 cm), en estimant les sources d'incertitude sur la SSS qui sera restituée dans le cadre de la mission SMOS. Pour cela, j'ai codé un modèle direct, qui simule les processus physiques intervenant depuis la surface océanique jusqu'à l'antenne du radiomètre. Ce modèle est constitué d'un modèle d'émissivité de la mer à « deux échelles » (i.e. on distingue les vagues selon qu'elles soient « grandes » ou « petites » par rapport à la longueur d'onde du radiomètre), et d'un modèle de transfert radiatif à travers l'atmosphère. Le modèle d'émissivité m'a permis d'estimer la sensibilité de la température de brillance (Tb) de l'océan aux paramètres géophysique océanique (i.e. SSS, SST, et rugosité de surface induite par le vent ou la houle), ainsi que l'incertitude sur cette sensibilité en comparant les résultats obtenus à partir de paramétrisations différentes. J'ai conclu de ces études que la sensibilité de la Tb à la SSS est relativement bien connue (de l'ordre de quelques dixièmes de Kelvin par psu) mais que l'effet de la rugosité est très incertain à cause de l'imprécision des modèles de spectre des vagues, alors que cet effet ne semble pas être négligeable (la sensibilité de la Tb au vent étant comprise entre 0.12 à 0.25 K/(m/s) selon le modèle de spectre). Le modèle de transfert radiatif m'a permis d'estimer les différentes contributions de l'atmosphère (atténuation des rayonnements la traversant et émission propre), ainsi que la sensibilité de ces contributions aux paramètres atmosphériques (i.e. profils de température, pression et humidité relative). En bande L, l'atmosphère est quasiment transparente (épaisseur optique ~ 0.01 néper) et sa température de brillance est de l'ordre de 2 K. Ces effets sont peu sensibles aux paramètres atmosphériques, particulièrement à la vapeur d'eau. Je présente aussi dans la thèse des comparaisons du modèle avec des mesures radiométriques en bande L récentes (campagnes WISE 2000, WISE 2001 et EuroSTARRS) ainsi que les conclusions sur la validité des différents modèles de spectre de mer étudiés.
APA, Harvard, Vancouver, ISO, and other styles
16

Pedinotti, Vanessa. "Préparation à la mission SWOT (Surface Water Ocean Topography) : Apport de l'altimétrie à large fauchée à la modélisation grande échelle des processus hydrologiques et hydrodynamiques en Afrique de l'Ouest." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0014/document.

Full text
Abstract:
Le bassin versant du fleuve Niger est directement influencé par les fluctuations de la mousson africaine, qui impactent les ressources en eau et entraînent des évènements extrêmes tels que des inondations ou des sécheresses. En retour, les forts taux d'évaporation observés dans le Delta intérieur du Niger, large région annuellement inondée, impactent le climat, au moins à l'échelle régionale. Une meilleure compréhension des processus hydrodynamiques de ce bassin ne peut cependant être obtenue sans un réseau d'observations ayant une couverture spatiale et temporelle suffisante. La mission SWOT fournira des cartes 2D de hauteurs et pente des eaux de surface avec une résolution encore jamais atteinte en altimétrie (50 à 100 mètres). Cette thèse s'inscrit dans le cadre de la phase de préparation à la mission SWOT et se propose d'offrir des perspectives d'utilisation de ces données satellites pour l'amélioration des modèles d'hydrologie globale. Dans un premier temps, le modèle hydrologique du CNRM, ISBA-TRIP, incluant un schéma d'inondations et un réservoir simple d'aquifères ajouté durant cette thèse est évalué sur le bassin du Niger à l'aide de multiples observations in-situ et satellites. L'étude montre que le modèle simule de façon cohérente l'évolution des eaux de surface, des zones inondées, et les anomalies de stock d'eau sur le bassin. Ensuite, un schéma d'assimilation de données est mis en place afin d'optimiser un des paramètres clés en hydrologie, le coefficient de Manning. Ce coefficient, décrivant la propriété du sol à 'retenir' les flux d'eau, influence fortement la dynamique des eaux de surface, et notamment les hauteurs d'eau et le débit. L'assimilation des données SWOT est appliquée dans le cadre d'une expérience jumelle, qui consiste à considérer une simulation de référence, appelée 'vérité', de laquelle sont issues les observations virtuelles de hauteur d'eau SWOT. L'étude montre que l'assimilation des hauteurs d'eau SWOT permet l'optimisation du coefficient de Manning, distribué spatialement, malgré l'hypothèse d'équifinalité. Les hauteurs d'eau et les débits sont considérablement améliorés, et on obtient une meilleure simulation des anomalies de stocks d'eau sur le bassin ainsi que des zones inondées sur le Delta intérieur du Niger (occurrence, intensité). Enfin, le potentiel des données SWOT pour améliorer les prévisions hydrologiques sur des périodes plus longues que celle de la phase d'assimilation est mis en évidence
The hydrologic and hydrodynamic processes of the Niger basin are largely influenced by the West African monsoon variabilty. In the last 3 decades these variations have resulted in an increase of extreme events such as floods and droughts. Retrospectively, the climate might be impacted by the evaporation fluxes from the inner Delta flooded region, at least regionally. A better understanding of the Niger basin water cycle is a crucial issue for water resources management but requires observation datasets with a large spatial and temporal coverage. The SWOT satellite mission will provide 2D global maps of water level and slope at an unprecedented resolution (50 to 100 meters). Within the framework of the preparation of the SWOT mission, this thesis aims at proposing a SWOT data assimilation strategy for the improvement of global scale hydrological models. First, the ISBA-TRIP hydrological model from CNRM is evaluated over the Niger basin. This model includes an inundation scheme and simple aquifer reservoir. The model diagnostics are compared to an extensive set of in-situ and satellite observations. According to its relative simple physics, the model is able to simulate in a realistic manner, the continental water dynamics : discharge, water levels, floods, total water storage variations. Sensitivity tests are also performed to determine the most sensitve ISBA-TRIP parameters. Among them, the Manning coefficient has a key role in the flow dynamics but its estimation is difficult and usually based on geomorphologic relationships. The second part of this work consists in setting up a SWOT data assimilation strategy for the optimization of the ISBA-TRIP parameters. Since the SWOT observations are not available yet and also to assess the skills of the assimilation method, the study is carried out in the framework of an Observing System Simulation Experiment (OSSE). The corrected parameter is the Manning coefficient, spatially distributed over the river. The assimilation allows a good improvement of the relative bias of discharge and water level over the river. The Manning coefficient is also globally improved and tends to an optimal value. Moreover, the water storage anomalies and flooded fraction are also better simulated. Finally, the study shows that the method is useful for hydrological forecasting over longer time periods than those of the calibration
APA, Harvard, Vancouver, ISO, and other styles
17

Billat, Valérie. "Etude de l'influence de l'état de surface sur la qualité de la mesure de la couleur de l'océan à l'aide d'un simulateur de mission spatiale." Phd thesis, Université Paris-Diderot - Paris VII, 1997. http://tel.archives-ouvertes.fr/tel-00955254.

Full text
Abstract:
Nous présentons un outil logiciel qui permet de simuler une mission spatiale dans son intégralité. Ceci constitue une approche nouvelle en télédétection. Les concepteurs de missions et les scientifiques peuvent ainsi mieux appréhender la complexité toujours croissante des futures missions. Ce simulateur permet, bien avant le lancement de la mission, de considérer l'ensemble dit système, qui comprend évidemment le capteur, mais aussi les caractéristiques de l'orbite de la plate-forme qui l'emportera, ainsi que les algorithmes de traitement des données qui seront effectués au sol. Ce simulateur apporte une aide précieuse dans le cadre du dimensionnement et de l'analyse d'une mission spatiale ; il permet de comprendre comment la performance de tout ou partie du système contribue à la performance globale de la mission. La mission spatiale simulée dans le cadre de cette thèse est la mission du capteur MERIS (Medium Resolution Imaging Spectrometer) de l'Agence Spatiale Européenne, dont l'objectif principal est la mesure de la couleur de l'eau. Nous utilisons le simulateur pour évaluer la dynamique du signal en entrée du capteur, pour calculer la résolution radiométrique nécessaire au capteur pour satisfaire les objectifs de la mission et pour étudier la sensibilité du signal à de petites variations en attitude de la plateforme. Nous étudions ensuite l'influence de la qualité de la modélisation de l'état de la surface océanique sur la qualité de la mesure de la couleur de l'eau. Nous montrons que les incertitudes, liées à une modélisation trop imprécise des effets de surface et à une méconnaissance de la vitesse du vent, induisent des erreurs sur le signal marin pouvant être supérieures à la précision attendue par la mission.
APA, Harvard, Vancouver, ISO, and other styles
18

Tétard, Cédric. "Analyse des mesures de l'expérience satellitaire SAGE III : algorithme d'inversion et validation des résultats. Comparaison des produits des instruments de la mission spatiale ACE avec des mesures corrélatives à distance et in situ." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2003. http://tel.archives-ouvertes.fr/tel-00289578.

Full text
Abstract:
Le dernier rapport du GIEC (2007) souligne que la compréhension du changement climatique en cours est encore incomplète. Le rôle de la stratosphère est notamment mal connu. C'est pourquoi il est important d'étudier sa composition et les processus physicochimiques s'y déroulant. Les mesures d'occultation solaire telles celles de l'instrument satellitaire SAGE III et les mesures in situ sont particulièrement bien adaptées à l'étude de la stratosphère. J'ai étudié dans cette thèse la cohérence entre les mesures existantes.
Mon travail a consisté à inverser les transmissions atmosphériques de SAGE III pour obtenir les profils verticaux des concentrations en ozone et en dioxyde d'azote ainsi que des coefficients d'extinction des aérosols dans neuf canaux entre 385 et 1545 nm. Dans les canaux situés autour de 450 nm, un lissage vertical a été effectué sur les transmissions tangentes pour pallier un défaut de neutralité spectrale de l'atténuateur. Dans le canal à 1545 nm, la prise en compte de l'absorption du CO2 a été effectuée avec le modèle MODTRAN 5. Les incertitudes ont été évaluées par une méthode de Monte Carlo. Nous avons alors validé nos produits à l'aide des produits SAGE III officiels (NASA), ceux d'un troisième algorithme d´eveloppé par une équipe de Saint Petersbourg et à l'aide de mesures coïncidentes des instruments SAGE II et POAM III. Ces comparaisons montrent que les produits LOA sont de bonne qualité. Cependant, une étude effectuée à l'aide des mesures in situ de l'instrument sous ballon SPIRALE aux abords du vortex polaire a montré un bon accord pour O3 et un désaccord pour NO2. Ce désaccord montre que la méthode d'occultation solaire pour la mesure d'espèces réactives (tel NO2) dans des conditions dynamiques complexes n'est pas bien adaptée. De plus, les variations diurnes de NO2 rendent les comparaisons directes entre mesures à distance et in situ difficiles.
Une étude spécifique sur les aérosols des feux de forêt de l'ouest du Canada (août 2003) a été menée avec les produits SAGE III officiels. Des intrusions d'aérosols issus des feux de forêt dans la basse stratosphère par pyroconvection sont suspectées d'être à l'origine des pics d'extinction observés par SAGE III. Nous avons déduit des mesures SAGE III les propriétés microphysiques de ces aérosols et montré que ces coefficients d'extinction anormalement élevés étaient dus à une augmentation du nombre de particules dans la basse stratosphère. Cependant, la nature chimique de ces aérosols n'a pu être déterminée car les mesures d'extinction ne sont pas assez sensibles à l'indice de réfraction.
Depuis la fin des missions SAGE II, SAGE III et POAM III, les instruments satellitaires de la mission ACE-SCISAT sont les seuls instruments d'occultation solaire (hormis SOFIE) fournissant des informations sur la stratosphère. Nous nous sommes ainsi intéressés à la validation de leurs mesures à l'aide des données de SAGE II, SAGE III et SPIRALE. Ce travail s'inscrit dans le cadre de la campagne de validation internationale. Nous avons montré que les coefficients d'extinction des aérosols déduits des mesures de IMAGER sont en désaccord avec ceux de SAGE II et SAGE III et que les rapports de mélange en ozone et en dioxyde d'azote de FTS et de MAESTRO sont en bon accord avec les produits SAGE III. Cependant, nous obtenons également un désaccord concernant NO2 en comparaison avec SPIRALE bien que les autres espèces (CH4, N2O, HNO3, O3, HCl) déduites de FTS ainsi que l'ozone MAESTRO sont en bon accord avec les données SPIRALE.
APA, Harvard, Vancouver, ISO, and other styles
19

Ortega-Molina, Arturo. "Participation a la reconstruction des trajectoires des ballons de venus de la mission vega par interferometrie differentielle a tres grande base (delta vlbi)." Paris 6, 1988. http://www.theses.fr/1988PA066452.

Full text
Abstract:
Presentation de la methode et des resultats de la reconstruction des trajectoires des ballons meteorologiques laches dans l'atmosphere de venus par les sondes vega par interferometrie differentielle a tres grande base (delta vlbi). Description de la participation a l'equipement de l'une des antennes du reseau de poursuite. Analyse detaillee des techniques de correlation et de traitement des observations vlbi differentielles. Discussion et evaluation des erreurs introduites par la propagation, l'instrumentation et le traitement
APA, Harvard, Vancouver, ISO, and other styles
20

Faleiro, Frederico Augusto Martins Valtuille. "Modelagem de mudanças climáticas: do nicho fundamental à conservação da biodiversidade." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/5603.

Full text
Abstract:
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2016-05-31T09:35:51Z No. of bitstreams: 2 Tese - Frederico Augusto Martins Valtuille Faleiro - 2016.pdf: 7096330 bytes, checksum: 04cfce04ef128c5bd6e99ce18bb7f650 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-31T10:52:51Z (GMT) No. of bitstreams: 2 Tese - Frederico Augusto Martins Valtuille Faleiro - 2016.pdf: 7096330 bytes, checksum: 04cfce04ef128c5bd6e99ce18bb7f650 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2016-05-31T10:52:51Z (GMT). No. of bitstreams: 2 Tese - Frederico Augusto Martins Valtuille Faleiro - 2016.pdf: 7096330 bytes, checksum: 04cfce04ef128c5bd6e99ce18bb7f650 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2016-03-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The climate changes are one of the major threats to the biodiversity and it is expected to increase its impact along the 21st century. The climate change affect all levels of the biodiversity from individuals to biomes, reducing the ecosystem services. Despite of this, the prediction of climate change impacts on biodiversity is still a challenge. Overcoming these issues depends on improvements in different aspects of science that support predictions of climate change impact on biodiversity. The common practice to predict the climate change impact consists in formulate ecological niche models based in the current climate and project the changes based in the future climate predicted by the climate models. However, there are some recognized limitations both in the formulation of the ecological niche model and in the use of predictions from the climate models that need to be analyzed. Here, in the first chapter we review the science behind the climate models in order to reduce the knowledge gap between the scientific community that formulate the climate models and the community that use the predictions of these models. We showed that there is not consensus about evaluate the climate models, obtain regional models with higher spatial resolution and define consensual models. However, we gave some guidelines for use the predictions of the climate models. In the second chapter, we tested if the predictions of correlative ecological niche models fitted with presence-absence match the predictions of models fitted with abundance data on the metrics of climate change impact on orchid bees in the Atlantic Forest. We found that the presence-absence models were a partial proxy of change in abundance when the output of the models was continuous, but the same was not true when the predictions were converted to binary. The orchid bees in general will decrease the abundance in the future, but will retain a good amount of suitable sites in the future and the distance to gained climatic suitable areas can be very close, despite of great variation. The change in the species richness and turnover will be mainly in the western and some regions of southern of the Atlantic Forest. In the third chapter, we discussed the drawbacks in using the estimations of realized niche instead the fundamental niche, such as overpredicting the effect of climate change on species’ extinction risk. We proposed a framework based on phylogenetic comparative and missing data methods to predict the dimensions of the fundamental niche of species with missing data. Moreover, we explore sources of uncertainty in predictions of fundamental niche and highlight future directions to overcome current limitations of phylogenetic comparative and missing data methods to improve predictions. We conclude that it is possible to make better use of the current knowledge about species’ fundamental niche with phylogenetic information and auxiliary traits to predict the fundamental niche of poorly-studied species. In the fourth chapter, we used the framework of the chapter three to test the performance of two recent phylogenetic modeling methods to predict the thermal niche of mammals. We showed that PhyloPars had better performance than Phylogenetic Eigenvector Maps in predict the thermal niche. Moreover, the error and bias had similar phylogenetic pattern for both margins of the thermal niche while they had differences in the geographic pattern. The variance in the performance was explained by taxonomic differences and not by methodological aspects. Finally, our models better predicted the upper margin than the lower margin of the thermal niche. This is a good news for predicting the effect of climate change on species without physiological data. We hope our finds can be used to improve the predictions of climate change effect on the biodiversity in future studies and support the political decisions on minimizing the effects of climate change on biodiversity.
As mudanças climáticas são uma das principais ameaças à biodiversidade e é esperado que aumente seu impacto ao longo do século XXI. As mudanças climáticas afetam todos os níveis de biodiversidade, de indivíduos à biomas, reduzindo os serviços ecossistêmicos. Apesar disso, as predições dos impactos das mudanças climáticas na biodiversidade é ainda um desafio. A superação dessas questões depende de melhorias em diferentes aspectos da ciência que dá suporte para predizer o impacto das mudanças climáticas na biodiversidade. A prática comum para predizer o impacto das mudanças climáticas consiste em formular modelos de nicho ecológico baseado no clima atual e projetar as mudanças baseadas no clima futuro predito pelos modelos climáticos. No entanto, existem algumas limitações reconhecidas na formulação do modelo de nicho ecológico e no uso das predições dos modelos climáticos que precisam ser analisadas. Aqui, no primeiro capítulo nós revisamos a ciência por detrás dos modelos climáticos com o intuito de reduzir a lacuna de conhecimentos entre a comunidade científica que formula os modelos climáticos e a comunidade que usa as predições dos modelos. Nós mostramos que não existe consenso sobre avaliar os modelos climáticos, obter modelos regionais com maior resolução espacial e definir modelos consensuais. No entanto, nós damos algumas orientações para usar as predições dos modelos climáticos. No segundo capítulo, nós testamos se as predições dos modelos correlativos de nicho ecológicos ajustados com presença-ausência são congruentes com aqueles ajustados com dados de abundância nas medidas de impacto das mudanças climáticas em abelhas de orquídeas da Mata Atlântica. Nós encontramos que os modelos com presença-ausência foram substitutos parciais das mudanças na abundância quando o resultado dos modelos foi contínuo (adequabilidade), mas o mesmo não ocorreu quando as predições foram convertidas para binárias. As espécies de abelhas, de modo geral, irão diminuir em abundância no futuro, mas reterão uma boa quantidade de locais adequados no futuro e a distância para áreas climáticas adequadas ganhadas podem estar bem próximo, apesar da grande variação. A mudança na riqueza e na substituição de espécies ocorrerá principalmente no Oeste e algumas regiões no sul da Mata Atlântica. No terceiro capítulo, nós discutimos as desvantagens no uso de estimativas do nicho realizado ao invés do nicho fundamental, como superestimar o efeito das mudanças climáticas no risco de extinção das espécies. Nós propomos um esquema geral baseado em métodos filogenéticos comparativos e métodos de dados faltantes para predizer as dimensões do nicho fundamental das espécies com dados faltantes. Além disso, nós exploramos as fontes de incerteza nas predições do nicho fundamental e destacamos direções futuras para superar as limitações atuais dos métodos comparativos filogenéticas e métodos de dados faltantes para melhorar as predições. Nós concluímos que é possível fazer melhor uso do conhecimento atual sobre o nicho fundamental das espécies com informação filogenética e caracteres auxiliares para predizer o nicho fundamental de espécies pouco estudadas. No quarto capítulo, nós usamos o esquema geral do capítulo três para testar a performance de dois novos métodos de modelagem filogenética para predizer o nicho térmico dos mamíferos. Nós mostramos que o “PhyloPars” teve uma melhor performance que o “Phylogenetic Eigenvector Maps” em predizer o nicho térmico. Além disso, o erro e o viés tiveram um padrão filogenético similar para ambas as margens do nicho térmico, enquanto eles apresentaram diferentes padrões espaciais. A variância na performance foi explicada pelas diferenças taxonômicas e não pelas diferenças em aspectos metodológicos. Finalmente, nossos modelos melhor predizem a margem superior do que a margem inferior do nicho térmico. Essa é uma boa notícia para predizer o efeito das mudanças climáticas em espécies sem dados fisiológicos. Nós esperamos que nossos resultados possam ser usados para melhorar as predições do efeito das mudanças climáticas na biodiversidade em estudos futuros e dar suporte para decisões políticas para minimização dos efeitos das mudanças climáticas na biodiversidade.
APA, Harvard, Vancouver, ISO, and other styles
21

Chai, Soo See. "An artificial neural network approach for soil moisture retrieval using passive microwave data." Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/1416.

Full text
Abstract:
Soil moisture is a key variable that defines land surface-atmosphere (boundary layer) interactions, by contributing directly to the surface energy and water balance. Soil moisture values derived from remote sensing platforms only accounts for the near surface soil layers, generally the top 5cm. Passive microwave data at L-band (1.4 GHz, 21cm wavelength) measurements are shown to be a very effective observation for surface soil moisture retrieval. The first space-borne L-band mission dedicated to observing soil moisture, the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, was launched on 2nd November 2009.Artificial Neural Network (ANN) methods have been used to empirically ascertain the complex statistical relationship between soil moisture and brightness temperature in the presence of vegetation cover. The current problem faced by this method is its inability to predict soil moisture values that are 'out-of-range' of the training data.In this research, an optimization model is developed for the Backpropagation Neural Network model. This optimization model utilizes the combination of the mean and standard deviation of the soil moisture values, together with the prediction process at different pre-determined, equal size regions to cope with the spatial and temporal variation of soil moisture values. This optimized model coupled with an ANN of optimum architecture, in terms of inputs and the number of neurons in the hidden layers, is developed to predict scale-to-scale and downscaling of soil moisture values. The dependency on the accuracy of the mean and standard deviation values of soil moisture data is also studied in this research by simulating the soil moisture values using a multiple regression model. This model obtains very encouraging results for these research problems.The data used to develop and evaluate the model in this research has been obtained from the National Airborne Field Experiments in 2005.
APA, Harvard, Vancouver, ISO, and other styles
22

Pichocki, Claude. "Les encroûtements ferromanganesifères enrichis en cobalt du Pacifique sud : caractérisation, genèse et signification géodynamique." brest, 1987. http://www.theses.fr/1987BRES2030.

Full text
Abstract:
Etude des encroutements mnfe enrichis en cobalt dans la zone de niau (archipel des tuamotu). On observe que l'enrichissement en co est inversement lie a la vitesse de sedimentation. Cet enrichissement reflete des conditions geologiques particulieres parmi lesquelles la profondeur (1000-2000 m) et les masses d'eaux profondes ont un role primordial. Une reconstitution de l'histoire geodynamique de la zone etudiee est proposee
APA, Harvard, Vancouver, ISO, and other styles
23

Magor, Dorothea Rosa. "A pre-service orientation training model for the South Sea Evangelical Mission." 1987. http://catalog.hathitrust.org/api/volumes/oclc/32860884.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Weir, Christine Helen. "The work of mission race, labour and Christian humanitarianism in the south-west Pacific, 1870-1930 /." 2003. http://catalog.hathitrust.org/api/volumes/oclc/228504594.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Green, DB. "The missing link : pelagic prey field prediction for Southern Ocean predators." Thesis, 2022. https://eprints.utas.edu.au/47576/.

Full text
Abstract:
Bottom-up processes affecting the availability of prey play a fundamental role in driving the distribution of higher marine predators. Yet, adequate representation of environment – prey – predator linkages remains a major barrier to understanding marine predator responses to environmental change. A key limitation is the difficulty in obtaining synoptic prey observations at spatial and temporal scales relevant to foraging predators because the micronekton groups that dominate the prey of diving/higher predators are notoriously difficult to observe and sample. Simulated prey fields, derived from environmentally forced models are an emerging alternative approach for representing biomass and spatial dynamics of hard-to-observe mid-trophic prey. One such model, SEAPODYM (Spatial Ecosystem and Population Dynamics Model), has been used to skilfully represent the spatial dynamics and biomass of marine biota at multiple trophic levels. My thesis considers SEAPODYM’s utility in filling the mid-trophic prey gap between marine predators and the biophysical environment in the rapidly changing Southern Ocean. I first explored the relationship between modelled estimates of mid-trophic biomass derived from SEAPODYMand foraging distribution, behaviour and success of two cosmopolitan Southern Ocean predators, the southern elephant seal (Mirounga leonina) and macaroni penguin (Eudyptes chrysolophus). I compared model-derived mid-trophic prey metrics with the spatial distribution of tracked elephant seals to identify important seal habitat. Next, I considered whether interannual variability in modelled prey biomass could be related to predator foraging success, as indicated by average arrival mass of macaroni penguins at the onset of breeding. Results from these studies indicated SEAPODYM’s spatially explicit prey field estimates could provide useful insights into both predator foraging behaviour and success, highlighting potential for their use in identifying current foraging behaviour and forecasting the impacts of climate-driven change in the Southern Ocean. Having established that SEAPODYM can effectively represent Southern Ocean prey fields, I then present a modified SEAPODYM model framework to represent the life history of a single, dominant Southern Ocean mid-trophic prey species, Antarctic krill (Euphausia superba). Capturing the spatial dynamics of this species will become increasingly important in the face of anthropogenic climate-related change, and extractive pressures from likely expansion of the krill fishery. As the first step, I produced a model estimating circumpolar potential spawning habitat for the krill population and used this to identify regions that likely serve as population sources. Then, identifying how the structural framework of SEAPODYM may be adapted, I detail how the spawning habitat index could feed into a krill population model that incorporates critical life stages, habitats, and spatial processes. Output from such an implementation should provide unique circumpolar estimates of krill densities at different developmental stages, as well as critical insight into how the magnitude and distribution of krill biomass could shift under environmental change. This thesis significantly advances knowledge on how coupled environmental and biological models, such as SEAPODYM, can provide useful representations of Southern Ocean midtrophic prey. It demonstrates empirical relationships between modelled prey fields and predator foraging ecology and lays the structural groundwork for representing a key prey species (krill) within a mechanistic modelling framework. In doing so it makes a foundational contribution toward predictive capacity in assessing ecosystem responses under future climates.
APA, Harvard, Vancouver, ISO, and other styles
26

Drda, Vratislav. "Pravoslaví v Austrálii, Oceánii a Antarktidě." Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-299975.

Full text
Abstract:
Diploma thesis "Orthodoxy in Australia, Oceania and Antarctica" deals with the history, evolution and current state of religious structures of Eastern christian churches in Australia, Oceania and Antarctica. Each part of the investigated area has been analyzed in terms of the ethnic or. ecclesiological diaspora, its organizational capture (formation of the first parishes, dioceses, monasteries, schools and charitable organizations etc.) and on their current status (size and functionality of the existing church structure). Following the various jurisdictions and churches are described. A fundamental consideration is given to the canonical Orthodox Churches, then to the Orthodox Churches with less problematic canonical status, but there are also other Eastern Christian churches mentioned. Within the area the eminent figures of church life are closer described. This descriptive material is supplemented by interviews and journalistic texts, which further analyze situation of churches in the region and their various problems. It is also accompanied by photographic material. The thesis tries to describe ecclesiological tensions between the diaspora and mission, the diversity of ethnic and religious minorities and differences in their assimilation in the new religious, social and culture environment.
APA, Harvard, Vancouver, ISO, and other styles
27

Drda, Vratislav. "Pravoslaví v Austrálii, Oceánii a Antarktidě." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-311275.

Full text
Abstract:
Diploma thesis "Orthodoxy in Australia, Oceania and Antarctica" deals with the history, evolution and current state of religious structures of Eastern christian churches in Australia, Oceania and Antarctica. Each part of the investigated area has been analyzed in terms of the ethnic or. ecclesiological diaspora, its organizational capture (formation of the first parishes, dioceses, monasteries, schools and charitable organizations etc.) and on their current status (size and functionality of the existing church structure). Following the various jurisdictions and churches are described. A fundamental consideration is given to the canonical Orthodox Churches, then to the Orthodox Churches with less problematic canonical status, but there are also other Eastern Christian churches mentioned. Within the area the eminent figures of church life are closer described. This descriptive material is supplemented by interviews and journalistic texts, which further analyze situation of churches in the region and their various problems. It is also accompanied by photographic material. The thesis tries to describe ecclesiological tensions between the diaspora and mission, the diversity of ethnic and religious minorities and differences in their assimilation in the new religious, social and culture environment.
APA, Harvard, Vancouver, ISO, and other styles
28

"Identification and Quantitative Classification of Europa’s Microfeatures: Implications for Microfeature Formation Models and the Europa Clipper Flagship Mission." Doctoral diss., 2019. http://hdl.handle.net/2286/R.I.54833.

Full text
Abstract:
abstract: Jupiter’s moon Europa is an active target of research because of its unique geology and its potential for habitability. Europa’s icy chaos disrupts and transforms the previous terrain, suggesting melting is involved. Chaos occurs alongside several types of endogenic surface features. These microfeatures are under <100 km2 in area and include uplifts and domes, pits, spots, and hybrid features. The distribution of microfeatures is known in the ~10% of the Europa’s surface that are covered by the regional mosaics (“RegMaps”). The efforts to connect microfeature formation to any kind of heat transport in Europa are confounded because microfeatures are difficult to identify outside of RegMaps because of low image resolutions. Finding microfeatures outside of RegMaps would provide new observational constraints for microfeature formation models. First, I mapped microfeatures across four of Europa’s RegMaps and validated them against other mapping datasets. Microchaos features are the most numerous, followed by pits, domes, then hybrids. Spots are the least common features, and the smallest. Next, I mapped features in low-resolution images that covered the E15RegMap01 area to determine error rates and sources of omission or misclassification for features mapped in low-resolution images. Of all features originally mapped in the RegMap, pits and domes were the least likely to be re-mapped or positively identified (24.2% and 5%, respectively). Chaos, spots, and hybrids were accurately classified over 70% of the time. Quantitatively classifying these features using discriminant function analysis yielded comparable values of accuracy when compared to a human mapper. Finally, nearest-neighbor clustering analyses were used to show that pits are clustered in all regions, while chaos, domes, and hybrids vary in terms of their spatial clustering. This work suggests that the most likely processes for microfeature formations is either the evolution of liquid water sills within Europa’s ice shell or cryovolcanism. Future work extending to more areas outside of the RegMaps can further refine microfeature formation models. The detection of liquid water at or near the surface is a major goal of multiple upcoming Europa missions; this work provides predictions that can be directly tested by these missions to maximize their scientific return.
Dissertation/Thesis
Doctoral Dissertation Geological Sciences 2019
APA, Harvard, Vancouver, ISO, and other styles
29

Deschênes-Boutin, Jérémie. "Entre genre, race et nation : vers une nationalité hybridée : le cas des métis franco-vietnamiens «abandonnés» en Indochine française lors de l’entre-deux-guerres." Thèse, 2017. http://hdl.handle.net/1866/20146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ratan, Ram. "Temporal Persistence and Spatial Coherence of Tropical Rainfall." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/2942.

Full text
Abstract:
The work presented in the thesis focuses on systematically documenting the multi scale nature of the temporal persistence and spatial coherence of tropical rainfall. There are three parts to the thesis: The first two parts utilize satellite-retrieved rainfall at multiple observational resolutions to characterize the space-time organization of rain; the third part assesses the ability of state-of-the-art coupled models to reproduce some of the observed features. In the first part of the study, which focuses on the temporal persistence of rain, we analyze the Tropical Rainfall Measurement Mission (TRMM) satellite-based observations to compare and contrast wet and dry spell characteristics over the tropics (30 S-30 N). Defining a wet (dry) spell as the number of consecutive rainy (nonrainy) days, we find that the distributions of wet spells (independent of spatial resolution) exhibit universality in the following sense. While both ocean and land regions with high seasonal rainfall accumulation (humid regions) show a predominance of 2-4 day wet spells, those regions with low seasonal rainfall accumulation (arid regions) exhibit a wet spell duration distribution that is essentially exponential in nature, with a peak at 1 day. The behaviour that we observed for wet spells is reversed for dry spell distributions. The total rainfall accumulated in each wet spell has also been analyzed, and we find that the major contribution to seasonal rainfall for arid regions comes from very short length wet spells; however, for humid regions, this contribution comes from wet spells of duration as long as 30 days. An exhaustive sensitivity study of factors that can potentially affect the wet and dry spell characteristics (e.g., resolution) shows that our findings are robust. We also explore the role of chance in determining the 2-4 day mode, as well as the inuence of organized convection in separating reality from chance. The second part deals with the spatial coherence of tropical rain. We take two different approaches, namely, a global and local view. The global view attempts to quantify the con-ventional view of rain, i.e., the dominance of the intertropical convergence zone (ITCZ), while the local view tries to answer the question: if it rains, how far is the influence felt in zonal and meridional directions? In both approaches, the classical e-folding length for spatial decorrelation is used as a measure of spatial coherence. The major finding in the global view approach is that, at short timescales of accumulation (daily to pentad to even monthly), rain over the Equator shows the most dominant zonal scale. It is only at larger timescales of accumulation (seasonal or annual) that the dominance of ITCZ around 7 N is evident. In addition, we also find a semi-log linearity between the spatial scales, seen from afar, and timescale of accumulation, with a break in linearity around typical synoptic timescales of 5-10 days. The local view quantifies the dominance of the zonal scale in the tropical ocean convergence zones, with an anisotropy value (ratio of zonal to meridional scales) of 3-4. Over land, on the other hand, the zonal and meridional scales are comparable in magnitude, suggesting that rain tends to be mostly isotropic over continental regions. This latter finding holds true, irrespective of the spatial and temporal resolutions at which rain is observed. Interestingly, the anisotropy over ocean, while invariant with spatial resolution, is found to be a function of temporal resolution: from a value of 3-4 at daily timescale, it decreases to around 1.5 at 3-hourly resolution, suggesting that perhaps rain fundamentally might be isotropic in nature at an event scale. The final part analyses a few models from the suite of Coupled Model Intercomparison Project (CMIP5) models, to evaluate their ability to reproduce some of these aforementioned features. For all the strong biases that models are known to have, some of the observed features are captured well by the models. Specifically, on the temporal persistence front, the observed 2-4 day mode of wet (dry) spells of rain over humid (arid) regions is also seen in models. The overestimation of longer duration wet spells appears to be the primary cause of a positive bias in the number of rainy days from the models. In general, the tendency of models to not stop raining results in lower and higher number of shorter and longer duration wet spells, respectively, and consequently an overall reduction in dry spells of all durations. On the spatial coherence front, the main finding from the global view approach is that the observed semi-log linearity of the zonal spatial scale of rainfall as a function of timescale of accumulation is strikingly well-reproduced by the models. Even more remarkable is that the models are able to mimic the break in this linearity around 5 days (typical synoptic scale). What the models fail to do prominently is the transition of the dominance of equatorial rain at smaller timescales of accumulation to the dominance of ITCZ at around 7 N at higher timescales of accumulation. Based on the local view approach, we find that, in general, even though the zonal and meridional scales are overestimated, the observed isotropy of continental rain is captured very well by the models. Over the oceans, the success is less prominent, especially with the core of the ITCZ showing much larger ratios than those observed. Thus, the models seem to be able to reproduce the anisotropy for the wrong reasons, and the proposed anisotropy ratio could be a useful metric in further diagnosis of climate models.
APA, Harvard, Vancouver, ISO, and other styles
31

Ratan, Ram. "Temporal Persistence and Spatial Coherence of Tropical Rainfall." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2942.

Full text
Abstract:
The work presented in the thesis focuses on systematically documenting the multi scale nature of the temporal persistence and spatial coherence of tropical rainfall. There are three parts to the thesis: The first two parts utilize satellite-retrieved rainfall at multiple observational resolutions to characterize the space-time organization of rain; the third part assesses the ability of state-of-the-art coupled models to reproduce some of the observed features. In the first part of the study, which focuses on the temporal persistence of rain, we analyze the Tropical Rainfall Measurement Mission (TRMM) satellite-based observations to compare and contrast wet and dry spell characteristics over the tropics (30 S-30 N). Defining a wet (dry) spell as the number of consecutive rainy (nonrainy) days, we find that the distributions of wet spells (independent of spatial resolution) exhibit universality in the following sense. While both ocean and land regions with high seasonal rainfall accumulation (humid regions) show a predominance of 2-4 day wet spells, those regions with low seasonal rainfall accumulation (arid regions) exhibit a wet spell duration distribution that is essentially exponential in nature, with a peak at 1 day. The behaviour that we observed for wet spells is reversed for dry spell distributions. The total rainfall accumulated in each wet spell has also been analyzed, and we find that the major contribution to seasonal rainfall for arid regions comes from very short length wet spells; however, for humid regions, this contribution comes from wet spells of duration as long as 30 days. An exhaustive sensitivity study of factors that can potentially affect the wet and dry spell characteristics (e.g., resolution) shows that our findings are robust. We also explore the role of chance in determining the 2-4 day mode, as well as the inuence of organized convection in separating reality from chance. The second part deals with the spatial coherence of tropical rain. We take two different approaches, namely, a global and local view. The global view attempts to quantify the con-ventional view of rain, i.e., the dominance of the intertropical convergence zone (ITCZ), while the local view tries to answer the question: if it rains, how far is the influence felt in zonal and meridional directions? In both approaches, the classical e-folding length for spatial decorrelation is used as a measure of spatial coherence. The major finding in the global view approach is that, at short timescales of accumulation (daily to pentad to even monthly), rain over the Equator shows the most dominant zonal scale. It is only at larger timescales of accumulation (seasonal or annual) that the dominance of ITCZ around 7 N is evident. In addition, we also find a semi-log linearity between the spatial scales, seen from afar, and timescale of accumulation, with a break in linearity around typical synoptic timescales of 5-10 days. The local view quantifies the dominance of the zonal scale in the tropical ocean convergence zones, with an anisotropy value (ratio of zonal to meridional scales) of 3-4. Over land, on the other hand, the zonal and meridional scales are comparable in magnitude, suggesting that rain tends to be mostly isotropic over continental regions. This latter finding holds true, irrespective of the spatial and temporal resolutions at which rain is observed. Interestingly, the anisotropy over ocean, while invariant with spatial resolution, is found to be a function of temporal resolution: from a value of 3-4 at daily timescale, it decreases to around 1.5 at 3-hourly resolution, suggesting that perhaps rain fundamentally might be isotropic in nature at an event scale. The final part analyses a few models from the suite of Coupled Model Intercomparison Project (CMIP5) models, to evaluate their ability to reproduce some of these aforementioned features. For all the strong biases that models are known to have, some of the observed features are captured well by the models. Specifically, on the temporal persistence front, the observed 2-4 day mode of wet (dry) spells of rain over humid (arid) regions is also seen in models. The overestimation of longer duration wet spells appears to be the primary cause of a positive bias in the number of rainy days from the models. In general, the tendency of models to not stop raining results in lower and higher number of shorter and longer duration wet spells, respectively, and consequently an overall reduction in dry spells of all durations. On the spatial coherence front, the main finding from the global view approach is that the observed semi-log linearity of the zonal spatial scale of rainfall as a function of timescale of accumulation is strikingly well-reproduced by the models. Even more remarkable is that the models are able to mimic the break in this linearity around 5 days (typical synoptic scale). What the models fail to do prominently is the transition of the dominance of equatorial rain at smaller timescales of accumulation to the dominance of ITCZ at around 7 N at higher timescales of accumulation. Based on the local view approach, we find that, in general, even though the zonal and meridional scales are overestimated, the observed isotropy of continental rain is captured very well by the models. Over the oceans, the success is less prominent, especially with the core of the ITCZ showing much larger ratios than those observed. Thus, the models seem to be able to reproduce the anisotropy for the wrong reasons, and the proposed anisotropy ratio could be a useful metric in further diagnosis of climate models.
APA, Harvard, Vancouver, ISO, and other styles
32

Karmakar, Nirupam. "Space-Time Evolution of the Intraseasonal Variability in the Indian Summer Monsoon and its Association with Extreme Rainfall Events : Observations and GCM Simulations." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/3205.

Full text
Abstract:
In this thesis, we investigated modes of intraseasonal variability (ISV) observed in the Indian monsoon rainfall and how these modes modulate rainfall over India. We identified a decreasing trend in the intensity of low-frequency intraseasonal mode with increasing strength in synoptic variability over India. We also made an attempt to understand the reason for these observed trends using numerical simulations. In the first part of the thesis, satellite rainfall estimates are used to understand the spatiotem-poral structures of convection in the intraseasonal timescale and their intensity during boreal sum-mer over south Asia. Two dominant modes of variability with periodicities of 10–20-days (high-frequency) and 20–60-days (low-frequency) are found, with the latter strongly modulated by sea surface temperature. The 20–60-day mode shows northward propagation from the equatorial In-dian Ocean linked with eastward propagating modes of convective systems over the tropics. The 10–20-day mode shows a complex space-time structure with a northwestward propagating anoma-lous pattern emanating from the Indonesian coast. This pattern is found to be interacting with a structure emerging from higher latitudes propagating southeastwards. This could be related to ver-tical shear of zonal wind over northern India. The two modes exhibit variability in their intensity on the interannual time scale and contribute a significant amount to the daily rainfall variability in a season. The intensities of the 20–60-day and 10–20-day modes show significantly strong inverse and direct relationship, respectively, with the all-India June–September rainfall. This study also establishes that the probability of occurrence of substantial rainfall over central India increases significantly if the two intraseasonal modes simultaneously exhibit positive anomalies over the region. There also exists a phase-locking between the two modes. In the second part of the thesis, we investigated the changing nature of these intraseasonal modes over Indian region, and their association with extreme rainfall events using ground based observed rainfall. We found that the relative strength of the northward propagating 20–60-day mode has a significant decreasing trend during the past six decades, possibly attributed to the weakening of large-scale circulation in the region during monsoon. This reduction is compensated by a gain in synoptic-scale (3–9 days) variability. The decrease in the low-frequency ISV is associated with a significant decreasing trend in the percentage of extreme events during the active phase of the monsoon. However, this decrease is balanced by a significant increasing trend in the percentage of extreme events in break phase. We also find a significant rise in occurrence of extremes during early- and late-monsoon months, mainly over the eastern coastal regions of India. We do not observe any significant trend in the high-frequency ISV. In the last part of the thesis, we used numerical simulations to understand the observed changes in the ISV features. Using the atmospheric component of a global climate model (GCM), we have performed two experiments: control experiment (CE) and heating experiment (HE). The CE is the default simulation for 10 years. In HE, we prescribed heating in the atmosphere in such a way that it mimics the conditions for extreme rainfall events as observed over central India during June– September. Heating is prescribed primarily during the break phase of the 20–60-day mode. This basically increases the number of extremes, majority of which are in break phase. The design of the experiment reflects the observed current scenario of increased extreme events during breaks. We found that the increased extreme events in the HE decreased the intensity of the 20–60-day mode over the Indian region. This reduction is associated with a reduction of rainfall in active phase and increase in the length of break phase. A reduction in the seasonal mean over India is also observed. The reduction of active phase rainfall is linked with an increased stability of the atmosphere over central India. Lastly, we propose a possible mechanism for the reduction of rainfall in active phase. We found that there is a significant reduction in the strength of the vertical easterly shear over the northern Indian region during break–active transition phase. This basically weakens the conditions for the growth of Rossby wave instability, thereby elongating break phase and reducing the rainfall intensity in the following active phase. This study highlights the redistribution of rainfall intensity among periodic (low-frequency) and non-periodic (extreme) modes in a changing climate scenario, which is further tested in a modeling study. The results presented in this thesis will provide a pathway to understand, using observations and numerical model simulations, the ISV and its relative contribution to the Indian summer monsoon. It can also be used for model evaluation.
APA, Harvard, Vancouver, ISO, and other styles
33

Karmakar, Nirupam. "Space-Time Evolution of the Intraseasonal Variability in the Indian Summer Monsoon and its Association with Extreme Rainfall Events : Observations and GCM Simulations." Thesis, 2016. http://hdl.handle.net/2005/3205.

Full text
Abstract:
In this thesis, we investigated modes of intraseasonal variability (ISV) observed in the Indian monsoon rainfall and how these modes modulate rainfall over India. We identified a decreasing trend in the intensity of low-frequency intraseasonal mode with increasing strength in synoptic variability over India. We also made an attempt to understand the reason for these observed trends using numerical simulations. In the first part of the thesis, satellite rainfall estimates are used to understand the spatiotem-poral structures of convection in the intraseasonal timescale and their intensity during boreal sum-mer over south Asia. Two dominant modes of variability with periodicities of 10–20-days (high-frequency) and 20–60-days (low-frequency) are found, with the latter strongly modulated by sea surface temperature. The 20–60-day mode shows northward propagation from the equatorial In-dian Ocean linked with eastward propagating modes of convective systems over the tropics. The 10–20-day mode shows a complex space-time structure with a northwestward propagating anoma-lous pattern emanating from the Indonesian coast. This pattern is found to be interacting with a structure emerging from higher latitudes propagating southeastwards. This could be related to ver-tical shear of zonal wind over northern India. The two modes exhibit variability in their intensity on the interannual time scale and contribute a significant amount to the daily rainfall variability in a season. The intensities of the 20–60-day and 10–20-day modes show significantly strong inverse and direct relationship, respectively, with the all-India June–September rainfall. This study also establishes that the probability of occurrence of substantial rainfall over central India increases significantly if the two intraseasonal modes simultaneously exhibit positive anomalies over the region. There also exists a phase-locking between the two modes. In the second part of the thesis, we investigated the changing nature of these intraseasonal modes over Indian region, and their association with extreme rainfall events using ground based observed rainfall. We found that the relative strength of the northward propagating 20–60-day mode has a significant decreasing trend during the past six decades, possibly attributed to the weakening of large-scale circulation in the region during monsoon. This reduction is compensated by a gain in synoptic-scale (3–9 days) variability. The decrease in the low-frequency ISV is associated with a significant decreasing trend in the percentage of extreme events during the active phase of the monsoon. However, this decrease is balanced by a significant increasing trend in the percentage of extreme events in break phase. We also find a significant rise in occurrence of extremes during early- and late-monsoon months, mainly over the eastern coastal regions of India. We do not observe any significant trend in the high-frequency ISV. In the last part of the thesis, we used numerical simulations to understand the observed changes in the ISV features. Using the atmospheric component of a global climate model (GCM), we have performed two experiments: control experiment (CE) and heating experiment (HE). The CE is the default simulation for 10 years. In HE, we prescribed heating in the atmosphere in such a way that it mimics the conditions for extreme rainfall events as observed over central India during June– September. Heating is prescribed primarily during the break phase of the 20–60-day mode. This basically increases the number of extremes, majority of which are in break phase. The design of the experiment reflects the observed current scenario of increased extreme events during breaks. We found that the increased extreme events in the HE decreased the intensity of the 20–60-day mode over the Indian region. This reduction is associated with a reduction of rainfall in active phase and increase in the length of break phase. A reduction in the seasonal mean over India is also observed. The reduction of active phase rainfall is linked with an increased stability of the atmosphere over central India. Lastly, we propose a possible mechanism for the reduction of rainfall in active phase. We found that there is a significant reduction in the strength of the vertical easterly shear over the northern Indian region during break–active transition phase. This basically weakens the conditions for the growth of Rossby wave instability, thereby elongating break phase and reducing the rainfall intensity in the following active phase. This study highlights the redistribution of rainfall intensity among periodic (low-frequency) and non-periodic (extreme) modes in a changing climate scenario, which is further tested in a modeling study. The results presented in this thesis will provide a pathway to understand, using observations and numerical model simulations, the ISV and its relative contribution to the Indian summer monsoon. It can also be used for model evaluation.
APA, Harvard, Vancouver, ISO, and other styles
34

Bhattacharya, Anwesa. "Role of Aerosols in Modulating the Intraseasonal Oscillations of Indian Summer Monsoon." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/2864.

Full text
Abstract:
In this thesis, we have presented a systematic analysis of the change of cloud properties due to variation in aerosol concentration over Indian region using satellite observations, and Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) simulations. The Tropical Rainfall Measurement Mission (TRMM) based Microwave Imager (TMI) estimates (2A12) have been used to compare and contrast the characteristics of cloud liquid water and ice over the Indian land region and the surrounding oceans, during the pre-monsoon (May) and monsoon (June–September) seasons. Based on the spatial homogeneity of rainfall, we have selected five regions for our study (three over ocean, two over land). In general, we find that the mean cloud liquid water and cloud ice content of land and oceanic regions are different, with the ocean regions showing higher amount of CLW. A comparison across the ocean regions suggests that the cloud liquid water over the or graphically influenced Arabian Sea (close to the Indian west coast) behaves differently from the cloud liquid water over a trapped ocean (Bay of Bengal) or an open ocean (Equatorial Indian Ocean). Specifically, the Arabian Sea region shows higher liquid water for a lower range of rainfall, whereas the Bay of Bengal and the Equatorial Indian Ocean show higher liquid water for a higher range of rainfall. Apart from geographic differences, we also documented seasonal differences by comparing cloud liquid water profiles between monsoon and pre-monsoon periods, as well as between early and peak phases of the monsoon. We find that the cloud liquid water during the lean periods of rainfall (May or June) is higher than during the peak and late monsoon season (July-September) for raining clouds over central India. However, this is not true over the ocean. As active and break phases are important signatures of the monsoon progression, we also analyzed the differences in cloud liquid water during various phases of the monsoon, namely, active, break, active-to-break (a2b) and break-to-active (b2a) transition phases. We find that the cloud liquid water content during the b2a transition phase is significantly higher than that during the a2b transition phase over central India. We speculate that this could be attributed to higher amount of aerosol loading over this region during the break phase. We lend credence to this aerosol-liquid water/rain association by comparing the central Indian cloud liquid water with Southeast Asia (where the aerosol loading is significantly smaller) and find that in the latter region, there are no significant differences in cloud liquid water during the different phases of their monsoon. The second part of our study involves evaluating the ability of the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) to simulate the observed variation of cloud liquid water and rain efficiency. We have used no chemistry option, and the model was run with constant aerosol concentration. The model simulations (at 4.5 km resolution) are done for the month of June–July 2004 since this period was particularly favorable for the study of an active–break cycle of the monsoon. We first evaluate the sensitivity of the model to different parameterizations (microphysical, boundary layer, land surface) on the simulation of rain over central India and Bay of Bengal. This is done to identify an “optimal” combination of parameterizations which reproduces the best correlation with observed rain over these regions. In this default configuration (control run), where the aerosol concentration is kept constant throughout the simulation period, the model is not able to reproduce the observed variations of cloud liquid water during the different phases of an active-break cycle. To this end, we proceeded to modify the model by developing an aerosol-rain relation, using Aerosol Robotic Network (AERONET) and TRMM 3B42 data that realistically captures the variation of aerosol with rain. It is worth highlighting here that our goal was to primarily isolate the indirect effect of aerosols in determining the observed changes in cloud liquid water (CLW) during the active-break phases of the Indian monsoon, without getting into the complexity of a full chemistry model such as that incorporated in WRF-Chem. Moreover, the proposed modification (modified run) is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF. The main differences we find between the modified and control simulations is in the mean as well as spatial variability of CLW. We find that the proposed modification (i.e., rate of change of aerosol concentration as a function of rain rate) leads to a realistic variation in the CLW during the active-break cycle of Indian monsoon. Specifically, the peak value of CLW in the b2a (a2b) phase is larger (smaller) in the modified as compared to the control run. These results indicate a stronger change in CLW amount in the upper levels between the two transition phases in the modified scheme as compared to the control simulation. More significantly, we also observe a change in sign at the lower levels of the atmosphere, i.e., from a strong positive difference in the control run to a negative difference in the modified simulation, similar to that observed. Additionally, we investigated the impact of the proposed modification, via CLW changes, on cloud coverage, size of clouds and their spatial variability. We find that the transformation of optically thin clouds to thick clouds during the break phase was associated with larger cloud size in modified compared to the control simulation. Moreover, the higher rate of decay of the spatial variability of CLW with grid resolution, using the modified scheme, suggests that clusters of larger clouds are more in the modified compared to control simulation. Taken together, the interactive aerosol loading proposed in this thesis yields model simulations that better mimic the observed CLW variability between the transition phases.
APA, Harvard, Vancouver, ISO, and other styles
35

Bhattacharya, Anwesa. "Role of Aerosols in Modulating the Intraseasonal Oscillations of Indian Summer Monsoon." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2864.

Full text
Abstract:
In this thesis, we have presented a systematic analysis of the change of cloud properties due to variation in aerosol concentration over Indian region using satellite observations, and Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) simulations. The Tropical Rainfall Measurement Mission (TRMM) based Microwave Imager (TMI) estimates (2A12) have been used to compare and contrast the characteristics of cloud liquid water and ice over the Indian land region and the surrounding oceans, during the pre-monsoon (May) and monsoon (June–September) seasons. Based on the spatial homogeneity of rainfall, we have selected five regions for our study (three over ocean, two over land). In general, we find that the mean cloud liquid water and cloud ice content of land and oceanic regions are different, with the ocean regions showing higher amount of CLW. A comparison across the ocean regions suggests that the cloud liquid water over the or graphically influenced Arabian Sea (close to the Indian west coast) behaves differently from the cloud liquid water over a trapped ocean (Bay of Bengal) or an open ocean (Equatorial Indian Ocean). Specifically, the Arabian Sea region shows higher liquid water for a lower range of rainfall, whereas the Bay of Bengal and the Equatorial Indian Ocean show higher liquid water for a higher range of rainfall. Apart from geographic differences, we also documented seasonal differences by comparing cloud liquid water profiles between monsoon and pre-monsoon periods, as well as between early and peak phases of the monsoon. We find that the cloud liquid water during the lean periods of rainfall (May or June) is higher than during the peak and late monsoon season (July-September) for raining clouds over central India. However, this is not true over the ocean. As active and break phases are important signatures of the monsoon progression, we also analyzed the differences in cloud liquid water during various phases of the monsoon, namely, active, break, active-to-break (a2b) and break-to-active (b2a) transition phases. We find that the cloud liquid water content during the b2a transition phase is significantly higher than that during the a2b transition phase over central India. We speculate that this could be attributed to higher amount of aerosol loading over this region during the break phase. We lend credence to this aerosol-liquid water/rain association by comparing the central Indian cloud liquid water with Southeast Asia (where the aerosol loading is significantly smaller) and find that in the latter region, there are no significant differences in cloud liquid water during the different phases of their monsoon. The second part of our study involves evaluating the ability of the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) to simulate the observed variation of cloud liquid water and rain efficiency. We have used no chemistry option, and the model was run with constant aerosol concentration. The model simulations (at 4.5 km resolution) are done for the month of June–July 2004 since this period was particularly favorable for the study of an active–break cycle of the monsoon. We first evaluate the sensitivity of the model to different parameterizations (microphysical, boundary layer, land surface) on the simulation of rain over central India and Bay of Bengal. This is done to identify an “optimal” combination of parameterizations which reproduces the best correlation with observed rain over these regions. In this default configuration (control run), where the aerosol concentration is kept constant throughout the simulation period, the model is not able to reproduce the observed variations of cloud liquid water during the different phases of an active-break cycle. To this end, we proceeded to modify the model by developing an aerosol-rain relation, using Aerosol Robotic Network (AERONET) and TRMM 3B42 data that realistically captures the variation of aerosol with rain. It is worth highlighting here that our goal was to primarily isolate the indirect effect of aerosols in determining the observed changes in cloud liquid water (CLW) during the active-break phases of the Indian monsoon, without getting into the complexity of a full chemistry model such as that incorporated in WRF-Chem. Moreover, the proposed modification (modified run) is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF. The main differences we find between the modified and control simulations is in the mean as well as spatial variability of CLW. We find that the proposed modification (i.e., rate of change of aerosol concentration as a function of rain rate) leads to a realistic variation in the CLW during the active-break cycle of Indian monsoon. Specifically, the peak value of CLW in the b2a (a2b) phase is larger (smaller) in the modified as compared to the control run. These results indicate a stronger change in CLW amount in the upper levels between the two transition phases in the modified scheme as compared to the control simulation. More significantly, we also observe a change in sign at the lower levels of the atmosphere, i.e., from a strong positive difference in the control run to a negative difference in the modified simulation, similar to that observed. Additionally, we investigated the impact of the proposed modification, via CLW changes, on cloud coverage, size of clouds and their spatial variability. We find that the transformation of optically thin clouds to thick clouds during the break phase was associated with larger cloud size in modified compared to the control simulation. Moreover, the higher rate of decay of the spatial variability of CLW with grid resolution, using the modified scheme, suggests that clusters of larger clouds are more in the modified compared to control simulation. Taken together, the interactive aerosol loading proposed in this thesis yields model simulations that better mimic the observed CLW variability between the transition phases.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography